Articles | Volume 13, issue 9
https://doi.org/10.5194/hess-13-1713-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-13-1713-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.)
F. Preti
Dipartimento di Ingegneria Agraria e Forestale, Università degli studi di Firenze, Florence, Italy
F. Giadrossich
Dipartimento di Ingegneria Agraria e Forestale, Università degli studi di Firenze, Florence, Italy
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Theory development
Young and new water fractions in soil and hillslope waters
Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Soil moisture: variable in space but redundant in time
A history of the concept of time of concentration
Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?
The influence of diurnal snowmelt and transpiration on hillslope throughflow and stream response
Slope–velocity equilibrium and evolution of surface roughness on a stony hillslope
Assessment of land use impact on hydraulic threshold conditions for gully head cut initiation
Technical note: Inference in hydrology from entropy balance considerations
Ecohydrological effects of stream–aquifer water interaction: a case study of the Heihe River basin, northwestern China
Hillslope-scale experiment demonstrates the role of convergence during two-step saturation
Impacts of climate variability on wetland salinization in the North American prairies
Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates
Runoff formation from experimental plot, field, to small catchment scales in agricultural North Huaihe River Plain, China
Addressing secondary school students' everyday ideas about freshwater springs in order to develop an instructional tool to promote conceptual reconstruction
Hydrological heterogeneity in Mediterranean reclaimed slopes: runoff and sediment yield at the patch and slope scales along a gradient of overland flow
Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds
Large-scale runoff generation – parsimonious parameterisation using high-resolution topography
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
Seasonal evaluation of the land surface scheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian region in Hungary
Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions
Modelling field scale water partitioning using on-site observations in sub-Saharan rainfed agriculture
Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations
Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet
Selection of an appropriately simple storm runoff model
Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception
Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation
A contribution to understanding the turbidity behaviour in an Amazon floodplain
Global spatial optimization with hydrological systems simulation: application to land-use allocation and peak runoff minimization
Implementing small scale processes at the soil-plant interface – the role of root architectures for calculating root water uptake profiles
Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity
Modelling the inorganic nitrogen behaviour in a small Mediterranean forested catchment, Fuirosos (Catalonia)
Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area
Climate and terrain factors explaining streamflow response and recession in Australian catchments
Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site
Characteristics of 2-D convective structures in Catalonia (NE Spain): an analysis using radar data and GIS
The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance
Actual daily evapotranspiration estimated from MERIS and AATSR data over the Chinese Loess Plateau
Calibration analysis for water storage variability of the global hydrological model WGHM
Earth's Critical Zone and hydropedology: concepts, characteristics, and advances
Reducing scale dependence in TOPMODEL using a dimensionless topographic index
Spatial variation in soil active-layer geochemistry across hydrologic margins in polar desert ecosystems
Nitrogen retention in natural Mediterranean wetland-streams affected by agricultural runoff
Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta
Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa
Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas
Copula based multisite model for daily precipitation simulation
Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes
Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-437, https://doi.org/10.5194/egusphere-2024-437, 2024
Short summary
Short summary
We use a 3-year timeseries of tracer data in streamflow and soils to illustrate how water moves through the subsurface to become streamflow. Less than 50% of soil water consists of rainfall from the last 3 weeks. Most annual streamflow is older than 3 months, waters in deep subsurface layers are even older, thus deep layers are not the only source of streamflow. After wet periods more rainfall was found in the subsurface and the stream, suggesting that water moves quicker through wet landscapes.
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Keith J. Beven
Hydrol. Earth Syst. Sci., 24, 2655–2670, https://doi.org/10.5194/hess-24-2655-2020, https://doi.org/10.5194/hess-24-2655-2020, 2020
Short summary
Short summary
The concept of time of concentration in the analysis of catchment responses dates back over 150 years. It is normally discussed in terms of the velocity of flow of a water particle from the furthest part of a catchment to the outlet. This is also the basis for the definition in the International Glossary of Hydrology, but this is in conflict with the way in which it is commonly used. This paper provides a clarification of the concept and its correct useage.
Stefan W. Ploum, Hjalmar Laudon, Andrés Peralta-Tapia, and Lenka Kuglerová
Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, https://doi.org/10.5194/hess-24-1709-2020, 2020
Short summary
Short summary
Near-stream areas, or riparian zones, are important for the health of streams and rivers. If these areas are disturbed by forestry or other anthropogenic activity, the water quality and all life in streams may be at risk. We examined which riparian areas are particularly sensitive. We found that only a few wet areas bring most of the rainwater from the landscape to the stream, and they have a unique water quality. In order to maintain healthy streams and rivers, these areas should be protected.
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary
Short summary
The hydrology of high-elevation headwaters in midlatitudes is typically dominated by snow processes, which are very sensitive to changes in energy inputs at the top of the snowpack. We present a data analyses that reveal how snowmelt and transpiration waves induced by the diurnal solar cycle generate water pressure fluctuations that propagate through the snowpack–hillslope–stream system. Changes in diurnal energy inputs alter these pressure cycles with potential ecohydrological consequences.
Mark A. Nearing, Viktor O. Polyakov, Mary H. Nichols, Mariano Hernandez, Li Li, Ying Zhao, and Gerardo Armendariz
Hydrol. Earth Syst. Sci., 21, 3221–3229, https://doi.org/10.5194/hess-21-3221-2017, https://doi.org/10.5194/hess-21-3221-2017, 2017
Short summary
Short summary
This study presents novel scientific understanding about the way that hillslope surfaces form when exposed to rainfall erosion, and the way those surfaces interact with and influence runoff velocities during rain events. The data show that hillslope surfaces form such that flow velocities are independent of slope gradient and dependent on flow rates alone. This result represents a shift in thinking about surface water runoff.
Aliakbar Nazari Samani, Qiuwen Chen, Shahram Khalighi, Robert James Wasson, and Mohammad Reza Rahdari
Hydrol. Earth Syst. Sci., 20, 3005–3012, https://doi.org/10.5194/hess-20-3005-2016, https://doi.org/10.5194/hess-20-3005-2016, 2016
Short summary
Short summary
We hypothesized that land use had important effects on hydraulic threshold conditions for gully head cut initiation. We investigated the effects using an experimental plot. The results indicated that the use of a threshold value of τcr = 35 dyne cm−2 and ωu = 0.4 Cm S−1 in physically based soil erosion models is susceptible to high uncertainty when assessing gully erosion.
Stefan J. Kollet
Hydrol. Earth Syst. Sci., 20, 2801–2809, https://doi.org/10.5194/hess-20-2801-2016, https://doi.org/10.5194/hess-20-2801-2016, 2016
Yujin Zeng, Zhenghui Xie, Yan Yu, Shuang Liu, Linying Wang, Binghao Jia, Peihua Qin, and Yaning Chen
Hydrol. Earth Syst. Sci., 20, 2333–2352, https://doi.org/10.5194/hess-20-2333-2016, https://doi.org/10.5194/hess-20-2333-2016, 2016
Short summary
Short summary
In arid areas, stream–aquifer water exchange essentially sustains the growth and subsistence of riparian ecosystem. To quantify this effect for intensity and range, a stream–riverbank scheme was incorporated into a state-of-the-art land model, and some runs were set up over Heihe River basin, northwestern China. The results show that the hydrology circle is significantly changed, and the ecological system is benefitted greatly by the river water lateral transfer within a 1 km range to the stream.
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
U. Nachshon, A. Ireson, G. van der Kamp, S. R. Davies, and H. S. Wheater
Hydrol. Earth Syst. Sci., 18, 1251–1263, https://doi.org/10.5194/hess-18-1251-2014, https://doi.org/10.5194/hess-18-1251-2014, 2014
J. H. Spaaks and W. Bouten
Hydrol. Earth Syst. Sci., 17, 3455–3472, https://doi.org/10.5194/hess-17-3455-2013, https://doi.org/10.5194/hess-17-3455-2013, 2013
S. Han, D. Xu, and S. Wang
Hydrol. Earth Syst. Sci., 16, 3115–3125, https://doi.org/10.5194/hess-16-3115-2012, https://doi.org/10.5194/hess-16-3115-2012, 2012
S. Reinfried, S. Tempelmann, and U. Aeschbacher
Hydrol. Earth Syst. Sci., 16, 1365–1377, https://doi.org/10.5194/hess-16-1365-2012, https://doi.org/10.5194/hess-16-1365-2012, 2012
L. Merino-Martín, M. Moreno-de las Heras, S. Pérez-Domingo, T. Espigares, and J. M. Nicolau
Hydrol. Earth Syst. Sci., 16, 1305–1320, https://doi.org/10.5194/hess-16-1305-2012, https://doi.org/10.5194/hess-16-1305-2012, 2012
M. Ali, G. Sterk, M. Seeger, M. Boersema, and P. Peters
Hydrol. Earth Syst. Sci., 16, 591–601, https://doi.org/10.5194/hess-16-591-2012, https://doi.org/10.5194/hess-16-591-2012, 2012
L. Gong, S. Halldin, and C.-Y. Xu
Hydrol. Earth Syst. Sci., 15, 2481–2494, https://doi.org/10.5194/hess-15-2481-2011, https://doi.org/10.5194/hess-15-2481-2011, 2011
W. Ma, Y. Ma, Z. Hu, Z. Su, J. Wang, and H. Ishikawa
Hydrol. Earth Syst. Sci., 15, 1403–1413, https://doi.org/10.5194/hess-15-1403-2011, https://doi.org/10.5194/hess-15-1403-2011, 2011
E. L. Wipfler, K. Metselaar, J. C. van Dam, R. A. Feddes, E. van Meijgaard, L. H. van Ulft, B. van den Hurk, S. J. Zwart, and W. G. M. Bastiaanssen
Hydrol. Earth Syst. Sci., 15, 1257–1271, https://doi.org/10.5194/hess-15-1257-2011, https://doi.org/10.5194/hess-15-1257-2011, 2011
W. Korres, C. N. Koyama, P. Fiener, and K. Schneider
Hydrol. Earth Syst. Sci., 14, 751–764, https://doi.org/10.5194/hess-14-751-2010, https://doi.org/10.5194/hess-14-751-2010, 2010
H. Makurira, H. H. G. Savenije, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 14, 627–638, https://doi.org/10.5194/hess-14-627-2010, https://doi.org/10.5194/hess-14-627-2010, 2010
C. H. Luce and D. G. Tarboton
Hydrol. Earth Syst. Sci., 14, 535–543, https://doi.org/10.5194/hess-14-535-2010, https://doi.org/10.5194/hess-14-535-2010, 2010
J. Liu, S. Kang, T. Gong, and A. Lu
Hydrol. Earth Syst. Sci., 14, 481–489, https://doi.org/10.5194/hess-14-481-2010, https://doi.org/10.5194/hess-14-481-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 447–458, https://doi.org/10.5194/hess-14-447-2010, https://doi.org/10.5194/hess-14-447-2010, 2010
H. H. Bulcock and G. P. W. Jewitt
Hydrol. Earth Syst. Sci., 14, 383–392, https://doi.org/10.5194/hess-14-383-2010, https://doi.org/10.5194/hess-14-383-2010, 2010
L. S. Kuchment, P. Romanov, A. N. Gelfan, and V. N. Demidov
Hydrol. Earth Syst. Sci., 14, 339–350, https://doi.org/10.5194/hess-14-339-2010, https://doi.org/10.5194/hess-14-339-2010, 2010
E. Alcântara, E. Novo, J. Stech, J. Lorenzzetti, C. Barbosa, A. Assireu, and A. Souza
Hydrol. Earth Syst. Sci., 14, 351–364, https://doi.org/10.5194/hess-14-351-2010, https://doi.org/10.5194/hess-14-351-2010, 2010
I.-Y. Yeo and J.-M. Guldmann
Hydrol. Earth Syst. Sci., 14, 325–338, https://doi.org/10.5194/hess-14-325-2010, https://doi.org/10.5194/hess-14-325-2010, 2010
C. L. Schneider, S. Attinger, J.-O. Delfs, and A. Hildebrandt
Hydrol. Earth Syst. Sci., 14, 279–289, https://doi.org/10.5194/hess-14-279-2010, https://doi.org/10.5194/hess-14-279-2010, 2010
G. Baroni, A. Facchi, C. Gandolfi, B. Ortuani, D. Horeschi, and J. C. van Dam
Hydrol. Earth Syst. Sci., 14, 251–270, https://doi.org/10.5194/hess-14-251-2010, https://doi.org/10.5194/hess-14-251-2010, 2010
C. Medici, S. Bernal, A. Butturini, F. Sabater, M. Martin, A. J. Wade, and F. Frances
Hydrol. Earth Syst. Sci., 14, 223–237, https://doi.org/10.5194/hess-14-223-2010, https://doi.org/10.5194/hess-14-223-2010, 2010
A. Petrone and F. Preti
Hydrol. Earth Syst. Sci., 14, 239–250, https://doi.org/10.5194/hess-14-239-2010, https://doi.org/10.5194/hess-14-239-2010, 2010
A. I. J. M. van Dijk
Hydrol. Earth Syst. Sci., 14, 159–169, https://doi.org/10.5194/hess-14-159-2010, https://doi.org/10.5194/hess-14-159-2010, 2010
C. Gruhier, P. de Rosnay, S. Hasenauer, T. Holmes, R. de Jeu, Y. Kerr, E. Mougin, E. Njoku, F. Timouk, W. Wagner, and M. Zribi
Hydrol. Earth Syst. Sci., 14, 141–156, https://doi.org/10.5194/hess-14-141-2010, https://doi.org/10.5194/hess-14-141-2010, 2010
M. Barnolas, T. Rigo, and M. C. Llasat
Hydrol. Earth Syst. Sci., 14, 129–139, https://doi.org/10.5194/hess-14-129-2010, https://doi.org/10.5194/hess-14-129-2010, 2010
A. Schmidt, J. J. Gibson, I. R. Santos, M. Schubert, K. Tattrie, and H. Weiss
Hydrol. Earth Syst. Sci., 14, 79–89, https://doi.org/10.5194/hess-14-79-2010, https://doi.org/10.5194/hess-14-79-2010, 2010
R. Liu, J. Wen, X. Wang, L. Wang, H. Tian, T. T. Zhang, X. K. Shi, J. H. Zhang, and SH. N. Lv
Hydrol. Earth Syst. Sci., 14, 47–58, https://doi.org/10.5194/hess-14-47-2010, https://doi.org/10.5194/hess-14-47-2010, 2010
S. Werth and A. Güntner
Hydrol. Earth Syst. Sci., 14, 59–78, https://doi.org/10.5194/hess-14-59-2010, https://doi.org/10.5194/hess-14-59-2010, 2010
H. Lin
Hydrol. Earth Syst. Sci., 14, 25–45, https://doi.org/10.5194/hess-14-25-2010, https://doi.org/10.5194/hess-14-25-2010, 2010
A. Ducharne
Hydrol. Earth Syst. Sci., 13, 2399–2412, https://doi.org/10.5194/hess-13-2399-2009, https://doi.org/10.5194/hess-13-2399-2009, 2009
J. E. Barrett, M. N. Gooseff, and C. Takacs-Vesbach
Hydrol. Earth Syst. Sci., 13, 2349–2358, https://doi.org/10.5194/hess-13-2349-2009, https://doi.org/10.5194/hess-13-2349-2009, 2009
V. García-García, R. Gómez, M. R. Vidal-Abarca, and M. L. Suárez
Hydrol. Earth Syst. Sci., 13, 2359–2371, https://doi.org/10.5194/hess-13-2359-2009, https://doi.org/10.5194/hess-13-2359-2009, 2009
M. Shamsudduha, R. E. Chandler, R. G. Taylor, and K. M. Ahmed
Hydrol. Earth Syst. Sci., 13, 2373–2385, https://doi.org/10.5194/hess-13-2373-2009, https://doi.org/10.5194/hess-13-2373-2009, 2009
J. C. M. Andersson, A. J. B. Zehnder, G. P. W. Jewitt, and H. Yang
Hydrol. Earth Syst. Sci., 13, 2329–2347, https://doi.org/10.5194/hess-13-2329-2009, https://doi.org/10.5194/hess-13-2329-2009, 2009
S. Binet, L. Spadini, C. Bertrand, Y. Guglielmi, J. Mudry, and C. Scavia
Hydrol. Earth Syst. Sci., 13, 2315–2327, https://doi.org/10.5194/hess-13-2315-2009, https://doi.org/10.5194/hess-13-2315-2009, 2009
A. Bárdossy and G. G. S. Pegram
Hydrol. Earth Syst. Sci., 13, 2299–2314, https://doi.org/10.5194/hess-13-2299-2009, https://doi.org/10.5194/hess-13-2299-2009, 2009
K. Dontsova, C. I. Steefel, S. Desilets, A. Thompson, and J. Chorover
Hydrol. Earth Syst. Sci., 13, 2273–2286, https://doi.org/10.5194/hess-13-2273-2009, https://doi.org/10.5194/hess-13-2273-2009, 2009
D. Yamazaki, T. Oki, and S. Kanae
Hydrol. Earth Syst. Sci., 13, 2241–2251, https://doi.org/10.5194/hess-13-2241-2009, https://doi.org/10.5194/hess-13-2241-2009, 2009
Cited articles
AA.VV.: Manuale di coltivazione e prima lavorazione della ginestra per uso tessile. Istituto di Biometeorologia del Consiglio Nazionale delle Ricerche, Regione Toscana, ISBN: 8890146044, 52 pp., 2006 (in Italian).
Abernethy, B. and Rutherfurd, I. D.: The distribution and strength of riparian tree roots in relation to riverbank reinforcement, Hydrol. Process, 15, 63–79, 2001.
Amato, M., Pardo, A., Faretta, S., and Quaglietta Chiaranda', F.: Misura della resistenza alla trazione delle radici un contributo alla determinazione dell'effetto delle piante sulla stabilità del terreno, Rivista di Agronomia, 31(2), 762–767, 1997 (in Italian).
Amato, M., Di Martino, P., Di Pasquale, G., Mazzoleni, S., Migliozzi, A., and Strumia, S.: Il ruolo della vegetazione nelle frane di Quindici, Quaderni di Geologia Applicata, 7(1), 97–108, 2000 (in Italian).
Bagnaresi, U., Bignani, C., and Chiusoli, A.: Ricerche sull'impiego di arbusti per il rivestimento di scarpate argillose, L'Italia Forestale e Montana, 41(4), 165–182, 1986 (in Italian).
Bischetti, G. B., Chiaradia, E. A., Simonato, T., Speziali, B., Vitali, B., Vullo, P., Zocco, A.: Root strength and root area of forest species in Lombardy (Northern Italy), Plant Soil, 278, 11–22, 2005.
Bohm, W.: Methods of studying root systems, New York: Springer-Verlag, 194 pp., 1979.
Burroughs, E. R. and Thomas, B. R.: Declining root strength in Douglas fir after felling as a factor in slope stability, USDA For. Serv. Res., INT-190, 27 pp., 1977.
Cervelli C.: Le specie arbustive della macchia mediterranea, Collana Sicilia Foreste, suppl., 26, 181 pp., 2003 (in Italian).
Chiatante, D., Scippa, G. S., Di Iorio, A., and Sarnataro, M.: Root architecture modified by mechanical stress in seedlings of Fraxinus ornus L. and Spartium junceum L. growing on slopes, in: Proceedings of the international conference on forest research: a challenge for an integrated European approach, edited by: Radoglou, K., Thessaloniki, Greece, 477–482, 2001.
Chiatante, D., Sarnataro, M., Fusco, S., Di Iorio, A., and Scippa, G. S.: Modification of root morphological parameters and root architecture in seedlings of Fraxinus ornus L. and Spartium junceum L. L. growing on slopes, Plant Growth Regul., 21, 247–260, 2003a.
Chiatante, D., Sarnataro, M., Fusco, S., Di Iorio, A., and Scippa, G. S.: Modification of root morphological parameters and root architecture in seedlings of Fraxinus ornus L. and Spartium junceum L. growing on slopes, Plant Biosyst., 137(1), 47–55, 2003b.
Cofie, P. and Koolen, A. J.: Test speed and other factors affecting the measurements of tree root properties used in soil reinforcement models, Soil Till. Res., 63, 51–56, 2001.
Coppin, N. J. and Richards, I. G.: Use of vegetation in civil engineering, Butterworth, London, 272 pp., 1990.
Dani, A. and Preti, F.: Sulla stima del rinforzo radicale del terreno: andamenti temporali ed effetti sulla stabilità abilità di versante con trattamenti selvicolturali, Quaderni di Idronomia Montana, Nuova Editoriale Bios, 27, 295–309, 2007 (in Italian).
De Baets, S., Poesen, J., Knapen, A., Barberá, G. G., and Navarro, J. A.: Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff, Plant Soil, 294, 169–183, 2007.
De Baets, S., Poesen, J., Reubens, B., Wemans, K., De Baerdemaeker, J., and Muys, B.: Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength, Plant Soil, 305, 207–226, 2008.
Di Iorio, A., Lasserre, B., Scippa, G., and Chiatante, D.: Root system architecture of Quercus pubescens trees growing on different sloping conditions, Ann. Bot.-London, 95(2), 351–361, 2005.
Fan, C. C. and Su, C. F.: Role of roots in the shear strength of root reinforced soils with high moisture content, Ecol. Eng., 3, 157–166, 2008.
Gallotta, A.: Contributo della vegetazione alla stabilità dei suoli declivi in ambiente mediterraneo, Dissertazione per il conseguimento del titolo di Dottore di Ricerca in Idronomia, Ist. Di Sistemazioni idraulico-forestali, Bari, sede amministrativa Università degli Studi di Padova, 95 pp., 2000 (in Italian).
Gallotta, A., Gentile, F., Puglisi, S., and Romano, G.: Primi risultati di una ricerca sulla resistenza meccanica degli apparati radicali nella stabilizzazione dei versanti in ambiente mediterraneo, Collana Quaderni Idronomia Montana, ISBN: 88-7740-341-1, 21(1), 382 pp., 2003 (in Italian).
Genet, M., Stokes, A., Salin, F., Mickovski, S. B., Fourcaud, T., Dumail, J. F., and Beek, R.: The influence of cellulose content on tensile strength in tree roots, Plant Soil, 278, 1–9, 2005.
Gray, D. H. and Leiser, A. T.: Biotechnical slope protection and erosion control, Van Nostrand Reinhold Co, New York, 271 pp., 1982.
Gray, D. H. and Sotir, R. D.: Biotechnical and soil bioengineering slope stabilization, John Wiley and Sons, NY, 369 pp., 1996.
Greenway, D. R.: Vegetation and slope stability, in: Slope stability, edited by: Anderson, M. G. and Richards, K. S., John Wiley & Sons Ltd, New York, 187–230, 1987.
Greenwood, J. R.: SLIP4EX – A program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes, Plant Soil, 24, 449–465, 2005.
Halter, M. R. and Chanway, C. P.: Growth and root morphology of planted and naturally regenerated Douglas-fir and lodgepole pine, Ann. Sci. Forest., 50, 71–77, 1993.
Hartmann, H. T., Kester, D. E., Davies, F. T, and Geneve, R. L.: Plant propagation: principles and practices, 7th edn., Prentice Hall, Upper Saddle River, NJ, 769 pp., 2002.
Khuder, H., Stokes, A., Danjon, F., and Gouskou, K.: Is it possible to manipulate root anchorage in young trees, Plant Soil, 294, 87–102, 2007.
Laio, F., D'Odorico, P., and Ridolfi, L.: An analytical model to relate the vertical root distribution to climate and soil properties, Geophys. Res. Lett., 33, L18401, https://doi.org/10.1029/2006GL027331, 2006.
La Mantia, T. and La Mela Veca, D. S.: L'impiego della ginestra di spagna in intervent di forestazione di aree marginali: il caso studio dei Monti Sicani (AG), Italus Hortus, luglio-agosto, 11(4), 116–119, 2004 (in Italian).
Laranci, P., Dallari, D., Amato, M., Petelli, M., and Scarascia-Mugnozza, G.: Capacità di radicazione e proprietà biotecniche di alcuni arbusti ed alberi mediterranei (per il recupero ecologico di ambienti degradati), Rivista di Ingegneria Agraria, Pisa, Edizioni ETS, p. 2, 9–16, 2004 (in Italian).
Leopardi, G.: La Ginestra o il fiore del deserto, in: a cura di Nicolò Gallo e Cesare Garboli, edited by: Canti, G. L., Torino: Einaudi, copyr. 1993 LXXIII, ISBN: 88-06-13303-9, 447 pp., 1845.
Lindström, A. and Rune, G.: Root deformation in containerised Scots pine plantations – effects on stability and stem straightness, Plant Soil, 217, 29–37, 1999.
Mattia, C., Bischetti, G. B., and Gentile, F.: Biotechnical characteristics of root systems of typical Mediterranean species, Plant Soil, 278, 11–22, 2005.
Morone Fortunato, I., Ruta, C., and Tagarelli, A.: Different species of broom and related propagation protocols [Cytisus scoparius (L.) Link; Spartium junceum L.; Genista aspalathoides Lam.], Italian Horticultural Society (SOI), national meeting on biodiversity, 7, Catania, Italy, 31 March–2 April 2005, 2005.
Norris, J. E. and Greenwood, J. R.: Root reinforcement on unstable slopes in Northern Greece and Central Italy, International Conference on Problematic Soils, Nottingham Trent University, Nottingham, UK, 411–418, July 2003.
Norris, J. E., Stokes, A., Mickovski, S. B., Cammeraat, E., van Beek, R., Nicoll, B. C., and Achim, A. (Eds.): Slope Stability and Erosion Control: Ecotechnological Solutions VI, Hardcover, ISBN: 978-1-4020-6675-7, 290 pp., 2008.
O'Loughlin, C. L. and Watson, A. J.: Root-wood strength deterioration in Radiata Pine after clearfelling, New Zeal. J. For. Sci., 39(3), 284–293, 1979.
Operstein, V. and Frydman, S.: The influence of vegetation on soil strength, Ground Improv., 4, 81–89, 2000.
Piotto, B. and Di Noi, A.: Propagazione per seme di alberi e arbusti della flora mediterranea, ANPA (Agenzia Nazionale per la Protezione dell'Ambiente Dipartimento Prevenzione e Risanamento Ambientali, ITALIA), 2001 (in Italian).
Preti, F. and Schwarz, M.: On root reinforcement modelling, The role of vegetation in slope stability and mitigation measures against landslides and debris flows, EGU General Assembly, 2–7 April 2006, Geophys. Res. Abstr., 8, 04555, 2006.
Preti, F., Dani, A., and Laio, F.: Root profiles assessment by means of hydrological, pedological, and above-ground vegetation data for bioengineering purposes, Ecol. Eng., https://doi.org/10.1016/j.ecoleng.2009.07.010, in press, 2009.
Preti, F.: Stabilità dei versanti vegetati, Cap. 10, in: Manuale 3 d'Ingegneria Naturalistica Sistemazione dei versanti, edited by: Sauli, G., Cornelini, P., and Preti, F., Regione Lazio, Roma, 137–168, http://www.regione.lazio.it/web2/contents/ingegneria_naturalistica/manuale_versanti/Cap_10_10.pdf, 2006 (in Italian).
Pollen, N. and Simon, A.: Estimating the mechanical effects of riparian vegetation on streambank stability using a fiber bundle model, Water Resour. Res., 41, W07025, https://doi.org/10.1029/2004WR003801, 2005.
Quatrini, P., Scaglione, G., Cardinale, M., Caradonna, F., and Puglia, A. M.: Bradyrhizobium sp. nodulating the Mediterranean shrub Spanish broom (Spartium junceum L.), J. Appl. Microbiol., 92, 13–21, 2002.
Regione Toscana: Aggiornamento e sviluppo del del sistema di regionalizzazione delle portate di piena in Toscana – AlTo, http://www.rete.toscana.it/sett/pta/suolo/difesa_suolo/alto/index.htm, 2007 (in Italian).
Riestenberg, M. M.: Anchoring of thin colluvium by roots of Sugar maple and White ash on a hillslope in Cincinnati, US Geological Survey Bulletin, 2059-E, 1–25, 1994.
Schwarz, M., Preti, F., Giadrossich, F., Lehmann, P., and Or, D.: Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy), Ecol. Eng., https://doi.org/10.1016/j.ecoleng.2009.06.014, in press, 2009
Schenk, H. J. and Jackson, R. B.: The Global Biogeography of Roots, Ecol. Monogr., 72(3), 311–328, 2002a.
Schenk, H. J. and Jackson, R. B.: Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems, J. Ecol., 90, 480–494, 2002b.
Schmid, I. and Kazda, M.: Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies, Can. J. Forest Res., 31, 539–548, 2001.
Schmid, I. and Kazda, M.: Root distribution of Norway spruce in monospecific and mixed stands on different soils, Forest Ecol. Manag., 159, 37–47, 2002.
Schmidt, K. M., Roering, J. J., Stock, J. D., Schaub, T., Dietrich, W. E., and Montgomery, D. R.: The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Can. Geotech. J., 38, 995–1024, 2001.
Sidle, R. C., Pearce, A. J., and O'Loughlin, C. L.: Hillslope stability and land use, Water Resour. Monogr. Ser., AGU, Washington DC, 11, 140 pp., 1985.
Sidle, R. C.: A theoretical model of the effects of timber harvesting on slope stability, Water Resour. Res., 28, 1897–1910, 1992.
Stokes, A., Abd Ghani, M., Salin, F., Danjon, F., Jeannin, H., Berthier, S., Kokutse, A. D., and Frochot, H.: Root morphology and strain distribution during tree failure on mountain slopes, in: Eco- and ground bio-engineering: the use of vegetation to improve slope stability, Developments in Plant and Soil Sciences, edited by: Stokes, A., Spanos, I., Norris, J. E., and Cammeraat, L. H., Springer Publishers, Dordrecht, ISBN-10: 1-4020-5592-7, ISBN-13: 978-1-4020-5592-8, 103, 165–173, 2007.
Stokes, A., Norris, J. E., van Beek, L. P. H., Bogaard, T., Cammeraat, E., Mickovski, S. B., Jenner, A., Di Iorio, A., and Fourcaud, T.: How vegetation reinforces soil, in: Slope stability and erosion control: Ecotechnological solutions, edited by: Norris, J. E., Stokes, A., Mickovski, S. B., Cammeraat, E., Van Beek, R., Nicoll, B. C., and Achim, A., Springer, 65–118, 2008.
Tosi, M.: Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy), Geomorphology, 87, 268–283, 2007.
Vogt, K. A. and Persson, H.: Root methods, in: Techniques and Approaches in Forest Tree Ecophysiology, edited by: Lassoie, J. P. and Hinckley, T. M., CRC Press, Boca Raton, Florida, 477–502, 1991.
Waldron, L. J.: The shear stress resistance of root-permeated homogeneous and stratified soil, Soil Sci. Soc. Am. Pro., 41, 843–849, 1977.
Wu, T. H.: Investigation on landslides on Prince of Wales Island, Alaska Geotech Rpt. No 5, Dpt. of Civil Eng., Ohio State Univ., Columbus, USA, 1976.
Wu, T. H.: McKinnell III, W. P., and Swanston, D. N.: Strength of tree roots and landslides on Prince of Wales Island, Alaska, Can. Geotech. J., 16, 19–33, 1979.
Wu, T. H.: Effect of vegetation on slope stability, in: Soil reinforcement and moisture effects on slope stability, Transportation Research Board, Washington, DC, 37–46, 1984a.
Wu, T. H.: Soil movements on permafrost slopes near Fairbanks, Alaska, Can. Geotech. J., 21, 699–709, 1984b.
Wu, T. H. and Sidle, R. C. A.: A distributed slope stability model for steep forested basins, Water Resour. Res., 31(8), 2097–2110, 1995.
Ziemer, R. R.: Roots and stability of forested slopes, Erosion and sediment transport in Pacific Rim Steeplands, IAHS, Pub. No. 132, 343–361, 1981.
Servizio Agrometereologico Regionale, Regione Toscana:\\ http://agrometeo.arsia.toscana.it/, access: 1 May 2009\ (in Italian).