Articles | Volume 14, issue 2
https://doi.org/10.5194/hess-14-239-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-14-239-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area
A. Petrone
DEISTAF – Center for biosystems and agroforestry engineering, University of Florence, Florence, Italy
F. Preti
DEISTAF – Center for biosystems and agroforestry engineering, University of Florence, Florence, Italy
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Theory development
Young and new water fractions in soil and hillslope waters
Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Soil moisture: variable in space but redundant in time
A history of the concept of time of concentration
Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?
The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response
Slope–velocity equilibrium and evolution of surface roughness on a stony hillslope
Assessment of land use impact on hydraulic threshold conditions for gully head cut initiation
Technical note: Inference in hydrology from entropy balance considerations
Ecohydrological effects of stream–aquifer water interaction: a case study of the Heihe River basin, northwestern China
Hillslope-scale experiment demonstrates the role of convergence during two-step saturation
Impacts of climate variability on wetland salinization in the North American prairies
Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates
Runoff formation from experimental plot, field, to small catchment scales in agricultural North Huaihe River Plain, China
Addressing secondary school students' everyday ideas about freshwater springs in order to develop an instructional tool to promote conceptual reconstruction
Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow
Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds
Large-scale runoff generation – parsimonious parameterisation using high-resolution topography
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
Seasonal evaluation of the land surface scheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian region in Hungary
Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions
Modelling field scale water partitioning using on-site observations in sub-Saharan rainfed agriculture
Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations
Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet
Selection of an appropriately simple storm runoff model
Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception
Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation
A contribution to understanding the turbidity behaviour in an Amazon floodplain
Global spatial optimization with hydrological systems simulation: application to land-use allocation and peak runoff minimization
Implementing small scale processes at the soil-plant interface – the role of root architectures for calculating root water uptake profiles
Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity
Modelling the inorganic nitrogen behaviour in a small Mediterranean forested catchment, Fuirosos (Catalonia)
Climate and terrain factors explaining streamflow response and recession in Australian catchments
Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site
Characteristics of 2-D convective structures in Catalonia (NE Spain): an analysis using radar data and GIS
The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance
Actual daily evapotranspiration estimated from MERIS and AATSR data over the Chinese Loess Plateau
Calibration analysis for water storage variability of the global hydrological model WGHM
Earth's Critical Zone and hydropedology: concepts, characteristics, and advances
Reducing scale dependence in TOPMODEL using a dimensionless topographic index
Spatial variation in soil active-layer geochemistry across hydrologic margins in polar desert ecosystems
Nitrogen retention in natural Mediterranean wetland-streams affected by agricultural runoff
Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta
Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa
Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas
Copula based multisite model for daily precipitation simulation
Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes
Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map
Surface water acidification and critical loads: exploring the F-factor
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-437, https://doi.org/10.5194/egusphere-2024-437, 2024
Short summary
Short summary
We use a 3-year timeseries of tracer data in streamflow and soils to illustrate how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, waters in deep subsurface layers are even older, thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes.
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Keith J. Beven
Hydrol. Earth Syst. Sci., 24, 2655–2670, https://doi.org/10.5194/hess-24-2655-2020, https://doi.org/10.5194/hess-24-2655-2020, 2020
Short summary
Short summary
The concept of time of concentration in the analysis of catchment responses dates back over 150 years. It is normally discussed in terms of the velocity of flow of a water particle from the furthest part of a catchment to the outlet. This is also the basis for the definition in the International Glossary of Hydrology, but this is in conflict with the way in which it is commonly used. This paper provides a clarification of the concept and its correct useage.
Stefan W. Ploum, Hjalmar Laudon, Andrés Peralta-Tapia, and Lenka Kuglerová
Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, https://doi.org/10.5194/hess-24-1709-2020, 2020
Short summary
Short summary
Near-stream areas, or riparian zones, are important for the health of streams and rivers. If these areas are disturbed by forestry or other anthropogenic activity, the water quality and all life in streams may be at risk. We examined which riparian areas are particularly sensitive. We found that only a few wet areas bring most of the rainwater from the landscape to the stream, and they have a unique water quality. In order to maintain healthy streams and rivers, these areas should be protected.
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary
Short summary
The hydrology of high-elevation headwaters in midlatitudes is typically dominated by snow processes, which are very sensitive to changes in energy inputs at the top of the snowpack. We present a data analyses that reveal how snowmelt and transpiration waves induced by the diurnal solar cycle generate water pressure fluctuations that propagate through the snowpack–hillslope–stream system. Changes in diurnal energy inputs alter these pressure cycles with potential ecohydrological consequences.
Mark A. Nearing, Viktor O. Polyakov, Mary H. Nichols, Mariano Hernandez, Li Li, Ying Zhao, and Gerardo Armendariz
Hydrol. Earth Syst. Sci., 21, 3221–3229, https://doi.org/10.5194/hess-21-3221-2017, https://doi.org/10.5194/hess-21-3221-2017, 2017
Short summary
Short summary
This study presents novel scientific understanding about the way that hillslope surfaces form when exposed to rainfall erosion, and the way those surfaces interact with and influence runoff velocities during rain events. The data show that hillslope surfaces form such that flow velocities are independent of slope gradient and dependent on flow rates alone. This result represents a shift in thinking about surface water runoff.
Aliakbar Nazari Samani, Qiuwen Chen, Shahram Khalighi, Robert James Wasson, and Mohammad Reza Rahdari
Hydrol. Earth Syst. Sci., 20, 3005–3012, https://doi.org/10.5194/hess-20-3005-2016, https://doi.org/10.5194/hess-20-3005-2016, 2016
Short summary
Short summary
We hypothesized that land use had important effects on hydraulic threshold conditions for gully head cut initiation. We investigated the effects using an experimental plot. The results indicated that the use of a threshold value of τcr = 35 dyne cm−2 and ωu = 0.4 Cm S−1 in physically based soil erosion models is susceptible to high uncertainty when assessing gully erosion.
Stefan J. Kollet
Hydrol. Earth Syst. Sci., 20, 2801–2809, https://doi.org/10.5194/hess-20-2801-2016, https://doi.org/10.5194/hess-20-2801-2016, 2016
Yujin Zeng, Zhenghui Xie, Yan Yu, Shuang Liu, Linying Wang, Binghao Jia, Peihua Qin, and Yaning Chen
Hydrol. Earth Syst. Sci., 20, 2333–2352, https://doi.org/10.5194/hess-20-2333-2016, https://doi.org/10.5194/hess-20-2333-2016, 2016
Short summary
Short summary
In arid areas, stream–aquifer water exchange essentially sustains the growth and subsistence of riparian ecosystem. To quantify this effect for intensity and range, a stream–riverbank scheme was incorporated into a state-of-the-art land model, and some runs were set up over Heihe River basin, northwestern China. The results show that the hydrology circle is significantly changed, and the ecological system is benefitted greatly by the river water lateral transfer within a 1 km range to the stream.
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
U. Nachshon, A. Ireson, G. van der Kamp, S. R. Davies, and H. S. Wheater
Hydrol. Earth Syst. Sci., 18, 1251–1263, https://doi.org/10.5194/hess-18-1251-2014, https://doi.org/10.5194/hess-18-1251-2014, 2014
J. H. Spaaks and W. Bouten
Hydrol. Earth Syst. Sci., 17, 3455–3472, https://doi.org/10.5194/hess-17-3455-2013, https://doi.org/10.5194/hess-17-3455-2013, 2013
S. Han, D. Xu, and S. Wang
Hydrol. Earth Syst. Sci., 16, 3115–3125, https://doi.org/10.5194/hess-16-3115-2012, https://doi.org/10.5194/hess-16-3115-2012, 2012
S. Reinfried, S. Tempelmann, and U. Aeschbacher
Hydrol. Earth Syst. Sci., 16, 1365–1377, https://doi.org/10.5194/hess-16-1365-2012, https://doi.org/10.5194/hess-16-1365-2012, 2012
L. Merino-Martín, M. Moreno-de las Heras, S. Pérez-Domingo, T. Espigares, and J. M. Nicolau
Hydrol. Earth Syst. Sci., 16, 1305–1320, https://doi.org/10.5194/hess-16-1305-2012, https://doi.org/10.5194/hess-16-1305-2012, 2012
M. Ali, G. Sterk, M. Seeger, M. Boersema, and P. Peters
Hydrol. Earth Syst. Sci., 16, 591–601, https://doi.org/10.5194/hess-16-591-2012, https://doi.org/10.5194/hess-16-591-2012, 2012
L. Gong, S. Halldin, and C.-Y. Xu
Hydrol. Earth Syst. Sci., 15, 2481–2494, https://doi.org/10.5194/hess-15-2481-2011, https://doi.org/10.5194/hess-15-2481-2011, 2011
W. Ma, Y. Ma, Z. Hu, Z. Su, J. Wang, and H. Ishikawa
Hydrol. Earth Syst. Sci., 15, 1403–1413, https://doi.org/10.5194/hess-15-1403-2011, https://doi.org/10.5194/hess-15-1403-2011, 2011
E. L. Wipfler, K. Metselaar, J. C. van Dam, R. A. Feddes, E. van Meijgaard, L. H. van Ulft, B. van den Hurk, S. J. Zwart, and W. G. M. Bastiaanssen
Hydrol. Earth Syst. Sci., 15, 1257–1271, https://doi.org/10.5194/hess-15-1257-2011, https://doi.org/10.5194/hess-15-1257-2011, 2011
W. Korres, C. N. Koyama, P. Fiener, and K. Schneider
Hydrol. Earth Syst. Sci., 14, 751–764, https://doi.org/10.5194/hess-14-751-2010, https://doi.org/10.5194/hess-14-751-2010, 2010
H. Makurira, H. H. G. Savenije, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 14, 627–638, https://doi.org/10.5194/hess-14-627-2010, https://doi.org/10.5194/hess-14-627-2010, 2010
C. H. Luce and D. G. Tarboton
Hydrol. Earth Syst. Sci., 14, 535–543, https://doi.org/10.5194/hess-14-535-2010, https://doi.org/10.5194/hess-14-535-2010, 2010
J. Liu, S. Kang, T. Gong, and A. Lu
Hydrol. Earth Syst. Sci., 14, 481–489, https://doi.org/10.5194/hess-14-481-2010, https://doi.org/10.5194/hess-14-481-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 447–458, https://doi.org/10.5194/hess-14-447-2010, https://doi.org/10.5194/hess-14-447-2010, 2010
H. H. Bulcock and G. P. W. Jewitt
Hydrol. Earth Syst. Sci., 14, 383–392, https://doi.org/10.5194/hess-14-383-2010, https://doi.org/10.5194/hess-14-383-2010, 2010
L. S. Kuchment, P. Romanov, A. N. Gelfan, and V. N. Demidov
Hydrol. Earth Syst. Sci., 14, 339–350, https://doi.org/10.5194/hess-14-339-2010, https://doi.org/10.5194/hess-14-339-2010, 2010
E. Alcântara, E. Novo, J. Stech, J. Lorenzzetti, C. Barbosa, A. Assireu, and A. Souza
Hydrol. Earth Syst. Sci., 14, 351–364, https://doi.org/10.5194/hess-14-351-2010, https://doi.org/10.5194/hess-14-351-2010, 2010
I.-Y. Yeo and J.-M. Guldmann
Hydrol. Earth Syst. Sci., 14, 325–338, https://doi.org/10.5194/hess-14-325-2010, https://doi.org/10.5194/hess-14-325-2010, 2010
C. L. Schneider, S. Attinger, J.-O. Delfs, and A. Hildebrandt
Hydrol. Earth Syst. Sci., 14, 279–289, https://doi.org/10.5194/hess-14-279-2010, https://doi.org/10.5194/hess-14-279-2010, 2010
G. Baroni, A. Facchi, C. Gandolfi, B. Ortuani, D. Horeschi, and J. C. van Dam
Hydrol. Earth Syst. Sci., 14, 251–270, https://doi.org/10.5194/hess-14-251-2010, https://doi.org/10.5194/hess-14-251-2010, 2010
C. Medici, S. Bernal, A. Butturini, F. Sabater, M. Martin, A. J. Wade, and F. Frances
Hydrol. Earth Syst. Sci., 14, 223–237, https://doi.org/10.5194/hess-14-223-2010, https://doi.org/10.5194/hess-14-223-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 159–169, https://doi.org/10.5194/hess-14-159-2010, https://doi.org/10.5194/hess-14-159-2010, 2010
C. Gruhier, P. de Rosnay, S. Hasenauer, T. Holmes, R. de Jeu, Y. Kerr, E. Mougin, E. Njoku, F. Timouk, W. Wagner, and M. Zribi
Hydrol. Earth Syst. Sci., 14, 141–156, https://doi.org/10.5194/hess-14-141-2010, https://doi.org/10.5194/hess-14-141-2010, 2010
M. Barnolas, T. Rigo, and M. C. Llasat
Hydrol. Earth Syst. Sci., 14, 129–139, https://doi.org/10.5194/hess-14-129-2010, https://doi.org/10.5194/hess-14-129-2010, 2010
A. Schmidt, J. J. Gibson, I. R. Santos, M. Schubert, K. Tattrie, and H. Weiss
Hydrol. Earth Syst. Sci., 14, 79–89, https://doi.org/10.5194/hess-14-79-2010, https://doi.org/10.5194/hess-14-79-2010, 2010
R. Liu, J. Wen, X. Wang, L. Wang, H. Tian, T. T. Zhang, X. K. Shi, J. H. Zhang, and SH. N. Lv
Hydrol. Earth Syst. Sci., 14, 47–58, https://doi.org/10.5194/hess-14-47-2010, https://doi.org/10.5194/hess-14-47-2010, 2010
S. Werth and A. Güntner
Hydrol. Earth Syst. Sci., 14, 59–78, https://doi.org/10.5194/hess-14-59-2010, https://doi.org/10.5194/hess-14-59-2010, 2010
H. Lin
Hydrol. Earth Syst. Sci., 14, 25–45, https://doi.org/10.5194/hess-14-25-2010, https://doi.org/10.5194/hess-14-25-2010, 2010
A. Ducharne
Hydrol. Earth Syst. Sci., 13, 2399–2412, https://doi.org/10.5194/hess-13-2399-2009, https://doi.org/10.5194/hess-13-2399-2009, 2009
J. E. Barrett, M. N. Gooseff, and C. Takacs-Vesbach
Hydrol. Earth Syst. Sci., 13, 2349–2358, https://doi.org/10.5194/hess-13-2349-2009, https://doi.org/10.5194/hess-13-2349-2009, 2009
V. García-García, R. Gómez, M. R. Vidal-Abarca, and M. L. Suárez
Hydrol. Earth Syst. Sci., 13, 2359–2371, https://doi.org/10.5194/hess-13-2359-2009, https://doi.org/10.5194/hess-13-2359-2009, 2009
M. Shamsudduha, R. E. Chandler, R. G. Taylor, and K. M. Ahmed
Hydrol. Earth Syst. Sci., 13, 2373–2385, https://doi.org/10.5194/hess-13-2373-2009, https://doi.org/10.5194/hess-13-2373-2009, 2009
J. C. M. Andersson, A. J. B. Zehnder, G. P. W. Jewitt, and H. Yang
Hydrol. Earth Syst. Sci., 13, 2329–2347, https://doi.org/10.5194/hess-13-2329-2009, https://doi.org/10.5194/hess-13-2329-2009, 2009
S. Binet, L. Spadini, C. Bertrand, Y. Guglielmi, J. Mudry, and C. Scavia
Hydrol. Earth Syst. Sci., 13, 2315–2327, https://doi.org/10.5194/hess-13-2315-2009, https://doi.org/10.5194/hess-13-2315-2009, 2009
A. Bárdossy and G. G. S. Pegram
Hydrol. Earth Syst. Sci., 13, 2299–2314, https://doi.org/10.5194/hess-13-2299-2009, https://doi.org/10.5194/hess-13-2299-2009, 2009
K. Dontsova, C. I. Steefel, S. Desilets, A. Thompson, and J. Chorover
Hydrol. Earth Syst. Sci., 13, 2273–2286, https://doi.org/10.5194/hess-13-2273-2009, https://doi.org/10.5194/hess-13-2273-2009, 2009
D. Yamazaki, T. Oki, and S. Kanae
Hydrol. Earth Syst. Sci., 13, 2241–2251, https://doi.org/10.5194/hess-13-2241-2009, https://doi.org/10.5194/hess-13-2241-2009, 2009
L. Rapp and K. Bishop
Hydrol. Earth Syst. Sci., 13, 2191–2201, https://doi.org/10.5194/hess-13-2191-2009, https://doi.org/10.5194/hess-13-2191-2009, 2009
Cited articles
Alcaldía Municipal de Río Blanco, SE, SINAPRED, INETER, COSUDE, SNV: Análisis de Riesgos del Municipio de Río Blanco, Managua, Nicaragua, 2005.
AMUNIC-INIFOM: Caracterización municipal de Río Blanco, 2008.
Anaya, G. M., Martinez, M. M. R., Trueba, C. A., Figueroa, S. B., and Fernandez, M. O.: Manual de Conservación de suelos y del agua, Chapingo (Mexico), Colegio de Postgraduados, 581 pp., 1977.
Bostanoglou, L.: Restauration et protection des pentes degradées, Conservation des resources manual, FAO Conservation Guide, 13/1, 1980.
Bruscoli, P., Bresci, E., and Preti, F.: Diagnostic Analysis of an Irrigation System in the Andes Region, Agricultural Engineering International: the CIGR Journal of Scientific Research and Development, III, 1–14, 2001.
Bunch, R. and Lopez, G.: Soil recuperation in Central America: Sustaining Innovation after Intervention, Gatekeeper Series n 55, International Institute for Environment and Development, London, 1999.
Castillo, F. J. A. and Müller-Sämann, K.: Conservación de suelos en ladera: Buscando nuevas alternativas, in: Memorias de un seminario nacional sobre actualización en conservación de suelos en laderas, Centro de estudios para la Conservación Integral de la ladera (CECIL), Santafé de Bogotá, Colombia, 87–106, 1996.
Chambers, R.: Rural appraisal: rapid, relaxed and participatory, IDS pubblications, University of Sussex, England, 1992.
Clark, J. and Hellin, J.: Bio-engineering for Effective Road maintainance in the Caribbean, Natural Resources Institute, The University of Greenwich, UK, 1996.
Clyma, W., Lowdermilk, M. K., and Corey, G. L.: A research development process for improvement of on-farm water management, Water Management Research Project, Colorado State University, Fort Collins, Colorado, USA, 1977.
Costantinesco, I.: Soil conservation for developing countries, FAO Soil Bulletin, 30, 74–86, 1976.
Devkota, B. D, Paudel, P., Omura, H., Kubota, T., and Morita, K.: Uses of Vegetative Measures for Erosion Mitigation in Mid Hill Areas of Nepal, Kyushu J. For. Res., 59, 265–268, 2006.
Dickerson, J. A. and Lake Jr., D. W.: Cost Effective Biotechnical Slope Protection Trials in New York, ASAE, Paper No. 892 654, 1989.
Evette, A., Labonne, S., Rey, F., Liebault, F., Jancke, O., and Girel, J.: History of Bioengineering Techniques for Erosion Control in Rivers in Western Europe, Environ. Manage., 43, 972–984, 2009
Florineth, F.: Stabilization of gullies with soil – bio-engineering methods in the Alps and in Nepal, in: Gully Erosion under Global Change, edited by: Li, Y., Poisen, J., and Valentin, C., Sichuan Science and Technology Press, Chengdu, China, 315–339, 2004.
Garrity, D. P., Stark, M., and Mercado Jr., A.: Natural vegetative strips: a bioengineering innovation to help transform smallholder conservation, in: Ground and Water Bioengineering for Erosion Control and Slope Stabilisation, edited by: Barker, D. H., Watson, A. J., Sombatpanit, S., Northcutt, B., and Maglinao, A. R., Science Publishers Inc., Enfield, New Hampshire, 263–270, 2004.
Ghimire, S. K. and Karki, K. K.: Mitigation of soil erosion hazards through bio-engineering: a case study of Mid-Himalaya, Nepal, International Conference Eco-Engineering: "The use of vegetation to improve slope stability", Thessaloniki, 2004.
Gray, D. H. and Leiser, A. T.: Biotechnical Slope Protection and Erosion Control, Van Nostrand Reinold Company, New York, 271 pp., 1982.
Gray, D. H. and Sotir, R. B.: Biotechnical and soil bioengineering slope stabilization, A practical guide for erosion control, New York, John Wiley & Sons, Inc., 378 pp., 1996.
Hudson, N.: Conservación de suelos, Barcelona (España), Reverté S.A., 335 pp., 1982.
IRENA: Árboles forestales útiles para su propagación, Instituto Nicaragüense de Recursos Naturales y del Ambientes, Managua, Nicaragua, 246 pp., 1992.
Johnson, N., Lilja, N., and Ashby, J.: Measuring the Impact of User Participation in Agricultural and Natural Resource Management Research, Agr. Syst., 78, 287–306, 2003.
Kirby, M. J. and Morgan, R. P. C.: Erosión de suelos, 1$^{a }$edición, México, Limusa S.A., 367 pp., 1984.
Kuriakose, S. L., van Beek, L. P. H., and Westen, C. J.: Parameterizing a physically based shallow landslide model in a data poor region, Earth Surf. Proc. Land., 34(6), 867–881, https://doi.org/10.1002/esp.1794, 2009
Lammeraner W., Rauch, H. P., and Laaha, G.: Implementation and monitoring of soil bio-engineering measures at a landslide in the Middle Mountains of Nepal, Plant Soil, 278, 159–170, 2005.
Leach, M., Mearns, R., and Scoones, I.: Environmental entitlements: dynamics and institutions in community-based natural resource management, World Dev., 27(2), 225–247, 1999.
Li, X., Zhang, L. Q., and Zhang, Z.: Soil bioengineering and the ecological restoration of riverbanks at the Airport Town, Shanghai, China, Ecol. Eng., 26, 304–314, 2006.
Marui, H.: Landslide prevention measures, FAO watershed management field manual, FAO naturelles en zones arides et semi-arides, Cahiers FAO: Conservation des sols: 115–135, Conservation Guide, 13/4, 135–153, 1988.
Nygren, A.: Community-Based Forest Management Within the Context of Institutional Decentralization in Honduras, World Development Vol. 33, No. 4, 639–655, 2005.
Olivier de Sardan, J.-P.: Anthropology and development: understanding contemporary social change, Zed Books, London & New York, 2005.
Petrone, A.: Realización de obras de mitigación con técnicas de ingenería naturalistica en el Cerro Musún- Río Blanco, published in the framework of the DIPECHO Project "Sistema de prevención antes desatres naturales en 7 comunidades rurales del area del cerro Musún", Nicaragua, 2006.
Petrone, A. and Preti, F.: Ingenieria Naturalistica en Centroamérica, Manuali Tecnici per la Cooperazione allo Sviluppo, Istituto Agronomico per l'Oltremare, Società Editrice Fiorentina, Firenze, 108 pp., ISBN 88-89507-02-0, 2005.
Petrone, A., Matassoni, P., and Preti, F.: Sperimentazioni con talee di specie autoctone in interventi di ingegneria naturalistica in Nicaragua, Quaderni di Idronomia montana, Nuova Editrice Bios, Castrolibero, 26, 477–488, 2006.
Petrone, A. and Preti, F.: Suitability of soil bioengineering techniques in Central America: a case study in Nicaragua, Hydrol. Earth Syst. Sci., 12, 1241–1248, 2008.
Preti, F. and Milanese, C.: Monitoring Ground Bio-Engineering Stabilization of Land-Slides in Lazio Region (Italy), in: Eco- and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability Proceedings of the First International Conference on Eco-Engineering, 13–17 September 2004, Series: Developments in Plant and Soil Sciences, edited by: Stokes, A., Spanos, I., Norris, J. E., and Cammeraat, E., Springer, Vol. 103, ISBN 10: 1-4020-5592-7, ISBN 13: 978-1-4020-5592-8, 2007.
Preti, F.: Stabilità dei versanti vegetati, Cap. 10, in: Manuale 3 d'Ingegneria Naturalistica Sistemazione dei versanti, Regione Lazio, Roma, edited by: Sauli, G., Cornelini, P., and Preti, F., http://www.regione.lazio.it/web2/contents/ingegneria_naturalistica/manuale_versanti/Cap_10_10.pdf, last access: February 2010, 2006 (in Italian).
Preti, F.: Seguimiento de de trabajos de Ingenieria Biologica en Italia central, Cuadernos de Arquitectura del Paisaje, 2007.
Preti, F., Dani A., and Laio F.: Root profile assessment by means of hydrological, pedological and above-ground vegetation information for bio-engineering purposes, Ecol. Eng., https://doi.org/10.1016/j.ecoleng.2009.07.010, in press, 2010.
Sauli, G., Cornelini, P., and Preti, F.: Regione Lazio, Manuale 3 d'Ingegneria Naturalistica- Sistemazione dei versanti, Regione Lazio, Roma, http://www.regione.lazio.it/web2/contents/ingegneria_naturalistica, last access: Februar 2010, Ed. Emilmarc s.r.l., Roma, 2006.
Reubens, B., Windey, J., Danjon, F., Poesen, J., and Muys, B.: Root system architecture of woody species important for erosion control in Tigray, Northern Ethiopia, Proceedings 4th International Symposium on Dynamics of Physiological Processes in Roots of Woody Plants, 16–19 September 2007, Bangkor, UK, 2007.
Rivera, H. R. and Sinisterra, J. A.: Uso social de la Bioingeniería para el control de la erosión severa, CIPAV-CVC, 2006.
Schiechtl, H. M.: Vegetative and soil treatment measures, FAO watershed management field, 1985.
Schiess, M. P.: Conception et construction des routes dams les basins versants sensibles, Guide pratique d'aménagement des bassins versants, Cahier FAO Conservation, 13/5, 155–172, 1994.
Sheng, T. C.: Approche d'aménagement intégré dans l'etablissement d'un projet de développement d'un bassin versant, Aménagement des bassins versants, Cahier FAO: Conservation des sols, 1, 11–18, 1977.
Sheng, T. C.: Protection des versant cultivés, Aménagement des basins versants, Cahier FAO: Conservation des sols, 1, 179–213, 1977.
Sheng, T. C.: L'ensemencement par pulvérisation: procédés, exemples et perspectives a la Jamaique, Techniques spéciales de conservation, Cahier FAO: Conservation des sols, 4, 75–83, 1979.
Sheng, T. C.: Watershed survey and planning, Watershed management field manual, FAO Conservation Guide, 13/6(3–15), 132–140, 1990.
Suarez Diaz, J.: Control De Erosion en Zonas Tropicales, ISBN 958-33-2734-4, 2001.
Sutili, F. J., Durlo, M. A., and Bressan, D. A.: Bio-technical capability of "sarandi-branco" (Phyllanthus sellowianus mull. Arg.) and "vime" (Salix viminalis L.) for re-vegetation water corse edges, Ciencia Florestal, Santa Maria, Brasile, 14(1), 13–20, ISSN 0103-9954, 2004.
UNDP (United Nations Development Programme): Lo sviluppo umano rapporto 2006– L'acqua tra potere e povertà, Legoprint, Lavis (Trento), 494 pp., ISBN 88-7885-099-3, 2006.
van Beek, L. P. H., Wint, J., Cammeraat, L. H., and Edwards, J. P.: Observation and simulation of root reinforcemente on abandoned Mediterranean slopes, Plant Soil, 278, 55–74, 2005.
Vishnudas, S., Savenije, H. H. G., Van der Zaag, P., Anil, K. R., and Balan, K.: The protective and attractive covering of a vegetated embankment using coir geotextiles, Hydrol. Earth Syst. Sci., 10, 565–574, 2006.
Wikipedia: http://upload.wikimedia.org/wikipedia/commons/c/c0/Nicaragua_rel_97.jpg, last access: 28 July 2009.
Wilken, G. C.: Good Farmers: Traditional Resource Management in Mexico and Central America, UC Press, Berkeley, CA, 1987.
Zanoni C.: Ritorno al passato, una viminata spondale realizzata dagli aztechi, ACER, 6, 61–63, 2009 (in Italian).