Articles | Volume 13, issue 11
https://doi.org/10.5194/hess-13-2069-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/hess-13-2069-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data
H. M. Holländer
Chair of Hydrology and Water Resources Management, Brandenburg University of Technology Cottbus, 03046 Cottbus, Germany
T. Blume
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, C4 2.25, 14473 Potsdam, Germany
H. Bormann
Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
W. Buytaert
School of Geographical Sciences, University of Bristol, BS8 1SS, UK
now at: Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
G.B. Chirico
Dipartimento di ingegneria agraria e agronomia del territorio, Università di Napoli Federico II, 80055 Naples, Italy
J.-F. Exbrayat
Institute for Landscape Ecology and Resources Management, University of Giessen, 35392 Giessen, Germany
D. Gustafsson
Department of Land and Water Resources Engineering, Royal Institute of Technology KTH, 10044 Stockholm, Sweden
H. Hölzel
Department of Geography, University of Bonn, 53113 Bonn, Germany
P. Kraft
Institute for Landscape Ecology and Resources Management, University of Giessen, 35392 Giessen, Germany
C. Stamm
Department Environmental Chemistry, Eawag, 8600 Dübendorf, Switzerland
S. Stoll
Institute of Environmental Engineering, ETH Zurich 8093 Zürich, Switzerland
G. Blöschl
Institute of Hydraulic Engineering and Water Resources Management, TU Vienna, 1040 Vienna, Austria
H. Flühler
Department of Environmental Sciences, ETH Zurich, 8092 Zürich, Switzerland
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Theory development
Young and new water fractions in soil and hillslope waters
Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Soil moisture: variable in space but redundant in time
A history of the concept of time of concentration
Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?
The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response
Slope–velocity equilibrium and evolution of surface roughness on a stony hillslope
Assessment of land use impact on hydraulic threshold conditions for gully head cut initiation
Technical note: Inference in hydrology from entropy balance considerations
Ecohydrological effects of stream–aquifer water interaction: a case study of the Heihe River basin, northwestern China
Hillslope-scale experiment demonstrates the role of convergence during two-step saturation
Impacts of climate variability on wetland salinization in the North American prairies
Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates
Runoff formation from experimental plot, field, to small catchment scales in agricultural North Huaihe River Plain, China
Addressing secondary school students' everyday ideas about freshwater springs in order to develop an instructional tool to promote conceptual reconstruction
Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow
Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds
Large-scale runoff generation – parsimonious parameterisation using high-resolution topography
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
Seasonal evaluation of the land surface scheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian region in Hungary
Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions
Modelling field scale water partitioning using on-site observations in sub-Saharan rainfed agriculture
Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations
Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet
Selection of an appropriately simple storm runoff model
Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception
Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation
A contribution to understanding the turbidity behaviour in an Amazon floodplain
Global spatial optimization with hydrological systems simulation: application to land-use allocation and peak runoff minimization
Implementing small scale processes at the soil-plant interface – the role of root architectures for calculating root water uptake profiles
Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity
Modelling the inorganic nitrogen behaviour in a small Mediterranean forested catchment, Fuirosos (Catalonia)
Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area
Climate and terrain factors explaining streamflow response and recession in Australian catchments
Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site
Characteristics of 2-D convective structures in Catalonia (NE Spain): an analysis using radar data and GIS
The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance
Actual daily evapotranspiration estimated from MERIS and AATSR data over the Chinese Loess Plateau
Calibration analysis for water storage variability of the global hydrological model WGHM
Earth's Critical Zone and hydropedology: concepts, characteristics, and advances
Reducing scale dependence in TOPMODEL using a dimensionless topographic index
Spatial variation in soil active-layer geochemistry across hydrologic margins in polar desert ecosystems
Nitrogen retention in natural Mediterranean wetland-streams affected by agricultural runoff
Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta
Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa
Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas
Copula based multisite model for daily precipitation simulation
Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes
Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-437, https://doi.org/10.5194/egusphere-2024-437, 2024
Short summary
Short summary
We use a 3-year timeseries of tracer data in streamflow and soils to illustrate how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, waters in deep subsurface layers are even older, thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes.
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Keith J. Beven
Hydrol. Earth Syst. Sci., 24, 2655–2670, https://doi.org/10.5194/hess-24-2655-2020, https://doi.org/10.5194/hess-24-2655-2020, 2020
Short summary
Short summary
The concept of time of concentration in the analysis of catchment responses dates back over 150 years. It is normally discussed in terms of the velocity of flow of a water particle from the furthest part of a catchment to the outlet. This is also the basis for the definition in the International Glossary of Hydrology, but this is in conflict with the way in which it is commonly used. This paper provides a clarification of the concept and its correct useage.
Stefan W. Ploum, Hjalmar Laudon, Andrés Peralta-Tapia, and Lenka Kuglerová
Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, https://doi.org/10.5194/hess-24-1709-2020, 2020
Short summary
Short summary
Near-stream areas, or riparian zones, are important for the health of streams and rivers. If these areas are disturbed by forestry or other anthropogenic activity, the water quality and all life in streams may be at risk. We examined which riparian areas are particularly sensitive. We found that only a few wet areas bring most of the rainwater from the landscape to the stream, and they have a unique water quality. In order to maintain healthy streams and rivers, these areas should be protected.
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary
Short summary
The hydrology of high-elevation headwaters in midlatitudes is typically dominated by snow processes, which are very sensitive to changes in energy inputs at the top of the snowpack. We present a data analyses that reveal how snowmelt and transpiration waves induced by the diurnal solar cycle generate water pressure fluctuations that propagate through the snowpack–hillslope–stream system. Changes in diurnal energy inputs alter these pressure cycles with potential ecohydrological consequences.
Mark A. Nearing, Viktor O. Polyakov, Mary H. Nichols, Mariano Hernandez, Li Li, Ying Zhao, and Gerardo Armendariz
Hydrol. Earth Syst. Sci., 21, 3221–3229, https://doi.org/10.5194/hess-21-3221-2017, https://doi.org/10.5194/hess-21-3221-2017, 2017
Short summary
Short summary
This study presents novel scientific understanding about the way that hillslope surfaces form when exposed to rainfall erosion, and the way those surfaces interact with and influence runoff velocities during rain events. The data show that hillslope surfaces form such that flow velocities are independent of slope gradient and dependent on flow rates alone. This result represents a shift in thinking about surface water runoff.
Aliakbar Nazari Samani, Qiuwen Chen, Shahram Khalighi, Robert James Wasson, and Mohammad Reza Rahdari
Hydrol. Earth Syst. Sci., 20, 3005–3012, https://doi.org/10.5194/hess-20-3005-2016, https://doi.org/10.5194/hess-20-3005-2016, 2016
Short summary
Short summary
We hypothesized that land use had important effects on hydraulic threshold conditions for gully head cut initiation. We investigated the effects using an experimental plot. The results indicated that the use of a threshold value of τcr = 35 dyne cm−2 and ωu = 0.4 Cm S−1 in physically based soil erosion models is susceptible to high uncertainty when assessing gully erosion.
Stefan J. Kollet
Hydrol. Earth Syst. Sci., 20, 2801–2809, https://doi.org/10.5194/hess-20-2801-2016, https://doi.org/10.5194/hess-20-2801-2016, 2016
Yujin Zeng, Zhenghui Xie, Yan Yu, Shuang Liu, Linying Wang, Binghao Jia, Peihua Qin, and Yaning Chen
Hydrol. Earth Syst. Sci., 20, 2333–2352, https://doi.org/10.5194/hess-20-2333-2016, https://doi.org/10.5194/hess-20-2333-2016, 2016
Short summary
Short summary
In arid areas, stream–aquifer water exchange essentially sustains the growth and subsistence of riparian ecosystem. To quantify this effect for intensity and range, a stream–riverbank scheme was incorporated into a state-of-the-art land model, and some runs were set up over Heihe River basin, northwestern China. The results show that the hydrology circle is significantly changed, and the ecological system is benefitted greatly by the river water lateral transfer within a 1 km range to the stream.
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
U. Nachshon, A. Ireson, G. van der Kamp, S. R. Davies, and H. S. Wheater
Hydrol. Earth Syst. Sci., 18, 1251–1263, https://doi.org/10.5194/hess-18-1251-2014, https://doi.org/10.5194/hess-18-1251-2014, 2014
J. H. Spaaks and W. Bouten
Hydrol. Earth Syst. Sci., 17, 3455–3472, https://doi.org/10.5194/hess-17-3455-2013, https://doi.org/10.5194/hess-17-3455-2013, 2013
S. Han, D. Xu, and S. Wang
Hydrol. Earth Syst. Sci., 16, 3115–3125, https://doi.org/10.5194/hess-16-3115-2012, https://doi.org/10.5194/hess-16-3115-2012, 2012
S. Reinfried, S. Tempelmann, and U. Aeschbacher
Hydrol. Earth Syst. Sci., 16, 1365–1377, https://doi.org/10.5194/hess-16-1365-2012, https://doi.org/10.5194/hess-16-1365-2012, 2012
L. Merino-Martín, M. Moreno-de las Heras, S. Pérez-Domingo, T. Espigares, and J. M. Nicolau
Hydrol. Earth Syst. Sci., 16, 1305–1320, https://doi.org/10.5194/hess-16-1305-2012, https://doi.org/10.5194/hess-16-1305-2012, 2012
M. Ali, G. Sterk, M. Seeger, M. Boersema, and P. Peters
Hydrol. Earth Syst. Sci., 16, 591–601, https://doi.org/10.5194/hess-16-591-2012, https://doi.org/10.5194/hess-16-591-2012, 2012
L. Gong, S. Halldin, and C.-Y. Xu
Hydrol. Earth Syst. Sci., 15, 2481–2494, https://doi.org/10.5194/hess-15-2481-2011, https://doi.org/10.5194/hess-15-2481-2011, 2011
W. Ma, Y. Ma, Z. Hu, Z. Su, J. Wang, and H. Ishikawa
Hydrol. Earth Syst. Sci., 15, 1403–1413, https://doi.org/10.5194/hess-15-1403-2011, https://doi.org/10.5194/hess-15-1403-2011, 2011
E. L. Wipfler, K. Metselaar, J. C. van Dam, R. A. Feddes, E. van Meijgaard, L. H. van Ulft, B. van den Hurk, S. J. Zwart, and W. G. M. Bastiaanssen
Hydrol. Earth Syst. Sci., 15, 1257–1271, https://doi.org/10.5194/hess-15-1257-2011, https://doi.org/10.5194/hess-15-1257-2011, 2011
W. Korres, C. N. Koyama, P. Fiener, and K. Schneider
Hydrol. Earth Syst. Sci., 14, 751–764, https://doi.org/10.5194/hess-14-751-2010, https://doi.org/10.5194/hess-14-751-2010, 2010
H. Makurira, H. H. G. Savenije, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 14, 627–638, https://doi.org/10.5194/hess-14-627-2010, https://doi.org/10.5194/hess-14-627-2010, 2010
C. H. Luce and D. G. Tarboton
Hydrol. Earth Syst. Sci., 14, 535–543, https://doi.org/10.5194/hess-14-535-2010, https://doi.org/10.5194/hess-14-535-2010, 2010
J. Liu, S. Kang, T. Gong, and A. Lu
Hydrol. Earth Syst. Sci., 14, 481–489, https://doi.org/10.5194/hess-14-481-2010, https://doi.org/10.5194/hess-14-481-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 447–458, https://doi.org/10.5194/hess-14-447-2010, https://doi.org/10.5194/hess-14-447-2010, 2010
H. H. Bulcock and G. P. W. Jewitt
Hydrol. Earth Syst. Sci., 14, 383–392, https://doi.org/10.5194/hess-14-383-2010, https://doi.org/10.5194/hess-14-383-2010, 2010
L. S. Kuchment, P. Romanov, A. N. Gelfan, and V. N. Demidov
Hydrol. Earth Syst. Sci., 14, 339–350, https://doi.org/10.5194/hess-14-339-2010, https://doi.org/10.5194/hess-14-339-2010, 2010
E. Alcântara, E. Novo, J. Stech, J. Lorenzzetti, C. Barbosa, A. Assireu, and A. Souza
Hydrol. Earth Syst. Sci., 14, 351–364, https://doi.org/10.5194/hess-14-351-2010, https://doi.org/10.5194/hess-14-351-2010, 2010
I.-Y. Yeo and J.-M. Guldmann
Hydrol. Earth Syst. Sci., 14, 325–338, https://doi.org/10.5194/hess-14-325-2010, https://doi.org/10.5194/hess-14-325-2010, 2010
C. L. Schneider, S. Attinger, J.-O. Delfs, and A. Hildebrandt
Hydrol. Earth Syst. Sci., 14, 279–289, https://doi.org/10.5194/hess-14-279-2010, https://doi.org/10.5194/hess-14-279-2010, 2010
G. Baroni, A. Facchi, C. Gandolfi, B. Ortuani, D. Horeschi, and J. C. van Dam
Hydrol. Earth Syst. Sci., 14, 251–270, https://doi.org/10.5194/hess-14-251-2010, https://doi.org/10.5194/hess-14-251-2010, 2010
C. Medici, S. Bernal, A. Butturini, F. Sabater, M. Martin, A. J. Wade, and F. Frances
Hydrol. Earth Syst. Sci., 14, 223–237, https://doi.org/10.5194/hess-14-223-2010, https://doi.org/10.5194/hess-14-223-2010, 2010
A. Petrone and F. Preti
Hydrol. Earth Syst. Sci., 14, 239–250, https://doi.org/10.5194/hess-14-239-2010, https://doi.org/10.5194/hess-14-239-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 159–169, https://doi.org/10.5194/hess-14-159-2010, https://doi.org/10.5194/hess-14-159-2010, 2010
C. Gruhier, P. de Rosnay, S. Hasenauer, T. Holmes, R. de Jeu, Y. Kerr, E. Mougin, E. Njoku, F. Timouk, W. Wagner, and M. Zribi
Hydrol. Earth Syst. Sci., 14, 141–156, https://doi.org/10.5194/hess-14-141-2010, https://doi.org/10.5194/hess-14-141-2010, 2010
M. Barnolas, T. Rigo, and M. C. Llasat
Hydrol. Earth Syst. Sci., 14, 129–139, https://doi.org/10.5194/hess-14-129-2010, https://doi.org/10.5194/hess-14-129-2010, 2010
A. Schmidt, J. J. Gibson, I. R. Santos, M. Schubert, K. Tattrie, and H. Weiss
Hydrol. Earth Syst. Sci., 14, 79–89, https://doi.org/10.5194/hess-14-79-2010, https://doi.org/10.5194/hess-14-79-2010, 2010
R. Liu, J. Wen, X. Wang, L. Wang, H. Tian, T. T. Zhang, X. K. Shi, J. H. Zhang, and SH. N. Lv
Hydrol. Earth Syst. Sci., 14, 47–58, https://doi.org/10.5194/hess-14-47-2010, https://doi.org/10.5194/hess-14-47-2010, 2010
S. Werth and A. Güntner
Hydrol. Earth Syst. Sci., 14, 59–78, https://doi.org/10.5194/hess-14-59-2010, https://doi.org/10.5194/hess-14-59-2010, 2010
H. Lin
Hydrol. Earth Syst. Sci., 14, 25–45, https://doi.org/10.5194/hess-14-25-2010, https://doi.org/10.5194/hess-14-25-2010, 2010
A. Ducharne
Hydrol. Earth Syst. Sci., 13, 2399–2412, https://doi.org/10.5194/hess-13-2399-2009, https://doi.org/10.5194/hess-13-2399-2009, 2009
J. E. Barrett, M. N. Gooseff, and C. Takacs-Vesbach
Hydrol. Earth Syst. Sci., 13, 2349–2358, https://doi.org/10.5194/hess-13-2349-2009, https://doi.org/10.5194/hess-13-2349-2009, 2009
V. García-García, R. Gómez, M. R. Vidal-Abarca, and M. L. Suárez
Hydrol. Earth Syst. Sci., 13, 2359–2371, https://doi.org/10.5194/hess-13-2359-2009, https://doi.org/10.5194/hess-13-2359-2009, 2009
M. Shamsudduha, R. E. Chandler, R. G. Taylor, and K. M. Ahmed
Hydrol. Earth Syst. Sci., 13, 2373–2385, https://doi.org/10.5194/hess-13-2373-2009, https://doi.org/10.5194/hess-13-2373-2009, 2009
J. C. M. Andersson, A. J. B. Zehnder, G. P. W. Jewitt, and H. Yang
Hydrol. Earth Syst. Sci., 13, 2329–2347, https://doi.org/10.5194/hess-13-2329-2009, https://doi.org/10.5194/hess-13-2329-2009, 2009
S. Binet, L. Spadini, C. Bertrand, Y. Guglielmi, J. Mudry, and C. Scavia
Hydrol. Earth Syst. Sci., 13, 2315–2327, https://doi.org/10.5194/hess-13-2315-2009, https://doi.org/10.5194/hess-13-2315-2009, 2009
A. Bárdossy and G. G. S. Pegram
Hydrol. Earth Syst. Sci., 13, 2299–2314, https://doi.org/10.5194/hess-13-2299-2009, https://doi.org/10.5194/hess-13-2299-2009, 2009
K. Dontsova, C. I. Steefel, S. Desilets, A. Thompson, and J. Chorover
Hydrol. Earth Syst. Sci., 13, 2273–2286, https://doi.org/10.5194/hess-13-2273-2009, https://doi.org/10.5194/hess-13-2273-2009, 2009
D. Yamazaki, T. Oki, and S. Kanae
Hydrol. Earth Syst. Sci., 13, 2241–2251, https://doi.org/10.5194/hess-13-2241-2009, https://doi.org/10.5194/hess-13-2241-2009, 2009
Cited articles
Adhoc AG Boden: Bodenkundliche Kartieranleitung, 5th edn., Hannover, Germany, 438 p., 2005.
AG Boden: Bodenkundliche Kartieranleitung, 4th edn., Hannover, Germany, 392 p., 1994.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration. Guidelines for computing crop water requirements, Irrigation and Drainage Paper, FAO, Rome, 300 pp., 1998.
Alvenäs, G. and Jansson, P.-E.: Model for evaporation, moisture and temperature of bare soil: calibration and sensitivity analysis, Agric. For. Met., 88, 47–56, 1997.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modelling and assessment part I: model development, J. Am. Water Resour. Assoc., 34, 73–89, 1998.
Barbour, S. L., Boese, C., and Stolte, B.: Water balance for reclamation covers on oil sands mining overburden piles, Canadian Geotechnical Conference, 313–319, 2001.
Beven, K.: Changing ideas in hydrology – The case of physically-based models, J. Hydrol., 105, 157–172, 1989.
Beven, K., Lamb, R., Quinn, P., Romanowicz, R., and Freer, J.: Topmodel, in: Computer Models of Watershed Hydrology, Colorado, USA, 627–668, 1995.
Beven, K. J. and Kirkby, M. J.: A physically based variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69, 1979.
Beven, K. J.: Rainfall-runoff modelling: The Primer, John Wiley & Sons, Chichister, 372 pp., 2001.
Black, T. A., Gardner, W. R., and Thurtell, G. W.: The prediction of evaporation, drainage and soil-water storage for a bare soil., Soil Sci. Soc. Amer. Proc., 33, 655–660, 1969.
Blöschl, G.: Rainfall-runoff modelling of ungauged catchments, article 133, in: Encyclopedia of Hydrological Sciences, edited by: Anderson, M. G., John Wiley & Sons, Chichester, 2061–2080, 2005.
Bormann, H.: Hochskalieren von prozessorientierten Wassertransportmodellen – Methoden und Grenzen, Reihe Geowissenschaften, Herbert-Utz-Verlag – Wissenschaft München, 164 pp., 2001.
Bormann, H.: Sensitivity of a regionally applied soil vegetation atmosphere scheme to input data resolution and data classification, J. Hydrol., 351, 154–169, 2008.
Bronstert, A., Bárdossy, A., Bismuth, C., Buiteveld, H., Disse, M., Engel, H., Fritsch, U., Hundecha, Y., Lammersen, R., Niehoff, D., and Ritter, N.: Multi-scale modelling of land-use change and river training effects on floods in the Rhine basin, 2007.
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, Colorado State University, Fort Collins, Colorado, 27 pp., 1964.
Carsel, R. F. and Parrish, R. S.: Developing Joint Probability Distributions of soil-water Retention Characteristics, Water Resour. Res., 24, 755–769, 1988.
Chirico, G. B., Grayson, R. B., and Western, A. W.: On the computation of the quasi-dynamic wetness index with multiple-flow-direction algorithms, Water Resour. Res., 39, 1115, https://doi.org/10.1029/2002WR001754, 2003.
Choi, H. T. and Beven, K.: Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of topmodel within the glue framework, J. Hydrol., 332, 316–336, 2007.
Diekkrüger, B. and Arning, M.: Simulation of water fluxes using different methods for estimating soil parameters, Ecol. Model., 81, 83–95, 1995.
DVWK: Ermittlung der Verdunstung von Land- und Wasserflächen, Merkblätter, Kommissionsbetrieb Wirtschafts- und Verlagswesen Gas und Wasser mbH, Bonn, 135 pp., 1996.
Feddes, R. A., Kowalik, P. J., and Zaradny, H.: Simulation of field water use and crop yield, in: Simulations Monograph, Pudoc, Wageningen, 188 pp., 1978.
Fenicia, F., McDonnell, J. J., and Savenije, H. H. G.: Learning from model improvement: On the contribution of complementary data to process understanding, Water Resour. Res., 44, W06419, https://doi.org/10.1029/2007WR006386, 2008.
Freeze, R. A. and Cherry, J. A.: Groundwater, Prentice-Hall, Englewood Cliffs, NJ, 604 pp., 1979.
Gallart, F., Latron, J., Llorens, P., and Beven, K.: Using internal catchment information to reduce the uncertainty of discharge and baseflow predictions, Adv. Water Resour., 30, 808–823, 2007.
Gassmann, P. W., Reyes, M. R., Green, C. H., and Arnold, J. G.: The soil and water assessment tool: historical development, applications and future research directions, T. ASAE, 50, 1211–1250, 2007.
Gerwin, W., Raab, T., Biemelt, D., Bens, O., and Hüttl, R. F.: The artificial water catchment "Chicken Creek" as an observatory for critical zone processes and structures, Hydrol. Earth Syst. Sci. Discuss., 6, 1769–1795, 2009.
Giertz, S., Diekkrüger, B., and Steup, G.: Physically-based modelling of hydrological processes in a tropical headwater catchment (West Africa) – process representation and multi-criteria validation, Hydrol. Earth Syst. Sci., 10, 829–847, 2006.
Goodrich, D. C.: Geometric simplification of a distributed rainfall-runoff model over a range of basin scales, Ph.D. Thesis, The University of Arizona, 361 pp., 1990.
Grayson, R. B. and Blöschl, G.: Spatial Patterns in Catchment Hydrology: Observations and Modelling, Cambridge University Press, Cambridge, UK, 404 pp., 2000a.
Grayson, R. B. and Blöschl, G.: Summary of pattern recognition and concluding remarks, in: Spatial Patterns in Catchment Hydrology, edited by: Grayson, R. B. and Blöschl, G., Cambridge University Press, Cambridge,UK, 355–367, 2000b.
Gu, W.-Z. and Freer, J.: Patterns of surface and subsurface runoff generation, IAHS Publications, 229, 265–273, 1995.
Gustafsson, D., Stähli, M., and Jansson, P.-E.: The surface energy balance of a snow cover: comparing measurements to two different simulation models, Theor. Appl. Climatol., 70, 81–96, 2001.
Hansen, D. P., Jakeman, A. J., Kendall, C., and Gu, W.-Z.: Identification of internal flow dynamics in two experimental catchments, Math. Comput. Simulat., 43, 367–375, 1997.
Hargreaves, G. L., Hargreaves, G. H., and Riley, J. P.: Agricultural benefits for Senegal River Basin, J. Irrig. and Drain. Engr., 111, 113–124, 1985.
Healy, R. W. and Cook, P. G.: Using groundwater levels to estimate recharge, Hydrogeol. J., 10, 91–109, 2002.
Hölzel, H. and Diekkrüger, B.: Hydrological analyses as a prerequisite for soil erosion modeling – Landscape related studies in a mesoscale hydrological catchment, in: Landform – structure, evolution, process control, International Symposium on Landform, in press, 2008.
Hooghoudt, S. B.: Bijdragen tot de kennis van enige natuurkundige grootheden van de ground, Versl. Landb. Onderz, 42, 449–541, 1940.
Jansson, P.-E. and Halldin, S.: Model for the annual water and energy flow in a layered soil, Comparison of Forest and Energy Exchange Models, Copenhagen, 145–163, 1979.
Jansson, P.-E. and Moon, D. S.: A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality, Environ. Modell. Softw., 16, 37–46, 2001.
Jasper, K.: Hydrological Modelling of Alpine River Catchments using Output Variables from Atmospheric Models, ETH Zurich, 138 pp., 2005.
Kendall, C., Mc Donnell, J. J., and Gu, W.-Z.: A look inside "black box" hydrograph seperation models: a study at the Hydrohill catchment, Hydrol. Process., 15(10), 1877–1902, 2001.
Kraft, P., Vaché, K. B., Breuer, L., and Frede, H.-G.: A solute and water flux library for catchment models, Proceedings of the iEMSs Fourth Biennial Meeting: International Congress on Environmental Modelling and Software Barcelona, 2008.
Kroes, J. G., van Dam, J. C., Groenendijk, P., Hendriks, R. F. A., and Jacobs, C. M. J.: SWAP version 3.2., Theory description and user manual, Alterra, Wageningen, 262 pp., 2008.
Lindenmaier, F., Zehe, E., Dittfurth, A., and Ihringer, J.: Process identification at a slowmoving landslide in the Vorarlberg Alps, Hydrol. Process., 19, 1635–1651, 2005.
Lohammar, T., Larsson, S., Linder, S., and Falk, S. O.: FAST – simulation medels of gaseous exchange in Scots pine, in: Structure and Function of Northern Coniferous Forests – An Ecosystem Study, edited by: Persson, T., Ecological Bullentins Stockholm, 505–523, 1980.
Lundmark, A. and Jansson, P.-E.: Generic soil descriptions for modelling water and chloride dynamics in the unsaturated zone based on Swedish soils, Geoderma, 150, 85–95, 2009.
Maurer, T.: Physikalisch begründetete, zeitkontinuierliche Modellierung des Wassertransports in kleinen ländlichenen Einzugsgebieten, Universität Karlsruhe, 1997.
Meinzer, O. E.: The occurrence of groundwater in the United States with a discussion of principles, US Geol. Surv. Water-SupplyPaper, 489, 321 pp., 1923.
Monteith, J. L.: Evaporation and environment, in: The Company of Biologists, The State and Movement of Water in Living Organisms, 19th Symp. Soc. Exp. Biol., Cambridge, UK, 205–234, 1965.
Monteith, J. L. and Unsworth, M. H.: Principles of environmental physics, edited by: Arnold, S. E., London, UK, 291 pp., 1990.
Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522, 1976.
Naef, F.: Can we model the rainfall-runoff today? Hydrological Sciences Bulletin, 26, 281–289, 1981.
Nenov, R.: Determination of the evapotranspiration from the artificial catchment Hühnerwasser, Chair of Hydrology and Water Management, Brandenburg University of Technology, Cottbus, 100 pp., 2009.
Nicolau, J.: Runoff generation and routing on artificial slopes in a Mediterranean continental environment, Hydrol. Process., 16, 631–647, 2002.
Niehoff, D., Fritsch, U., and Bronstert, A.: Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany, J. Hydrol., 267, 80–93, 2002.
Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.: Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments, Water Resour. Res., 44, W03413, https://doi.org/10.1029/2007WR006240, 2008.
Parajka J., Merz, R., and Blöschl, G.: A comparison of regionalisation methods for catchment model parameters, Hydrol. Earth Syst. Sc., 9, 157–171, 2005.
Penman, H. L.: Natural evaporation from open water, bare soil and grass. Proc. Roy. Meteorol. Soc. A, 193, 120–145, 1948.
Peschke, G.: Moisture and Runoff Components from a Physically Founded Approach, Acta Hydrophys., 31, 191–205, 1987.
Plate, E. and Zehe, E.: Hydrologie und Stoffdynamik kleiner Einzugsgebiete: Prozesse und Modelle. Schweizerbart, 366 pp., 2008.
Rawls, W. J. and Brakensiek, D. L.: Prediction of soil-water properties for hydrologic modeling, in: Proceedings of Symposium on Watershed Management, ASCE, 293–299, 1985.
Richter, D.: Zur einheitlichen Berechnung der Wassertemperatur und der Verdunstung von freien Wasserflächen auf statistischer Grundlage, Abh. Meteor Dienst der DDR, 16, 35 pp., 1977.
Ritchie, J. T.: A model for predicting evaporation from a row crop with incomplete cover, Water Resour. Res., 8, 1204–1213, 1972.
Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., and Seo, D. J.: Overall distributed model intercomparison project results, J. Hydrol., 298, 27–60, 2004.
Romano, N. and Santini, A.: Water retention and storage: Field, in: Methods of Soil Analysis, edited by: Topp, J. H. D. a. G. C., SSSA Book Series No. 5, Madison, Wi, USA, 721–738, 2002.
Saxton, K. E., Rawls, W., Romberger, J., and Papendick, R.: Estimating generalized soil-water characteristics from texture, 1031–1035, 1986.
Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251, 163–176, 2001.
Schulla, J. and Jasper, K.: Model Description WaSiM-ETH, ETH Zürich, Zürich, 181 pp., 2007.
Seibert, J. and McDonnell, J. J.: On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration, Water Resour. Res., 38(11), 1241, https://doi.org/10.1029/2001WR000978, 2002.
Simunek, J., Sejna, M., and van Genuchten, M. T.: The HYDRUS2 Code for Simulating the Two-Dimensional Movement of Water, Heat, and Multiple Solute in Variably-Saturated Porous Media, edited by: Service, U. S. S. L. A. R., US Department of Agriculture, Riverside, California, USA, 251 pp., 1999.
Sivapalan, M., Takeuchi, K., Franks, S., Gupta, V., Karambiri, H., Lakshmi, V., Liang, X., McDonnell, J., Mendiondo, E., O'Connell, P., Oki, T., Pomeroy, J., Schertzer, D., Uhlenbrook, S., and Zehe, E.: IAHS decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences, Hydrolog Sci. J., 48, 857–880, 2003.
Smith, R. E. and Parlange, J. Y.: A parameter-efficient hydrologic infiltration model, Water Resour. Res., 14, 533–538, 1978.
Stähli, M., Jansson, P.-E., and Lundin, L.-C.: Preferential water flow in a frozen soil – a two-domain model approach, Hydrol. Process., 10, 1305–1316, 1996.
Stähli, M. and Gustafsson, D.: Long-term investigations of the snow cover in a subalpine semi-forested catchment, Hydrol. Process., 20, 411–428, 2006.
Turc, L.: Évaluation des besoins en eau irrigation, l'évapotranspiration potentielle, Ann. Agron, 12, 13–49, 1961.
Vaché, K. and McDonnell, J. J.: A process-based rejectionist framework for evaluating catchment runoff model structure, Water Resour. Res., 42, W02409, https://doi.org/10.1029/2005WR004247, 2006.
van Dam, J. C., Huygen, J., Wesseling, J. G., Feddes, R. A., Kabat, P., van Walsum, P. E. V., Groenendijk, P., and van Diepen, C. A.: Theory of SWAP version 2.0. Simulation of water flow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant environment, Wageningen University, Wageningen, 165 pp., 1997.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sciences Society of America, 44, 892–898, 1980.
Weiler, M. and McDonnell, J. J.: Virtual experiments: A new approach for improving process conceptualisation in hillslope hydrology, J. Hydrol, 285, 3–18, 2004.
Weiler, M. and McDonnell, J. J.: Testing nutrient flushing hypotheses at the hillslope scale: A virtual experiment approach, J. Hydrol., 319, 339–356, 2006.
Weiler, M. and McDonnell, J. J.: Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes, Water Resour. Res., 43, W03403, https://doi.org/10.1029/2006WR004867, 2007.
Wigmosta, M., Vail, L., and Lettenmaier, D. P.: Distributed hydrology-vegetation model for complex terrain, Water Resour. Res., 30, 1665–1679, 1994.
Wigmosta, M. and Lettenmaier, D. P.: A comparison of simplified methods for routing topographically driven subsurface flow, Water Resour. Res., 35, 255–264, 1999.
Wösten, J. H. M., Pachepsky, Y. A., and Rawls W. J.: Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics, J. Hydrol., 251, 123–150, 2001.
Zehe, E. and Flühler, H.: Preferential transport of isoproturon at a plot scale and a field scale tile-drained site, J. Hydrol., 247, 100–115, 2001a.
Zehe, E. and Flühler, H.: Slope scale variation of flow patterns in soil profiles, J. Hydrol., 247, 116–132, 2001b.
Zehe, E. and Bloeschl, G.: Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions, Water Resour. Res., 40, W10202, https://doi.org/10.1029/2003WR002869, 2004.
Zehe, E., Becker, R., Bárdossy, A., and Plate, E.: Uncertainty of simulated catchment runoff response in the presence of threshold processes: Role of initial soil moisture and precipitation, J. Hydrol., 315, 183–202, 2005.
Special issue