Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6663-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6663-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sub-daily stable water isotope dynamics of urban tree xylem water and ambient vapor
Ann-Marie Ring
Department of Geography, Humboldt University Berlin, Berlin, Germany
Department of Ecohydrology & Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Dörthe Tetzlaff
CORRESPONDING AUTHOR
Department of Geography, Humboldt University Berlin, Berlin, Germany
Department of Ecohydrology & Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Northern Rivers Institute, School of Geosciences, University of Aberdeen, UK
Christian Birkel
Department of Ecohydrology & Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Department of Geography, University of Costa Rica, San José, Costa Rica
Chris Soulsby
Northern Rivers Institute, School of Geosciences, University of Aberdeen, UK
Related authors
No articles found.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan F. Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
Nat. Hazards Earth Syst. Sci., 25, 4043–4051, https://doi.org/10.5194/nhess-25-4043-2025, https://doi.org/10.5194/nhess-25-4043-2025, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Songjun Wu, Doerthe Tetzlaff, Yi Zheng, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-3941, https://doi.org/10.5194/egusphere-2025-3941, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed EcoTWIN v1.0, a new fully distributed tracer-aided ecohydrological model that tracks water, isotopes, and nutrients fluxes. The model was successfully tested in 17 large European catchments across diverse geological and climatic backgrounds. As a tracer-aided model, EcoTWIN not only captures flow paths but also estimates water ages/travel times, thus bridging hydrology with water quality. This opens new possibilities for understanding the synergy between water and nitrogen cycles.
Maria Magdalena Warter, Dörthe Tetzlaff, Chris Soulsby, Tobias Goldhammer, Daniel Gebler, Kati Vierikko, and Michael T. Monaghan
Hydrol. Earth Syst. Sci., 29, 2707–2725, https://doi.org/10.5194/hess-29-2707-2025, https://doi.org/10.5194/hess-29-2707-2025, 2025
Short summary
Short summary
There is a lack of understanding of how urban aquatic nature-based solutions (aquaNBSs) affect ecohydrology and how they in turn are affected by urbanization and climate change. We use a multi-tracer approach of stable water isotopes, hydrochemistry, and microbial and macrophyte diversity to disentangle the effects of hydroclimate and urbanization. The results show potential limitations of aquaNBSs regarding water quality and biodiversity in response to hydroclimate and urban water sources.
Cong Jiang, Doerthe Tetzlaff, Songjun Wu, Christian Birkel, Hjalmar Laudon, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2533, https://doi.org/10.5194/egusphere-2025-2533, 2025
Short summary
Short summary
We used a modelling approach supported by stable water isotopes to explore how forest management – such as conifer, broadleaf, and mixed tree–crop systems – affects water distribution and drought resilience in a drought-sensitive region of Germany. By representing forest type, density, and rooting depth, the model helps quantify and show how land use choices affect water availability and supports better land and water management decisions.
Hanwu Zheng, Doerthe Tetzlaff, Christian Birkel, Songjun Wu, Tobias Sauter, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2166, https://doi.org/10.5194/egusphere-2025-2166, 2025
Short summary
Short summary
Ecohydrological processes in heavily managed catchments are often incorrectly represented in models. We applied a tracer-aided model STARR in an ET-dominated region (the Middle Spree, NE Germany) with major management impacts. Water isotopes were useful in identifying runoff contributions and partitioning ET even at sparse resolution. Trade-offs between discharge- and isotope-based calibrations could be partially mitigated by integrating more process-based conceptualizations into the model.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Salim Goudarzi, Chris Soulsby, Jo Smith, Jamie Lee Stevenson, Alessandro Gimona, Scot Ramsay, Alison Hester, Iris Aalto, and Josie Geris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2258, https://doi.org/10.5194/egusphere-2024-2258, 2024
Preprint archived
Short summary
Short summary
Planting trees on farmlands is now considered as one of the potential solutions to climate change. Trees can suck CO2 out of our atmosphere and store it in their trunks and in the soil beneath them. They can promote biodiversity, protect against soil erosion and drought. They can even help reduce flood risk for downstream communities. But we need models that can tell us the likely impact of trees at different locations and scales. Our study provides such a model.
Doerthe Tetzlaff, Aaron Smith, Lukas Kleine, Hauke Daempfling, Jonas Freymueller, and Chris Soulsby
Earth Syst. Sci. Data, 15, 1543–1554, https://doi.org/10.5194/essd-15-1543-2023, https://doi.org/10.5194/essd-15-1543-2023, 2023
Short summary
Short summary
We present a comprehensive set of ecohydrological hydrometric and stable water isotope data of 2 years of data. The data set is unique as the different compartments of the landscape were sampled and the effects of a prolonged drought (2018–2020) captured by a marked negative rainfall anomaly (the most severe regional drought of the 21st century). Thus, the data allow the drought effects on water storage, flux and age dynamics, and persistence of lowland landscapes to be investigated.
Xiaoqiang Yang, Doerthe Tetzlaff, Chris Soulsby, and Dietrich Borchardt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-239, https://doi.org/10.5194/gmd-2022-239, 2022
Preprint retracted
Short summary
Short summary
We develop the catchment water quality assessment platform HiWaQ v1.0, which is compatible with multiple hydrological model structures. The nitrogen module (HiWaQ-N) and its coupling tests with two contrasting grid-based hydrological models demonstrate the robustness of the platform in estimating catchment N dynamics. With the unique design of the coupling flexibility, HiWaQ can leverage advancements in hydrological modelling and advance integrated catchment water quantity-quality assessments.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Saúl Arciniega-Esparza, Christian Birkel, Andrés Chavarría-Palma, Berit Arheimer, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci., 26, 975–999, https://doi.org/10.5194/hess-26-975-2022, https://doi.org/10.5194/hess-26-975-2022, 2022
Short summary
Short summary
In the humid tropics, a notoriously data-scarce region, we need to find alternatives in order to reasonably apply hydrological models. Here, we tested remotely sensed rainfall data in order to drive a model for Costa Rica, and we evaluated the simulations against evapotranspiration satellite products. We found that our model was able to reasonably simulate the water balance and streamflow dynamics of over 600 catchments where the satellite data helped to reduce the model uncertainties.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021, https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration - Guidelines for computing crop water requirements, FAO Irrigation and Drainage, 56, ISBN 92-5-104219-5, 1998.
Angert, A., Lee, J.-E., and Yakir, D.: Seasonal variations in the isotopic composition of near-surface water vapour in the eastern Mediterranean, Tellus B, 60, 674, https://doi.org/10.1111/j.1600-0889.2008.00357.x, 2022.
Anys, M. and Weiler, M.: Drought Impact on Transpiration Dynamics of Common Deciduous Trees Growing at Contrasting Urban Sites, Ecohydrology, 18, https://doi.org/10.1002/eco.70007, 2025.
Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., van Osch, F. P., Rietkerk, M., Chen, J., Gotsch, S., Tobon, C., Geissert, D. R., Gomez-Tagle, A., Vache, K., and Dawson, T. E.: Ecohydrological advances and applications in plant-water relations research: a review, Journal of Plant Ecology, 4, 3–22, https://doi.org/10.1093/jpe/rtr005, 2011.
Bachofen, C., Tumber-Dávila, S. J., Mackay, D. S., McDowell, N. G., Carminati, A., Klein, T., Stocker, B. D., Mencuccini, M., and Grossiord, C.: Tree water uptake patterns across the globe, The New phytologist, 242, 1891–1910, https://doi.org/10.1111/nph.19762, 2024.
Barbeta, A., Gimeno, T. E., Clavé, L., Fréjaville, B., Jones, S. P., Delvigne, C., Wingate, L., and Ogée, J.: An explanation for the isotopic offset between soil and stem water in a temperate tree species, The New phytologist, 227, 766–779, https://doi.org/10.1111/nph.16564, 2020.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Scientific data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bernacchi, C. J. and VanLoocke, A.: Terrestrial ecosystems in a changing environment: a dominant role for water, Annual review of plant biology, 66, 599–622, https://doi.org/10.1146/annurev-arplant-043014-114834, 2015.
Bernhard, F., Floriancic, M. G., Treydte, K., Gessler, A., Kirchner, J. W., and Meusburger, K.: Tree- and stand-scale variability of xylem water stable isotope signatures in mature beech, oak and spruce, Ecohydrology, 17, https://doi.org/10.1002/eco.2614, 2024.
Beyer, M., Kühnhammer, K., and Dubbert, M.: In situ measurements of soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future, Hydrol. Earth Syst. Sci., 24, 4413–4440, https://doi.org/10.5194/hess-24-4413-2020, 2020.
Birkel, C., Miller, J., Watson, A., Anh Trinh, D., Durán-Quesada, A. M., Sánchez-Murillo, R., Soulsby, C., Terzer-Wassmuth, S., Tetzlaff, D., Uhlenbrook, S., Vystavna, Y., and Yoshimura, K.: Demystifying the art of isotope-enabled hydrological and climate modelling, The Science of the total environment, 959, 178242, https://doi.org/10.1016/j.scitotenv.2024.178242, 2025a.
Birkel, C., Tetzlaff, D., Ring, A.-M., and Soulsby, C.: Does high resolution in situ xylem and atmospheric vapor isotope data help improve modeled estimates of ecohydrological partitioning?, Agricultural and Forest Meteorology, 365, 110467, https://doi.org/10.1016/j.agrformet.2025.110467, 2025b.
Bliss Singer, M., Asfaw, D. T., Rosolem, R., Cuthbert, M. O., Miralles, D. G., MacLeod, D., Quichimbo, E. A., and Michaelides, K.: Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present, Scientific data, 8, 224, https://doi.org/10.1038/s41597-021-01003-9, 2021.
Bonferroni, C. E.: Il calcolo delle assicurazioni su gruppi di teste, Studi in Onore del Professore Salvatore Ortu Carboni, Rome, Italy, 13–60, 1935.
Braden-Behrens, J., Markwitz, C., and Knohl, A.: Eddy covariance measurements of the dual-isotope composition of evapotranspiration, Agricultural and Forest Meteorology, 269–270, 203–219, https://doi.org/10.1016/j.agrformet.2019.01.035, 2019.
Braden-Behrens, J., Siebicke, L., and Knohl, A.: Drivers of the variability of the isotopic composition of water vapor in the surface boundary layer, Biogeosciences Discuss [preprint], https://doi.org/10.5194/bg-2020-398, 2020.
Ceperley, N., Gimeno, T. E., Jacobs, S. R., Beyer, M., Dubbert, M., Fischer, B., Geris, J., Holko, L., Kübert, A., Le Gall, S., Lehmann, M. M., Llorens, P., Millar, C., Penna, D., Prieto, I., Radolinski, J., Scandellari, F., Stockinger, M., Stumpp, C., Tetzlaff, D., van Meerveld, I., Werner, C., Yildiz, O., Zuecco, G., Barbeta, A., Orlowski, N., and Rothfuss, Y.: Toward a common methodological framework for the sampling, extraction, and isotopic analysis of water in the Critical Zone to study vegetation water use, WIREs Water, 11, https://doi.org/10.1002/wat2.1727, 2024.
Cermák, J., Kucera, J., Bauerle, W. L., Phillips, N., and Hinckley, T. M.: Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees, Tree physiology, 27, 181–198, https://doi.org/10.1093/treephys/27.2.181, 2007.
Cernusak, L. A., Farquhar, G. D., and Pate, J. S.: Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus, Tree physiology, 25, 129–146, https://doi.org/10.1093/treephys/25.2.129, 2005.
Cernusak, L. A., Barbeta, A., Bush, R. T., Eichstaedt Bögelein, R., Ferrio, J. P., Flanagan, L. B., Gessler, A., Martín-Gómez, P., Hirl, R. T., Kahmen, A., Keitel, C., Lai, C.-T., Munksgaard, N. C., Nelson, D. B., Ogée, J., Roden, J. S., Schnyder, H., Voelker, S. L., Wang, L., Stuart-Williams, H., Wingate, L., Yu, W., Zhao, L., and Cuntz, M.: Do 2 H and 18 O in leaf water reflect environmental drivers differently?, The New phytologist, 235, 41–51, https://doi.org/10.1111/nph.18113, 2022.
Chambers, J., Eddy, W., Härdle, W., Sheather, S., Tierney, L., Venables, W. N., and Ripley, B. D.: Modern Applied Statistics with S, Springer New York, New York, NY, 2002.
Craig, H., Gordon, L. I., and Horibe, Y.: Isotopic exchange effects in the evaporation of water: 1. Low-temperature experimental results, J. Geophys. Res., 68, 5079–5087, https://doi.org/10.1029/JZ068i017p05079, 1963.
Dahlmann, A., Marshall, J. D., Dubbert, D., Hoffmann, M., and Dubbert, M.: Simple water vapor sampling for stable isotope analysis using affordable valves and bags, Atmos. Meas. Tech., 18, 2607–2618, https://doi.org/10.5194/amt-18-2607-2025, 2025.
Dawson, T. E. and Ehleringer, J. R.: Isotopic enrichment of water in the “woody” tissues of plants: Implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose, Geochimica et Cosmochimica Acta, 57, 3487–3492, https://doi.org/10.1016/0016-7037(93)90554-A, 1993.
De Deurwaerder, H. P. T., Visser, M. D., Detto, M., Boeckx, P., Meunier, F., Kuehnhammer, K., Magh, R.-K., Marshall, J. D., Wang, L., Zhao, L., and Verbeeck, H.: Causes and consequences of pronounced variation in the isotope composition of plant xylem water, Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, 2020.
Dirmeyer, P. A., Balsamo, G., Blyth, E. M., Morrison, R., and Cooper, H. M.: Land-Atmosphere Interactions Exacerbated the Drought and Heatwave Over Northern Europe During Summer 2018, AGU Advances, 2, https://doi.org/10.1029/2020AV000283, 2021.
Drastig, K., Prochnow, A., Baumecker, M., Berg, W., and Brunsch, R.: Agricultural Water Management in Brandenburg, DIE ERDE – Journal of the Geographical Society of Berlin, 142, 119–140, 2011.
Dubbert, M. and Werner, C.: Water fluxes mediated by vegetation: emerging isotopic insights at the soil and atmosphere interfaces, The New phytologist, 221, 1754–1763, https://doi.org/10.1111/nph.15547, 2019.
Dubbert, M., Kübert, A., and Werner, C.: Impact of Leaf Traits on Temporal Dynamics of Transpired Oxygen Isotope Signatures and Its Impact on Atmospheric Vapor, Frontiers in plant science, 8, 5, https://doi.org/10.3389/fpls.2017.00005, 2017.
DWD: GPCC Drought Index July 2022, https://www.dwd.de/DE/leistungen/rcccm/int/rcccm_int_spi.html (last access: 14 August 2025), 2022a.
DWD: Deutschlandwetter im Frühling 2022, https://www.dwd.de/DE/presse/pressemitteilungen/DE/2022/20220429_deutschlandwetter_fruehling2022_news.html (last access: 13 August 2025), 2022b.
DWD: Deutschlandwetter im Sommer 2022, https://www.dwd.de/DE/presse/pressemitteilungen/DE/2022/20220830_deutschlandwetter_sommer2022_news.html (last access: 13 August 2025), 2022c.
DWD: Multi-year averages for reference period 1991–2020, https://www.dwd.de/DE/leistungen/klimadatendeutschland/vielj_mittelwerte.html (last access: 13 August 2025), 2023.
DWD: Tägliche Stationsbeobachtungen (Temperatur, Druck, Niederschlag, Sonnenscheindauer, etc.) für Deutschland; Version v24.3, https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/recent/ (last access: 13 August 2025), 2024.
Ferreira, C. S., Kalantari, Z., Seifollahi-Aghmiuni, S., Ghajarnia, N., Rahmati, O., and Solomun, M. K.: Rainfall-runoff-erosion processes in urban areas, in: Precipitation, edited by: Rodrigo-Comino, J., Elsevier, 481–498, https://doi.org/10.1016/B978-0-12-822699-5.00018-5, 2021.
Friedman, M.: The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance, Journal of the American Statistical Association, 32, 675, https://doi.org/10.2307/2279372, 1937.
Galewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C., and Schneider, M.: Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle, Rev. Geophys., 54, 809–865, https://doi.org/10.1002/2015RG000512, 2016.
Geoportal Berlin: Soil types, https://fbinter.stadt-berlin.de/fb/index.jsp (last access: 15 January 2025), 2015.
Gessler, A., Bächli, L., Rouholahnejad Freund, E., Treydte, K., Schaub, M., Haeni, M., Weiler, M., Seeger, S., Marshall, J., Hug, C., Zweifel, R., Hagedorn, F., Rigling, A., Saurer, M., and Meusburger, K.: Drought reduces water uptake in beech from the drying topsoil, but no compensatory uptake occurs from deeper soil layers, The New phytologist, 233, 194–206, https://doi.org/10.1111/nph.17767, 2022.
Haberstroh, S., Kübert, A., and Werner, C.: Two common pitfalls in the analysis of water-stable isotopologues with cryogenic vacuum extraction and cavity ring-down spectroscopy, Analytical science advances, 5, 2300053, https://doi.org/10.1002/ansa.202300053, 2024.
Helliker, B. R., Roden, J. S., Cook, C., and Ehleringer, J. R.: A rapid and precise method for sampling and determining the oxygen isotope ratio of atmospheric water vapor, Rapid communications in mass spectrometry RCM, 16, 929–932, https://doi.org/10.1002/rcm.659, 2002.
Herbstritt, B., Gralher, B., Seeger, S., Rinderer, M., and Weiler, M.: Technical note: Discrete in situ vapor sampling for subsequent lab-based water stable isotope analysis, Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023, 2023.
Herrmann, V., McMahon, S. M., Detto, M., Lutz, J. A., Davies, S. J., Chang-Yang, C.-H., and Anderson-Teixeira, K. J.: Tree Circumference Dynamics in Four Forests Characterized Using Automated Dendrometer Bands, PloS one, 11, e0169020, https://doi.org/10.1371/journal.pone.0169020, 2016.
Herzog, K., Hsler, R., and Thum, R.: Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration, Trees, 10, https://doi.org/10.1007/BF00192189, 1995.
Hughes, C. E. and Crawford, J.: A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data, Journal of Hydrology, 464–465, 344–351, https://doi.org/10.1016/j.jhydrol.2012.07.029, 2012.
Khaliq, M. N., Ouarda, T., Gachon, P., Sushama, L., and St-Hilaire, A.: Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers, Journal of Hydrology, 368, 117–130, https://doi.org/10.1016/j.jhydrol.2009.01.035, 2009.
Kim, Y., Garcia, M., Morillas, L., Weber, U., Black, T. A., and Johnson, M. S.: Relative humidity gradients as a key constraint on terrestrial water and energy fluxes, Hydrol. Earth Syst. Sci., 25, 5175–5191, https://doi.org/10.5194/hess-25-5175-2021, 2021.
King, G., Fonti, P., Nievergelt, D., Büntgen, U., and Frank, D.: Climatic drivers of hourly to yearly tree radius variations along a 6°C natural warming gradient, Agricultural and Forest Meteorology, 168, 36–46, https://doi.org/10.1016/j.agrformet.2012.08.002, 2013.
Kinzinger, L., Mach, J., Haberstroh, S., Schindler, Z., Frey, J., Dubbert, M., Seeger, S., Seifert, T., Weiler, M., Orlowski, N., and Werner, C.: Interaction between beech and spruce trees in temperate forests affects water use, root water uptake pattern and canopy structure, Tree physiology, 44, https://doi.org/10.1093/treephys/tpad144, 2024.
Kleine, L., Tetzlaff, D., Smith, A., Wang, H., and Soulsby, C.: Using water stable isotopes to understand evaporation, moisture stress, and re-wetting in catchment forest and grassland soils of the summer drought of 2018, Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, 2020.
Kluge, B. and Kirmaier, M.: Urban trees left high and dry – Modelling urban trees water supply and evapotranspiration under drought, Environ. Res. Commun., 6, 115029, https://doi.org/10.1088/2515-7620/ad7dda, 2024.
Konarska, J., Uddling, J., Holmer, B., Lutz, M., Lindberg, F., Pleijel, H., and Thorsson, S.: Transpiration of urban trees and its cooling effect in a high latitude city, International journal of biometeorology, 60, 159–172, https://doi.org/10.1007/s00484-015-1014-x, 2016.
Kübert, A., Dubbert, M., Bamberger, I., Kühnhammer, K., Beyer, M., van Haren, J., Bailey, K., Hu, J., Meredith, L. K., Nemiah Ladd, S., and Werner, C.: Tracing plant source water dynamics during drought by continuous transpiration measurements: An in-situ stable isotope approach, Plant, cell & environment, 46, 133–149, https://doi.org/10.1111/pce.14475, 2022.
Kuhlemann, L.-M., Tetzlaff, D., Smith, A., Kleinschmit, B., and Soulsby, C.: Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning, Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021, 2021.
Kühnhammer, K., Dahlmann, A., Iraheta, A., Gerchow, M., Birkel, C., Marshall, J. D., and Beyer, M.: Continuous in situ measurements of water stable isotopes in soils, tree trunk and root xylem: Field approval, Rapid Communications in Mass Spectrometry, 36, e9232, https://doi.org/10.1002/rcm.9232, 2022.
Kupper, P., Rohula, G., Inno, L., Ostonen, I., Sellin, A., and Sõber, A.: Impact of high daytime air humidity on nutrient uptake and night-time water flux in silver birch, a boreal forest tree species, Reg. Environ. Change, 17, 2149–2157, https://doi.org/10.1007/s10113-016-1092-2, 2017.
Lai, C.-T. and Ehleringer, J. R.: Deuterium excess reveals diurnal sources of water vapor in forest air, Oecologia, 165, 213–223, https://doi.org/10.1007/s00442-010-1721-2, 2011.
Landgraf, J., Tetzlaff, D., Dubbert, M., Dubbert, D., Smith, A., and Soulsby, C.: Xylem water in riparian willow trees (Salix alba) reveals shallow sources of root water uptake by in situ monitoring of stable water isotopes, Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, 2022.
Landwehr, J. M. and Coplen, T.: Line-conditioned excess: a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems, in: Isotopes in environmental studies - Aquatic Forum 2004, International Atomic Energy Agency (IAEA), ISBN 92-0-111305-X, 2006.
Lee, X., Smith, R., and Williams, J.: Water vapour 18O/16O isotope ratio in surface air in New England, USA, Tellus B, 58, 293, https://doi.org/10.1111/j.1600-0889.2006.00191.x, 2006.
Limberg, A., Darkow, P., Faensen-Thiebes, A., Fritz-Taute, B., Günther, M., Hähnel, K., and Hörmann, U., Jahn, D., Köhler, A. Krüger, E., May, S., Naumann, J., and Wagner, M.: Grundwasser in Berlin, Vorkommen ⋅ Nutzung ⋅ Schutz ⋅ Gefährdung, Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz, Berlin, https://www.berlin.de/sen/uvk/_assets/umwelt/wasser-und-geologie/publikationen-und-merkblaetter/grundwasser-broschuere.pdf (last access: 15 January 2025), 2007.
Lintunen, A., Preisler, Y., Oz, I., Yakir, D., Vesala, T., and Hölttä, T.: Bark Transpiration Rates Can Reach Needle Transpiration Rates Under Dry Conditions in a Semi-arid Forest, Frontiers in plant science, 12, 790684, https://doi.org/10.3389/fpls.2021.790684, 2021.
Lo Gullo, M. A., Nardini, A., Trifilò, P., and Salleo, S.: Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees, Tree physiology, 25, 505–512, https://doi.org/10.1093/treephys/25.4.505, 2005.
Luo, S., Tetzlaff, D., Smith, A., and Soulsby, C.: Long-term drought effects on landscape water storage and recovery under contrasting landuses, Journal of Hydrology, 636, 131339, https://doi.org/10.1016/j.jhydrol.2024.131339, 2024.
Lüthgens, C. and Böse, M.: Chronology of Weichselian main ice marginal positions in north-eastern Germany, E&G Quaternary Sci. J., 60, 236–247, https://doi.org/10.3285/eg.60.2-3.02, 2011.
Magh, R.-K., Eiferle, C., Burzlaff, T., Dannenmann, M., Rennenberg, H., and Dubbert, M.: Competition for water rather than facilitation in mixed beech-fir forests after drying-wetting cycle, Journal of Hydrology, 587, 124944, https://doi.org/10.1016/j.jhydrol.2020.124944, 2020.
Majoube, M.: Fractionnement en oxygène 18 et en deutérium entre l'eau et sa vapeur, J. Chim. Phys., 68, 1423–1436, https://doi.org/10.1051/jcp/1971681423, 1971.
Mann, H. B. and Whitney, D. R.: On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other, Ann. Math. Statist., 18, 50–60, https://doi.org/10.1214/aoms/1177730491, 1947.
Marshall, D. C.: Measurement of sap flow in conifers by heat transport, Plant Physiology, 33, 385–396, https://doi.org/10.1104/pp.33.6.385, 1958.
Marshall, J. D., Cuntz, M., Beyer, M., Dubbert, M., and Kuehnhammer, K.: Borehole Equilibration: Testing a New Method to Monitor the Isotopic Composition of Tree Xylem Water in situ, Frontiers in plant science, 11, 358, https://doi.org/10.3389/fpls.2020.00358, 2020.
Martín-Gómez, P., Serrano, L., and Ferrio, J. P.: Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology, Tree physiology, 37, 511–522, https://doi.org/10.1093/treephys/tpw115, 2017.
Marx, C., Tetzlaff, D., Hinkelmann, R., and Soulsby, C.: Seasonal variations in soil–plant interactions in contrasting urban green spaces: Insights from water stable isotopes, Journal of Hydrology, 612, 127998, https://doi.org/10.1016/j.jhydrol.2022.127998, 2022.
Meili, N., Manoli, G., Burlando, P., Carmeliet, J., Chow, W. T., Coutts, A. M., Roth, M., Velasco, E., Vivoni, E. R., and Fatichi, S.: Tree effects on urban microclimate: Diurnal, seasonal, and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects, Urban Forestry & Urban Greening, 58, 126970, https://doi.org/10.1016/j.ufug.2020.126970, 2021.
Minick, K. J., Bahramian, J., Love, D., Tucker, L., Reinhardt, K., Johnson, D. M., and Emanuel, R. E.: Internal Water Movement and Residence Time Differ in Two Tree Species in a Temperate Deciduous Forest: Evidence From an In Situ D 2 O Isotope Tracer Study, Ecohydrology, 18, https://doi.org/10.1002/eco.70047, 2025.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Annals of the New York Academy of Sciences, 1436, 19–35, https://doi.org/10.1111/nyas.13912, 2019.
Nadezhdina, N., David, T. S., David, J. S., Ferreira, M. I., Dohnal, M., Tesaø, M., Gartner, K., Leitgeb, E., Nadezhdin, V., Cermak, J., Jimenez, M. S., and Morales, D.: Trees never rest: the multiple facets of hydraulic redistribution, Ecohydrology, 3, 431–444, https://doi.org/10.1002/eco.148, 2010.
O'Brien, J. J., Oberbauer, S. F., and Clark, D. B.: Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest, Plant Cell & Environment, 27, 551–567, https://doi.org/10.1111/j.1365-3040.2003.01160.x, 2004.
Orlowski, N., Rinderer, M., Dubbert, M., Ceperley, N., Hrachowitz, M., Gessler, A., Rothfuss, Y., Sprenger, M., Heidbüchel, I., Kübert, A., Beyer, M., Zuecco, G., and McCarter, C.: Challenges in studying water fluxes within the soil-plant-atmosphere continuum: A tracer-based perspective on pathways to progress, The Science of the total environment, 881, 163510, https://doi.org/10.1016/j.scitotenv.2023.163510, 2023.
Penna, D., Hopp, L., Scandellari, F., Allen, S. T., Benettin, P., Beyer, M., Geris, J., Klaus, J., Marshall, J. D., Schwendenmann, L., Volkmann, T. H. M., von Freyberg, J., Amin, A., Ceperley, N., Engel, M., Frentress, J., Giambastiani, Y., McDonnell, J. J., Zuecco, G., Llorens, P., Siegwolf, R. T. W., Dawson, T. E., and Kirchner, J. W.: Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective, Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, 2018.
Petrova, I. Y., Miralles, D. G., Brient, F., Donat, M. G., Min, S.-K., Kim, Y.-H., and Bador, M.: Observation-constrained projections reveal longer-than-expected dry spells, Nature, 633, 594–600, https://doi.org/10.1038/s41586-024-07887-y, 2024.
Petruzzellis, F., Tordoni, E., Di Bonaventura, A., Tomasella, M., Natale, S., Panepinto, F., Bacaro, G., and Nardini, A.: Turgor loss point and vulnerability to xylem embolism predict species-specific risk of drought-induced decline of urban trees, Plant biology (Stuttgart, Germany), 24, 1198–1207, https://doi.org/10.1111/plb.13355, 2022.
Radolinski, J., Vremec, M., Wachter, H., Birk, S., Brüggemann, N., Herndl, M., Kahmen, A., Nelson, D. B., Kübert, A., Schaumberger, A., Stumpp, C., Tissink, M., Werner, C., and Bahn, M.: Drought in a warmer, CO2-rich climate restricts grassland water use and soil water mixing, Science (New York, N.Y.), 387, 290–296, https://doi.org/10.1126/science.ado0734, 2025.
Rahmani, F. and Fattahi, M. H.: A multifractal cross-correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature, Nat. Hazards, 109, 2197–2219, https://doi.org/10.1007/s11069-021-04916-1, 2021.
R Core Team: _R: A Language and Environment for Statistical Computing_, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 15 August 2025), 2024.
Ring, A.: Key figure summarizing the sub-daily change in signatures of water stable isotopes in urban δxyl and δv (over grassland and under canopy). We compare summer drought (a) and autumn rewetting (b) in Berlin, Germany, 2022. Displayed amplitudes of δ²H [‰] were calculated from hourly medians from the 24-h cycle of each period, https://BioRender.com/s1f2bm9 (last access 12 August 2025), 2025.
Ring, A.-M., Tetzlaff, D., Dubbert, M., Dubbert, D., and Soulsby, C.: High-resolution in situ stable isotope measurements reveal contrasting atmospheric vapour dynamics above different urban vegetation, Hydrological Processes, 37, https://doi.org/10.1002/hyp.14989, 2023.
Ring, A.-M., Tetzlaff, D., Dubbert, M., Freymueller, J., and Soulsby, C.: Assessing the impact of drought on water cycling in urban trees via in-situ isotopic monitoring of plant xylem water, Journal of Hydrology, 633, 131020, https://doi.org/10.1016/j.jhydrol.2024.131020, 2024.
Roloff, A.: Bäume in der Stadt, Verlag Eugen Ulmer, ISBN 978-3-8001-7598-7, 2013.
Roloff, A., Korn, S., and Gillner, S.: The Climate-Species-Matrix to select tree species for urban habitats considering climate change, Urban Forestry & Urban Greening, 8, 295–308, https://doi.org/10.1016/j.ufug.2009.08.002, 2009.
Schweiger, A. H., Zimmermann, T., Poll, C., Marhan, S., Leyrer, V., and Berauer, B. J.: The need to decipher plant drought stress along the soil–plant–atmosphere continuum, Oikos, 2023, https://doi.org/10.1111/oik.10136, 2023.
Seeger, S. and Weiler, M.: Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling, Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, 2021.
SenMVKU: Percentage of public green spaces in Berlin, Grünflächeninformationssystem (GRIS), https://www.berlin.de/sen/uvk/_assets/natur-gruen/stadtgruen/daten-und-fakten/ausw_5.pdf (last access: 16 April 2025), 2023.
SenStadt (Berlin Senate Department for Urban Development, Building and Housing): Long-term Mean Precipitation Distribution 1991–2020, edited by: Haag, L., Berlin Environmental Atlas, https://www.berlin.de/umweltatlas/en/climate/precipitation-distribution/1991-2020/introduction/ (last access: 13 August 2025), 2023.
Shapiro, S. S. and Wilk, M. B.: An Analysis of Variance Test for Normality (Complete Samples), Biometrika, 52, 591, https://doi.org/10.2307/2333709, 1965.
Simonin, K. A., Roddy, A. B., Link, P., Apodaca, R., Tu, K. P., Hu, J., Dawson, T. E., and Barbour, M. M.: Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables, Plant Cell & Environment, 36, 2190–2206, https://doi.org/10.1111/pce.12129, 2013.
Smith, A., Tetzlaff, D., Landgraf, J., Dubbert, M., and Soulsby, C.: Modelling temporal variability of in-situ soil water and vegetation isotopes reveals ecohydrological couplings in a willow plot, Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, 2022.
Sobaga, A., Habets, F., Beaudoin, N., Léonard, J., and Decharme, B.: Decreasing trend of groundwater recharge with limited impact of intense precipitation: Evidence from long-term lysimeter data, Journal of Hydrology, 637, 131340, https://doi.org/10.1016/j.jhydrol.2024.131340, 2024.
Sohel, M. S. I., Herbohn, J., Nehemy, M. F., and McDonnell, J. J.: Differences between stem and branch xylem water isotope composition in four tropical tree species, Ecohydrology, 16, https://doi.org/10.1002/eco.2547, 2023a.
Sohel, M. S. I., Herbohn, J. L., Zhao, Y., and McDonnell, J. J.: Sap flux and stable isotopes of water show contrasting tree water uptake strategies in two co-occurring tropical rainforest tree species, Ecohydrology, 16, https://doi.org/10.1002/eco.2589, 2023b.
Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H., Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehøj, M. D., Falourd, S., Grindsted, A., Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S. B., Sjolte, J., Steffensen, J. P., Sperlich, P., Sveinbjörnsdóttir, A. E., Vinther, B. M., and White, J. W. C.: Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet, Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, 2013.
Steppe, K., Sterck, F., and Deslauriers, A.: Diel growth dynamics in tree stems: linking anatomy and ecophysiology, Trends in plant science, 20, 335–343, https://doi.org/10.1016/j.tplants.2015.03.015, 2015.
Stevenson, J. L., Birkel, C., Comte, J.-C., Tetzlaff, D., Marx, C., Neill, A., Maneta, M., Boll, J., and Soulsby, C.: Quantifying heterogeneity in ecohydrological partitioning in urban green spaces through the integration of empirical and modelling approaches, Environmental monitoring and assessment, 195, 468, https://doi.org/10.1007/s10661-023-11055-6, 2023.
Stevenson, J. L., Tetzlaff, D., Birkel, C., and Soulsby, C.: Contrasts in Ecohydrological Partitioning of Heterogeneous Urban Green Spaces in Energy-Limited Versus Water-Limited Hydroclimates, Hydrological Processes, 39, https://doi.org/10.1002/hyp.70077, 2025.
Tetzlaff, D., Buttle, J., Carey, S. K., McGuire, K., Laudon, H., and Soulsby, C.: Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review, Hydrological Processes, 29, 3475–3490, https://doi.org/10.1002/hyp.10412, 2015.
Tetzlaff, D., Buttle, J., Carey, S. K., Kohn, M. J., Laudon, H., McNamara, J. P., Smith, A., Sprenger, M., and Soulsby, C.: Stable isotopes of water reveal differences in plant – soil water relationships across northern environments, Hydrological Processes, 35, https://doi.org/10.1002/hyp.14023, 2021.
Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors, E., Ciais, P., Luyssaert, S., van den Hurk, B., Ammann, C., Bernhofer, C., Dellwik, E., Gianelle, D., Gielen, B., Grünwald, T., Klumpp, K., Montagnani, L., Moureaux, C., Sottocornola, M., and Wohlfahrt, G.: Contrasting response of European forest and grassland energy exchange to heatwaves, Nature Geosci., 3, 722–727, https://doi.org/10.1038/ngeo950, 2010.
Teuling, A. J., van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., and Spank, U.: Evapotranspiration amplifies European summer drought, Geophysical Research Letters, 40, 2071–2075, https://doi.org/10.1002/grl.50495, 2013.
Tierney, K., Sobota, M., Snarski, J., Li, K., and Knighton, J.: Sub-Daily Variations in Tree Xylem Water Isotopic Compositions in a Temperate Northeastern US Forest, Hydrological Processes, 39, https://doi.org/10.1002/hyp.70137, 2025.
Umweltatlas Berlin: Flurabstand des Grundwassers 2020, https://www.berlin.de/umweltatlas/wasser/flurabstand/2020/karten/artikel.1322876.php (last access: 26 February 2025), 2020.
van Heerwaarden, C. C., Vilà-Guerau de Arellano, J., Moene, A. F., and Holtslag, A. A. M.: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development, Q. J. Roy. Meteor. Soc., 135, 1277–1291, https://doi.org/10.1002/qj.431, 2009.
van Loon, A. F.: Hydrological drought explained, WIREs Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
Vega-Grau, A. M., McDonnell, J., Schmidt, S., Annandale, M., and Herbohn, J.: Isotopic fractionation from deep roots to tall shoots: A forensic analysis of xylem water isotope composition in mature tropical savanna trees, The Science of the total environment, 795, 148675, https://doi.org/10.1016/j.scitotenv.2021.148675, 2021.
Vermunt, P. C., Steele-Dunne, S. C., Khabbazan, S., Judge, J., and van de Giesen, N. C.: Extrapolating continuous vegetation water content to understand sub-daily backscatter variations, Hydrol. Earth Syst. Sci., 26, 1223–1241, https://doi.org/10.5194/hess-26-1223-2022, 2022.
Volkmann, T. H. M. and Weiler, M.: Continual in situ monitoring of pore water stable isotopes in the subsurface, Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, 2014.
Volkmann, T. H. M., Haberer, K., Gessler, A., and Weiler, M.: High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface, The New phytologist, 210, 839–849, https://doi.org/10.1111/nph.13868, 2016a.
Volkmann, T. H. M., Kühnhammer, K., Herbstritt, B., Gessler, A., and Weiler, M.: A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy, Plant, cell & environment, 39, 2055–2063, https://doi.org/10.1111/pce.12725, 2016b.
Wang, H., Tetzlaff, D., Dick, J. J., and Soulsby, C.: Assessing the environmental controls on Scots pine transpiration and the implications for water partitioning in a boreal headwater catchment, Agricultural and Forest Meteorology, 240–241, 58–66, https://doi.org/10.1016/j.agrformet.2017.04.002, 2017.
Warix, S. R., Godsey, S. E., Flerchinger, G., Havens, S., Lohse, K. A., Bottenberg, H. C., Chu, X., Hale, R. L., and Seyfried, M.: Evapotranspiration and groundwater inputs control the timing of diel cycling of stream drying during low-flow periods, Front. Water, 5, https://doi.org/10.3389/frwa.2023.1279838, 2023.
Wassenaar, L. I., Hendry, M. J., Chostner, V. L., and Lis, G. P.: High resolution pore water delta2H and delta18O measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy, Environmental science & technology, 42, 9262–9267, https://doi.org/10.1021/es802065s, 2008.
Wei, Z., Yoshimura, K., Okazaki, A., Kim, W., Liu, Z., and Yokoi, M.: Partitioning of evapotranspiration using high-frequency water vapor isotopic measurement over a rice paddy field, Water Resources Research, 51, 3716–3729, https://doi.org/10.1002/2014WR016737, 2015.
Wilcoxon, F.: Individual Comparisons by Ranking Methods, Biometrics Bulletin, 1, 80, https://doi.org/10.2307/3001968, 1945.
Zannoni, D., Steen-Larsen, H. C., Sodemann, H., Thurnherr, I., Flamant, C., Chazette, P., Totems, J., Werner, M., and Raybaut, M.: Vertical and horizontal variability and representativeness of the water vapor isotope composition in the lower troposphere: insight from ultralight aircraft flights in southern France during summer 2021, Atmos. Chem. Phys., 25, 9471–9495, https://doi.org/10.5194/acp-25-9471-2025, 2025.
Zhang, Q., Manzoni, S., Katul, G., Porporato, A., and Yang, D.: The hysteretic evapotranspiration—Vapor pressure deficit relation, J. Geophys. Res.-Biogeo., 119, 125–140, https://doi.org/10.1002/2013JG002484, 2014.
Zhao, L., Wang, L., Cernusak, L. A., Liu, X., Xiao, H., Zhou, M., and Zhang, S.: Significant Difference in Hydrogen Isotope Composition Between Xylem and Tissue Water in Populus Euphratica, Plant, cell & environment, 39, 1848–1857, https://doi.org/10.1111/pce.12753, 2016.
Zhou, Y., Rosseau, G., Dao, V., and Wolfe, B. T.: Bark water vapor conductance varies among temperate forest tree species and is affected by flooding and stem bending, Tree physiology, 2024, tpae156, https://doi.org/10.1093/treephys/tpae156, 2024.
Short summary
During summer drought, a clear sub-daily cycling of atmospheric water vapour isotopes (δv) and plant xylem water isotopes (δxyl) was observed. δv daytime depletion was driven by evaporation and local atmospheric factors (entrainment). δxyl daytime enrichment was consistent with high vapor pressure deficit and stomatal regulation of transpiration. This sub-daily dataset provides unique insights on sub-daily cycling of stable water isotopes and can help constrain ecohydrological models.
During summer drought, a clear sub-daily cycling of atmospheric water vapour isotopes (δv) and...