Articles | Volume 30, issue 3
https://doi.org/10.5194/hess-30-797-2026
https://doi.org/10.5194/hess-30-797-2026
Research article
 | 
12 Feb 2026
Research article |  | 12 Feb 2026

AI image-based method for a robust automatic real-time water level monitoring: a long-term application case

Xabier Blanch, Jens Grundmann, Ralf Hedel, and Anette Eltner

Related authors

Near-continuous observation of soil surface changes at single slopes with high spatial resolution via an automated SfM photogrammetric mapping approach
Oliver Grothum, Lea Epple, Anne Bienert, Xabier Blanch, and Anette Eltner
SOIL, 11, 1007–1028, https://doi.org/10.5194/soil-11-1007-2025,https://doi.org/10.5194/soil-11-1007-2025, 2025
Short summary
AI-based tracking of fast-moving alpine landforms using high-frequency monoscopic time-lapse imagery
Hanne Hendrickx, Melanie Elias, Xabier Blanch, Reynald Delaloye, and Anette Eltner
Earth Surf. Dynam., 13, 705–721, https://doi.org/10.5194/esurf-13-705-2025,https://doi.org/10.5194/esurf-13-705-2025, 2025
Short summary
Low-Cost sensors for measuring wadi discharge - a Raspberry Pi based seismometer and time-lapse camera setup
Robert Krüger, Xabier Blanch, Jens Grundmann, Ghazi Al-Rawas, and Anette Eltner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 243–250, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024,https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-243-2024, 2024
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023,https://doi.org/10.5194/nhess-23-3285-2023, 2023
Short summary

Cited articles

Bartos, M., Wong, B., and Kerkez, B.: Open storm: a complete framework for sensing and control of urban watersheds, Environ. Sci. Water Res. Technol., 4, 346–358, https://doi.org/10.1039/C7EW00374A, 2018. 
Blanch, X., Guinau, M., Eltner, A., and Abellan, A.: Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution, Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023, 2023a. 
Blanch, X., Wagner, F., and Eltner, A.: River Water Segmentation Dataset (RIWA), Kaggle [data set], https://doi.org/10.34740/kaggle/dsv/4901781, 2023b. 
Blanch, X., Guinau, M., Eltner, A., and Abellan, A.: A cost-effective image-based system for 3D geomorphic monitoring: An application to rockfalls, Geomorphology, 449, 109065, https://doi.org/10.1016/j.geomorph.2024.109065, 2024. 
Blanch, X., Jäschke, A., Elias, M., and Eltner, A.: Subpixel Automatic Detection of GCP Coordinates in Time-Lapse Images Using a Deep Learning Keypoint Network, IEEE Trans. Geosci. Remote Sens., 63, 1–14, https://doi.org/10.1109/TGRS.2024.3514854, 2025a. 
Download
Short summary
This study presents a low-cost, automated system for monitoring river water levels using cameras and AI. By combining AI-based image analysis with photogrammetry, it accurately measures water levels in real-time, even in challenging conditions. Tested over 2.5 years at four sites, it achieved high accuracy (errors of 1.0–2.3 cm) and processed over 219 000 images. Its resilience makes it ideal for flood detection and water management in remote areas.
Share