Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6309-2025
https://doi.org/10.5194/hess-29-6309-2025
Research article
 | 
17 Nov 2025
Research article |  | 17 Nov 2025

The thermal future of a regulated river: spatiotemporal dynamics of stream temperature under climate change in a peri-Alpine catchment

David Dorthe, Michael Pfister, and Stuart Nicholas Lane

Related authors

Microbial mats promote surface water retention in proglacial streams
Jonas Paccolat, Pietro de Anna, Stuart Nicholas Lane, Hannes Markus Peter, and Tom Ian Battin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1664,https://doi.org/10.5194/egusphere-2025-1664, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Separating snow and ice melt using water stable isotopes and glacio-hydrological modelling: towards improving the application of isotope analyses in highly glacierized catchments
Tom Müller, Mauro Fischer, Stuart N. Lane, and Bettina Schaefli
The Cryosphere, 19, 423–458, https://doi.org/10.5194/tc-19-423-2025,https://doi.org/10.5194/tc-19-423-2025, 2025
Short summary
Current and future roles of meltwater–groundwater dynamics in a proglacial Alpine outwash plain
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024,https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022,https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary

Cited articles

Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S., Lounsbury, D., and Matonse, A. H.: Examination of change factor methodologies for climate change impact assessment, Water Resour. Res., 47, https://doi.org/10.1029/2010WR009104, 2011. 
Arismendi, I., Safeeq, M., Dunham, J. B., and Johnson, S. L.: Can air temperature be used to project influences of climate change on stream temperature?, Environ. Res. Lett., 9, 084015, https://doi.org/10.1088/1748-9326/9/8/084015, 2014. 
Arrigoni, A. S., Poole, G. C., Mertes, L. A. K., O'Daniel, S. J., Woessner, W. W., and Thomas, S. A.: Buffered, lagged, or cooled? Disentangling hyporheic influences on temperature cycles in stream channels, Water Resour. Res., 44, https://doi.org/10.1029/2007WR006480, 2008. 
Benateau, S., Gaudard, A., Stamm, C., and Altermatt, F.: Climate change and freshwater ecosystems: Impacts on water quality and ecological status, Federal Office for the Environment (FOEN) and Eawag, https://doi.org/10.5167/uzh-169641, 2019. 
Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B. M. J., and Bobée, B.: A Review of Statistical Water Temperature Models, Can. Water Resour. J. Rev. Can. Ressour. Hydr., 32, 179–192, https://doi.org/10.4296/cwrj3203179, 2007. 
Download
Short summary
This study explores how climate change affects river temperatures under hydropower influence using numerical modeling. While average warming is similar to natural rivers, hydropower both increases vulnerability in low-flow areas and helps limit extreme temperatures through cold lake releases in summer. This research helps adapt hydropower production to protect aquatic species in a changing climate.
Share