Articles | Volume 13, issue 11
https://doi.org/10.5194/hess-13-2151-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-13-2151-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modelling runoff at the plot scale taking into account rainfall partitioning by vegetation: application to stemflow of banana (Musa spp.) plant
J.-B. Charlier
CIRAD, UPR Systèmes bananes et ananas, Capesterre-Belle-Eau, Guadeloupe, 97130, France
now at: Université de Franche-Comté-CNRS/UMR 6249 Chrono-environnement, UFR des Sciences et Techniques, 16 route de Gray, 25030 Besançon cedex, France
R. Moussa
INRA, Laboratoire d'étude des Interactions Sol-Agrosystème-Hydrosystème (LISAH), UMR SupAgro-INRA-IRD, Bât. 24, 2 place Viala, 34060 Montpellier cedex 1, France
P. Cattan
CIRAD, UPR Systèmes bananes et ananas, Capesterre-Belle-Eau, Guadeloupe, 97130, France
Y.-M. Cabidoche
INRA, UR 135 Agropédoclimatique de la Zone Caraïbes, Domaine Duclos, 97170 Petit-Bourg, Guadeloupe (FWI)
M. Voltz
INRA, Laboratoire d'étude des Interactions Sol-Agrosystème-Hydrosystème (LISAH), UMR SupAgro-INRA-IRD, Bât. 24, 2 place Viala, 34060 Montpellier cedex 1, France
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Theory development
Young and new water fractions in soil and hillslope waters
Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Soil moisture: variable in space but redundant in time
A history of the concept of time of concentration
Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?
The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response
Slope–velocity equilibrium and evolution of surface roughness on a stony hillslope
Assessment of land use impact on hydraulic threshold conditions for gully head cut initiation
Technical note: Inference in hydrology from entropy balance considerations
Ecohydrological effects of stream–aquifer water interaction: a case study of the Heihe River basin, northwestern China
Hillslope-scale experiment demonstrates the role of convergence during two-step saturation
Impacts of climate variability on wetland salinization in the North American prairies
Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates
Runoff formation from experimental plot, field, to small catchment scales in agricultural North Huaihe River Plain, China
Addressing secondary school students' everyday ideas about freshwater springs in order to develop an instructional tool to promote conceptual reconstruction
Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow
Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds
Large-scale runoff generation – parsimonious parameterisation using high-resolution topography
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
Seasonal evaluation of the land surface scheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian region in Hungary
Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions
Modelling field scale water partitioning using on-site observations in sub-Saharan rainfed agriculture
Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations
Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet
Selection of an appropriately simple storm runoff model
Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception
Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation
A contribution to understanding the turbidity behaviour in an Amazon floodplain
Global spatial optimization with hydrological systems simulation: application to land-use allocation and peak runoff minimization
Implementing small scale processes at the soil-plant interface – the role of root architectures for calculating root water uptake profiles
Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity
Modelling the inorganic nitrogen behaviour in a small Mediterranean forested catchment, Fuirosos (Catalonia)
Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area
Climate and terrain factors explaining streamflow response and recession in Australian catchments
Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site
Characteristics of 2-D convective structures in Catalonia (NE Spain): an analysis using radar data and GIS
The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance
Actual daily evapotranspiration estimated from MERIS and AATSR data over the Chinese Loess Plateau
Calibration analysis for water storage variability of the global hydrological model WGHM
Earth's Critical Zone and hydropedology: concepts, characteristics, and advances
Reducing scale dependence in TOPMODEL using a dimensionless topographic index
Spatial variation in soil active-layer geochemistry across hydrologic margins in polar desert ecosystems
Nitrogen retention in natural Mediterranean wetland-streams affected by agricultural runoff
Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta
Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa
Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas
Copula based multisite model for daily precipitation simulation
Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes
Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-437, https://doi.org/10.5194/egusphere-2024-437, 2024
Short summary
Short summary
We use a 3-year timeseries of tracer data in streamflow and soils to illustrate how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, waters in deep subsurface layers are even older, thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes.
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Keith J. Beven
Hydrol. Earth Syst. Sci., 24, 2655–2670, https://doi.org/10.5194/hess-24-2655-2020, https://doi.org/10.5194/hess-24-2655-2020, 2020
Short summary
Short summary
The concept of time of concentration in the analysis of catchment responses dates back over 150 years. It is normally discussed in terms of the velocity of flow of a water particle from the furthest part of a catchment to the outlet. This is also the basis for the definition in the International Glossary of Hydrology, but this is in conflict with the way in which it is commonly used. This paper provides a clarification of the concept and its correct useage.
Stefan W. Ploum, Hjalmar Laudon, Andrés Peralta-Tapia, and Lenka Kuglerová
Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, https://doi.org/10.5194/hess-24-1709-2020, 2020
Short summary
Short summary
Near-stream areas, or riparian zones, are important for the health of streams and rivers. If these areas are disturbed by forestry or other anthropogenic activity, the water quality and all life in streams may be at risk. We examined which riparian areas are particularly sensitive. We found that only a few wet areas bring most of the rainwater from the landscape to the stream, and they have a unique water quality. In order to maintain healthy streams and rivers, these areas should be protected.
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary
Short summary
The hydrology of high-elevation headwaters in midlatitudes is typically dominated by snow processes, which are very sensitive to changes in energy inputs at the top of the snowpack. We present a data analyses that reveal how snowmelt and transpiration waves induced by the diurnal solar cycle generate water pressure fluctuations that propagate through the snowpack–hillslope–stream system. Changes in diurnal energy inputs alter these pressure cycles with potential ecohydrological consequences.
Mark A. Nearing, Viktor O. Polyakov, Mary H. Nichols, Mariano Hernandez, Li Li, Ying Zhao, and Gerardo Armendariz
Hydrol. Earth Syst. Sci., 21, 3221–3229, https://doi.org/10.5194/hess-21-3221-2017, https://doi.org/10.5194/hess-21-3221-2017, 2017
Short summary
Short summary
This study presents novel scientific understanding about the way that hillslope surfaces form when exposed to rainfall erosion, and the way those surfaces interact with and influence runoff velocities during rain events. The data show that hillslope surfaces form such that flow velocities are independent of slope gradient and dependent on flow rates alone. This result represents a shift in thinking about surface water runoff.
Aliakbar Nazari Samani, Qiuwen Chen, Shahram Khalighi, Robert James Wasson, and Mohammad Reza Rahdari
Hydrol. Earth Syst. Sci., 20, 3005–3012, https://doi.org/10.5194/hess-20-3005-2016, https://doi.org/10.5194/hess-20-3005-2016, 2016
Short summary
Short summary
We hypothesized that land use had important effects on hydraulic threshold conditions for gully head cut initiation. We investigated the effects using an experimental plot. The results indicated that the use of a threshold value of τcr = 35 dyne cm−2 and ωu = 0.4 Cm S−1 in physically based soil erosion models is susceptible to high uncertainty when assessing gully erosion.
Stefan J. Kollet
Hydrol. Earth Syst. Sci., 20, 2801–2809, https://doi.org/10.5194/hess-20-2801-2016, https://doi.org/10.5194/hess-20-2801-2016, 2016
Yujin Zeng, Zhenghui Xie, Yan Yu, Shuang Liu, Linying Wang, Binghao Jia, Peihua Qin, and Yaning Chen
Hydrol. Earth Syst. Sci., 20, 2333–2352, https://doi.org/10.5194/hess-20-2333-2016, https://doi.org/10.5194/hess-20-2333-2016, 2016
Short summary
Short summary
In arid areas, stream–aquifer water exchange essentially sustains the growth and subsistence of riparian ecosystem. To quantify this effect for intensity and range, a stream–riverbank scheme was incorporated into a state-of-the-art land model, and some runs were set up over Heihe River basin, northwestern China. The results show that the hydrology circle is significantly changed, and the ecological system is benefitted greatly by the river water lateral transfer within a 1 km range to the stream.
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
U. Nachshon, A. Ireson, G. van der Kamp, S. R. Davies, and H. S. Wheater
Hydrol. Earth Syst. Sci., 18, 1251–1263, https://doi.org/10.5194/hess-18-1251-2014, https://doi.org/10.5194/hess-18-1251-2014, 2014
J. H. Spaaks and W. Bouten
Hydrol. Earth Syst. Sci., 17, 3455–3472, https://doi.org/10.5194/hess-17-3455-2013, https://doi.org/10.5194/hess-17-3455-2013, 2013
S. Han, D. Xu, and S. Wang
Hydrol. Earth Syst. Sci., 16, 3115–3125, https://doi.org/10.5194/hess-16-3115-2012, https://doi.org/10.5194/hess-16-3115-2012, 2012
S. Reinfried, S. Tempelmann, and U. Aeschbacher
Hydrol. Earth Syst. Sci., 16, 1365–1377, https://doi.org/10.5194/hess-16-1365-2012, https://doi.org/10.5194/hess-16-1365-2012, 2012
L. Merino-Martín, M. Moreno-de las Heras, S. Pérez-Domingo, T. Espigares, and J. M. Nicolau
Hydrol. Earth Syst. Sci., 16, 1305–1320, https://doi.org/10.5194/hess-16-1305-2012, https://doi.org/10.5194/hess-16-1305-2012, 2012
M. Ali, G. Sterk, M. Seeger, M. Boersema, and P. Peters
Hydrol. Earth Syst. Sci., 16, 591–601, https://doi.org/10.5194/hess-16-591-2012, https://doi.org/10.5194/hess-16-591-2012, 2012
L. Gong, S. Halldin, and C.-Y. Xu
Hydrol. Earth Syst. Sci., 15, 2481–2494, https://doi.org/10.5194/hess-15-2481-2011, https://doi.org/10.5194/hess-15-2481-2011, 2011
W. Ma, Y. Ma, Z. Hu, Z. Su, J. Wang, and H. Ishikawa
Hydrol. Earth Syst. Sci., 15, 1403–1413, https://doi.org/10.5194/hess-15-1403-2011, https://doi.org/10.5194/hess-15-1403-2011, 2011
E. L. Wipfler, K. Metselaar, J. C. van Dam, R. A. Feddes, E. van Meijgaard, L. H. van Ulft, B. van den Hurk, S. J. Zwart, and W. G. M. Bastiaanssen
Hydrol. Earth Syst. Sci., 15, 1257–1271, https://doi.org/10.5194/hess-15-1257-2011, https://doi.org/10.5194/hess-15-1257-2011, 2011
W. Korres, C. N. Koyama, P. Fiener, and K. Schneider
Hydrol. Earth Syst. Sci., 14, 751–764, https://doi.org/10.5194/hess-14-751-2010, https://doi.org/10.5194/hess-14-751-2010, 2010
H. Makurira, H. H. G. Savenije, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 14, 627–638, https://doi.org/10.5194/hess-14-627-2010, https://doi.org/10.5194/hess-14-627-2010, 2010
C. H. Luce and D. G. Tarboton
Hydrol. Earth Syst. Sci., 14, 535–543, https://doi.org/10.5194/hess-14-535-2010, https://doi.org/10.5194/hess-14-535-2010, 2010
J. Liu, S. Kang, T. Gong, and A. Lu
Hydrol. Earth Syst. Sci., 14, 481–489, https://doi.org/10.5194/hess-14-481-2010, https://doi.org/10.5194/hess-14-481-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 447–458, https://doi.org/10.5194/hess-14-447-2010, https://doi.org/10.5194/hess-14-447-2010, 2010
H. H. Bulcock and G. P. W. Jewitt
Hydrol. Earth Syst. Sci., 14, 383–392, https://doi.org/10.5194/hess-14-383-2010, https://doi.org/10.5194/hess-14-383-2010, 2010
L. S. Kuchment, P. Romanov, A. N. Gelfan, and V. N. Demidov
Hydrol. Earth Syst. Sci., 14, 339–350, https://doi.org/10.5194/hess-14-339-2010, https://doi.org/10.5194/hess-14-339-2010, 2010
E. Alcântara, E. Novo, J. Stech, J. Lorenzzetti, C. Barbosa, A. Assireu, and A. Souza
Hydrol. Earth Syst. Sci., 14, 351–364, https://doi.org/10.5194/hess-14-351-2010, https://doi.org/10.5194/hess-14-351-2010, 2010
I.-Y. Yeo and J.-M. Guldmann
Hydrol. Earth Syst. Sci., 14, 325–338, https://doi.org/10.5194/hess-14-325-2010, https://doi.org/10.5194/hess-14-325-2010, 2010
C. L. Schneider, S. Attinger, J.-O. Delfs, and A. Hildebrandt
Hydrol. Earth Syst. Sci., 14, 279–289, https://doi.org/10.5194/hess-14-279-2010, https://doi.org/10.5194/hess-14-279-2010, 2010
G. Baroni, A. Facchi, C. Gandolfi, B. Ortuani, D. Horeschi, and J. C. van Dam
Hydrol. Earth Syst. Sci., 14, 251–270, https://doi.org/10.5194/hess-14-251-2010, https://doi.org/10.5194/hess-14-251-2010, 2010
C. Medici, S. Bernal, A. Butturini, F. Sabater, M. Martin, A. J. Wade, and F. Frances
Hydrol. Earth Syst. Sci., 14, 223–237, https://doi.org/10.5194/hess-14-223-2010, https://doi.org/10.5194/hess-14-223-2010, 2010
A. Petrone and F. Preti
Hydrol. Earth Syst. Sci., 14, 239–250, https://doi.org/10.5194/hess-14-239-2010, https://doi.org/10.5194/hess-14-239-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 159–169, https://doi.org/10.5194/hess-14-159-2010, https://doi.org/10.5194/hess-14-159-2010, 2010
C. Gruhier, P. de Rosnay, S. Hasenauer, T. Holmes, R. de Jeu, Y. Kerr, E. Mougin, E. Njoku, F. Timouk, W. Wagner, and M. Zribi
Hydrol. Earth Syst. Sci., 14, 141–156, https://doi.org/10.5194/hess-14-141-2010, https://doi.org/10.5194/hess-14-141-2010, 2010
M. Barnolas, T. Rigo, and M. C. Llasat
Hydrol. Earth Syst. Sci., 14, 129–139, https://doi.org/10.5194/hess-14-129-2010, https://doi.org/10.5194/hess-14-129-2010, 2010
A. Schmidt, J. J. Gibson, I. R. Santos, M. Schubert, K. Tattrie, and H. Weiss
Hydrol. Earth Syst. Sci., 14, 79–89, https://doi.org/10.5194/hess-14-79-2010, https://doi.org/10.5194/hess-14-79-2010, 2010
R. Liu, J. Wen, X. Wang, L. Wang, H. Tian, T. T. Zhang, X. K. Shi, J. H. Zhang, and SH. N. Lv
Hydrol. Earth Syst. Sci., 14, 47–58, https://doi.org/10.5194/hess-14-47-2010, https://doi.org/10.5194/hess-14-47-2010, 2010
S. Werth and A. Güntner
Hydrol. Earth Syst. Sci., 14, 59–78, https://doi.org/10.5194/hess-14-59-2010, https://doi.org/10.5194/hess-14-59-2010, 2010
H. Lin
Hydrol. Earth Syst. Sci., 14, 25–45, https://doi.org/10.5194/hess-14-25-2010, https://doi.org/10.5194/hess-14-25-2010, 2010
A. Ducharne
Hydrol. Earth Syst. Sci., 13, 2399–2412, https://doi.org/10.5194/hess-13-2399-2009, https://doi.org/10.5194/hess-13-2399-2009, 2009
J. E. Barrett, M. N. Gooseff, and C. Takacs-Vesbach
Hydrol. Earth Syst. Sci., 13, 2349–2358, https://doi.org/10.5194/hess-13-2349-2009, https://doi.org/10.5194/hess-13-2349-2009, 2009
V. García-García, R. Gómez, M. R. Vidal-Abarca, and M. L. Suárez
Hydrol. Earth Syst. Sci., 13, 2359–2371, https://doi.org/10.5194/hess-13-2359-2009, https://doi.org/10.5194/hess-13-2359-2009, 2009
M. Shamsudduha, R. E. Chandler, R. G. Taylor, and K. M. Ahmed
Hydrol. Earth Syst. Sci., 13, 2373–2385, https://doi.org/10.5194/hess-13-2373-2009, https://doi.org/10.5194/hess-13-2373-2009, 2009
J. C. M. Andersson, A. J. B. Zehnder, G. P. W. Jewitt, and H. Yang
Hydrol. Earth Syst. Sci., 13, 2329–2347, https://doi.org/10.5194/hess-13-2329-2009, https://doi.org/10.5194/hess-13-2329-2009, 2009
S. Binet, L. Spadini, C. Bertrand, Y. Guglielmi, J. Mudry, and C. Scavia
Hydrol. Earth Syst. Sci., 13, 2315–2327, https://doi.org/10.5194/hess-13-2315-2009, https://doi.org/10.5194/hess-13-2315-2009, 2009
A. Bárdossy and G. G. S. Pegram
Hydrol. Earth Syst. Sci., 13, 2299–2314, https://doi.org/10.5194/hess-13-2299-2009, https://doi.org/10.5194/hess-13-2299-2009, 2009
K. Dontsova, C. I. Steefel, S. Desilets, A. Thompson, and J. Chorover
Hydrol. Earth Syst. Sci., 13, 2273–2286, https://doi.org/10.5194/hess-13-2273-2009, https://doi.org/10.5194/hess-13-2273-2009, 2009
D. Yamazaki, T. Oki, and S. Kanae
Hydrol. Earth Syst. Sci., 13, 2241–2251, https://doi.org/10.5194/hess-13-2241-2009, https://doi.org/10.5194/hess-13-2241-2009, 2009
Cited articles
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E. and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologique Europeen, "SHE", 2: Structure of a physically-based, distributed modelling system, J. Hydrol., 87(1–2), 61–77, 1986.
Ajayi, A. E., Van de Giesen, N., and Vlek, P.: A numerical model for simulating Hortonian overland flow on tropical hillslopes with vegetation elements, Hydrol. Process., 22(8), 1107–1118, 2008.
Belk, E. L., Markewitz, D., Rasmussen, T. C., Carvalho, E. J. M., Nepstad, D. C. and Davidson, E. A.: Modeling the effects of throughfall reduction on soil water content in a Brazilian Oxisol under a moist tropical forest, Water Resour. Res., 43, W08432, https://doi.org/10.1029/2006WR005493, 2007.
Bouten, W., Schaap, M. G., Bakker, D. J. and Verstraten, J. M.: Modelling soil water dynamics in a forested ecosystem. I: A site specific evaluation, Hydrol. Process., 6(4), 435–444, 1992.
Bouwer, H.: Intake rate: cylinder infiltrometer, in: Methods of Soil Analysis, Part 1. Physical and Mineralogical Properties, Monograph 9, Methods of Soil Analysis, Part 1. Physical and Mineralogical Properties, Monograph 9, ASA, Madison, WI, 825–843, 1986.
Cattan, P., Cabidoche, Y.-M., Lacas, J.-G. and Voltz, M.: Effects of tillage and mulching on runoff under banana ($Musa$ spp.) on a tropical Andosol, Soil Till. Res., 86(1), 38–51, 2006.
Cattan, P., Bussière, F., and Nouvellon, A.: Evidence of large rainfall partitioning patterns by banana and impact on surface runoff generation, Hydrol. Process., 21(16), 2196–2205, 2007a.
Cattan, P., Voltz, M., Cabidoche, Y.-M., Lacas, J.-G., and Sansoulet, J.: Spatial and temporal variations in percolation fluxes in a tropical Andosol influenced by banana cropping patterns, J. Hydrol., 335(1–2), 157–169, 2007b.
Cattan, P., Ruy, S., Cabidoche, Y.-M., Findeling, A., Desbois, P., and Charlier, J.-B.: Effect on runoff of rainfall redistribution by the impluvium-shaped canopy of banana cultivated on an Andosol with a high infiltration rate, J. Hydrol., 368(1–4), 251–261, 2009.
Chahinian, N., Moussa, R., Andrieux, P., and Voltz, M.: Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots, J. Hydrol., 326(1–4), 135–152, 2006.
Charlier, J.-B.: Fonctionnement et modélisation hydrologique d'un petit bassin versant cultivé en milieu volcanique tropical, Ph.D. thesis, Université des Sciences et Techniques du Languedoc, Montpellier II, 246 pp., 2007.
Charlier, J.-B., Cattan, P., Moussa, R., and Voltz, M.: Hydrological behaviour and modelling of a volcanic tropical cultivated catchment, Hydrol. Process., 22(22), 4355–4370, 2008.
Clothier, B.E., Vogeler, I. and Magesan, G.N.: The breakdown of water repellency and solute transport through a hydrophobic soil, J. Hydrol., 231–232, 255–264, 2000.
Crockford, R. H. and Richardson, D. P.: Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate, Hydrol. Process., 14(16–17), 2903–2920, 2000.
Cunge, J., Holly, F. M. and Verwey, A.: Practical Aspects of Computational River Hydraulics, Pitman Advanced Publishing Program, London, UK, 420 pp., 1980.
Dorel, M., Roger-Estrade, J., Manichon, H., and Delvaux, B.: Porosity and soil water properties of caribbean volcanic ash soils, Soil Use Manage., 16, 133–140, 2000.
Gash, J. H. C., Lloyd, C. R., and Lachaud, G.: Estimating sparse forest rainfall interception with an analytical model, J. Hydrol., 170(1–4), 79–86, 1995.
Green, W. A. and Ampt, G. A.: Studies on soil physics, 1: The flow of air and water through soils, J. Agr. Sci., 4(1), 1–24, 1911.
Harris, D.: The partitioning of rainfall by a banana canopy in St. Lucia, Windward Islands, Trop. Agr., 74, 198–202, 1997.
Hayami, S.: On the propagation of flood waves, Disaster Prevention Research Institute Bull., Kyoto University, 1, 1–16, 1951.
Herwitz, S. R.: Infiltration-excess caused by Stemflow in a cyclone-prone tropical rainforest, Earth Surf. Proc. Land, 11(4), 401–412, 1986.
Horton, R. E.: The role of infiltration in the hydrologic cycle, Transactions, American Geophysical Union, 14, 446–460, 1933.
Keim, R. F. and Skaugset, A. E.: A linear system model of dynamic throughfall rates beneath forest canopies, Water Resour. Res., 40(05), W05208, https://doi.org/10.1029/2003WR002875, 2004.
Klemeš, V.: Operational testing of hydrological simulation models, Hydrolog. Sci. J., 31(1), 13–24, 1986.
Levia, D. F. J. and Frost, E. E.: A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems, J. Hydrol., 274, 1–29, 2003.
Liang, W.-L., Kosugi, K. i., and Mizuyama, T.: A three-dimensional model of the effect of stemflow on soil water dynamics around a tree on a hillslope, J. Hydrol., 366(1–4), 62–75, 2009.
Llorens, P. and Domingo, F.: Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe, J. Hydrol., 335, 37–54, 2007.
Marks, K. and Bates, P. D.: Integration of high-resolution topographic data with floodplain flow models, Hydrol. Process., 14, 2109–2122, 2000.
Meteo-France: Bulletin metéorologique de la Guadeloupe: récapitulatif annuel, Meteo-France, Abymes, Guadeloupe, France, 2004.
Morel-Seytoux, H. J.: Derivation of equations for variable rainfall infiltration, Water Resour. Res., 14(4), 561–568, 1978.
Moussa, R. and Bocquillon, C.: Algorithms for solving the diffusive wave flood routing equation, Hydrol. Process., 10(1), 105–123, 1996.
Moussa, R., Voltz, M., and Andrieux, P.: Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events, Hydrol. Process., 16(2), 393–412, 2002.
Moussa, R. and Bocquillon, C.: On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain, J. Hydrol., 374(1–2), 116–135, 2009.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I : a discussion of principles, J. Hydrol., 10(3), 282–290, 1970.
Philip, J. R.: The theory of infiltration: 4. Sorptivity and algebraic infiltration equations, Soil Sci., 84, 257–267, 1957.
Poulenard, J., Michel, J. C., Bartoli, F., Portal, J. M., and Podwojewski, P.: Water repellency of volcanic ash soils from Ecuadorian p{&}aacute;ramo: effect of water content and characteristics of hydrophobic organic matter, Eur. J. Soil Sci., 55(3), 487–496, 2004.
Richards, L. A.: Capillary conduction of liquids through porous medium, Physics, 1(5), 318–333, 1931.
Rutter, A. J., Kershaw, K. A., Robins, P. C. and Morton, A. J.: A predictive model of rainfall interception in forests. I. Derivation of the model from observations in a plantation of Corsican pine, Agr. Meteorol., 9, 367–384, 1971.
Saison, C., Cattan, P., Louchart, X. and Voltz, M.: Effect of spatial heterogeneities of water fluxes and application pattern on cadusafos fate on banana-cultivated andosols, J. Agr. Food Chem., 56(24), 11947–11955, 2008.
Sansoulet, J., Cabidoche, Y. M., and Cattan, P.: Adsorption and transport of nitrate and potassium in an Andosol under banana (Guadeloupe, French West Indies), Eur. J. Soil. Sci., 58(2), 478–489, 2007.
Sansoulet, J., Cabidoche, Y.-M., Cattan, P., Ruy, S. and Simunek, J.: Spatially Distributed Water Fluxes in an Andisol under Banana Plants: Experiments and Three-Dimensional Modeling, Vadose Zone J. , 7(2), 819–829, 2008.
Singh, V. P.: Accuracy of kinematic wave and diffusion wave approximations for space independent flows, Hydrol. Process., 8(1), 45–62, 1994.
Tiemeyer, B., Moussa, R., Lennartz, B. and Voltz, M.: MHYDAS-DRAIN: A spatially distributed model for small, artificially drained lowland catchments, Ecol. Model., 209(1), 2–20, 2007.
Van Dijk, A. I. J. M. and Bruijnzeel, L. A.: Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description, J. Hydrol., 247(3–4), 230–238, 2001.
Yu, B., Sombatpanit, S., Rose, C. W., Ciesiolka, C. A. A. and Coughlan, K. J.: Characteristics and modeling of runoff hydrographs for different tillage treatments, Soil Sci. Soc. Am. J., 64(5), 1763–1770, 2000.