Articles | Volume 29, issue 22
https://doi.org/10.5194/hess-29-6309-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6309-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The thermal future of a regulated river: spatiotemporal dynamics of stream temperature under climate change in a peri-Alpine catchment
School of Engineering and Architecture of Fribourg, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg, 1700, Switzerland
Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Michael Pfister
School of Engineering and Architecture of Fribourg, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg, 1700, Switzerland
Stuart Nicholas Lane
Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Related authors
No articles found.
Jonas Paccolat, Pietro de Anna, Stuart Nicholas Lane, Hannes Markus Peter, and Tom Ian Battin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1664, https://doi.org/10.5194/egusphere-2025-1664, 2025
Short summary
Short summary
With the retreat of glaciers, barren areas become prone to life settlement. Biofilms, surface attached colonies of microbes, are pioneer species which grow into millimeter thick mats in low flow streams. We studied how such bio-clogging enhance water availability on initially dry lateral terraces. Mat permeability was quantified from streamside flume experiments and an idealized terrace model was conceived to estimate stream elongation. A large effect is expected for permeable terraces.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025, https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until we observe overparameterization.
Tom Müller, Mauro Fischer, Stuart N. Lane, and Bettina Schaefli
The Cryosphere, 19, 423–458, https://doi.org/10.5194/tc-19-423-2025, https://doi.org/10.5194/tc-19-423-2025, 2025
Short summary
Short summary
Based on extensive field observations in a highly glacierized catchment in the Swiss Alps, we develop a combined isotopic and glacio-hydrological model. We show that water stable isotopes may help to better constrain model parameters, especially those linked to water transfer. However, we highlight that separating snow and ice melt for temperate glaciers based on isotope mixing models alone is not advised and should only be considered if their isotopic signatures have clearly different values.
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024, https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
Short summary
We investigate the role of a newly formed floodplain in an alpine glaciated catchment to store and release water. Based on field measurements, we built a numerical model to simulate the water fluxes and show that recharge occurs mainly due to the ice-melt-fed river. We identify three future floodplains, which could emerge from glacier retreat, and show that their combined storage leads to some additional groundwater storage but contributes little additional baseflow for the downstream river.
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
Cited articles
Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S., Lounsbury, D., and Matonse, A. H.: Examination of change factor methodologies for climate change impact assessment, Water Resour. Res., 47, https://doi.org/10.1029/2010WR009104, 2011.
Arismendi, I., Safeeq, M., Dunham, J. B., and Johnson, S. L.: Can air temperature be used to project influences of climate change on stream temperature?, Environ. Res. Lett., 9, 084015, https://doi.org/10.1088/1748-9326/9/8/084015, 2014.
Arrigoni, A. S., Poole, G. C., Mertes, L. A. K., O'Daniel, S. J., Woessner, W. W., and Thomas, S. A.: Buffered, lagged, or cooled? Disentangling hyporheic influences on temperature cycles in stream channels, Water Resour. Res., 44, https://doi.org/10.1029/2007WR006480, 2008.
Benateau, S., Gaudard, A., Stamm, C., and Altermatt, F.: Climate change and freshwater ecosystems: Impacts on water quality and ecological status, Federal Office for the Environment (FOEN) and Eawag, https://doi.org/10.5167/uzh-169641, 2019.
Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B. M. J., and Bobée, B.: A Review of Statistical Water Temperature Models, Can. Water Resour. J. Rev. Can. Ressour. Hydr., 32, 179–192, https://doi.org/10.4296/cwrj3203179, 2007.
Beven, K.: Environmental Modelling: An Uncertain Future?, CRC Press, London, 328 pp., https://doi.org/10.1201/9781482288575, 2018.
Bilous, M. and Dunmall, K.: Atlantic salmon in the Canadian Arctic: potential dispersal, establishment, and interaction with Arctic char, Rev. Fish Biol. Fish., 30, 463–483, https://doi.org/10.1007/s11160-020-09610-2, 2020.
Booker, D. J. and Whitehead, A. L.: River water temperatures are higher during lower flows after accounting for meteorological variability, River Res. Appl., 38, 3–22, https://doi.org/10.1002/rra.3870, 2022.
Bosshard, T., Kotlarski, S., Ewen, T., and Schär, C.: Spectral representation of the annual cycle in the climate change signal, Hydrol. Earth Syst. Sci., 15, 2777–2788, https://doi.org/10.5194/hess-15-2777-2011, 2011.
Brosse, M., Benateau, S., Gaudard, A., Stamm, C., and Altermatt, F.: The importance of indirect effects of climate change adaptations on alpine and pre-alpine freshwater systems, Ecol. Solut. Evid., 3, e12127, https://doi.org/10.1002/2688-8319.12127, 2022.
Bruckerhoff, L. A., Wheeler, K., Dibble, K. L., Mihalevich, B. A., Neilson, B. T., Wang, J., Yackulic, C. B., and Schmidt, J. C.: Water Storage Decisions and Consumptive Use May Constrain Ecosystem Management under Severe Sustained Drought, JAWRA J. Am. Water Resour. Assoc., 58, 654–672, https://doi.org/10.1111/1752-1688.13020, 2022.
Brunner, G. W.: HEC-RAS river analysis system user's manual version 5.0, US Army Corps Eng., 962, Report No. CPD–68 (USACE/HEC), https://apps.dtic.mil/sti/html/tr/ADA311953/ (last access: 11 November 2025), 2016.
Buisson, L., Thuiller, W., Lek, S., Lim, P., and Grenouillet, G.: Climate change hastens the turnover of stream fish assemblages, Glob. Change Biol., 14, 2232–2248, https://doi.org/10.1111/j.1365-2486.2008.01657.x, 2008.
Byers, E., Krey, V., Kriegler, E., Riahi, K., Schaeffer, R., Kikstra, J., Lamboll, R., Nicholls, Z., Sandstad, M., Smith, C., van der Wijst, K., Al -Khourdajie, A., Lecocq, F., Portugal-Pereira, J., Saheb, Y., Stromman, A., Winkler, H., Auer, C., Brutschin, E., Gidden, M., Hackstock, P., Harmsen, M., Huppmann, D., Kolp, P., Lepault, C., Lewis, J., Marangoni, G., Müller-Casseres, E., Skeie, R., Werning, M., Calvin, K., Forster, P., Guivarch, C., Hasegawa, T., Meinshausen, M., Peters, G., Rogelj, J., Samset, B., Steinberger, J., Tavoni, M., and van Vuuren, D.: AR6 scenarios database [data set], https://doi.org/10.5281/zenodo.7197970, 2022.
Caissie, D.: The thermal regime of rivers: a review, Freshw. Biol., 51, 1389–1406, https://doi.org/10.1111/j.1365-2427.2006.01597.x, 2006.
Čerkasova, N., Mėžinė, J., Idzelytė, R., Lesutienė, J., Ertürk, A., and Umgiesser, G.: Exploring variability in climate change projections on the Nemunas River and Curonian Lagoon: coupled SWAT and SHYFEM modeling approach, Ocean Sci., 20, 1123–1147, https://doi.org/10.5194/os-20-1123-2024, 2024.
CH2018: CH2018 – Climate Scenarios for Switzerland, Technical Report, National Centre for Climate Services, Zurich, 271 pp., ISBN 978-3-9525031-4-0, 2018.
Cole, J. C., Maloney, K. O., Schmid, M., and McKenna, J. E.: Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River, J. Hydrol., 519, 588–598, https://doi.org/10.1016/j.jhydrol.2014.07.058, 2014.
Daufresne, M., Roger, M. C., Capra, H., and Lamouroux, N.: Long-term changes within the invertebrate and fish communities of the Upper Rhône River: effects of climatic factors, Glob. Change Biol., 10, 124–140, https://doi.org/10.1046/j.1529-8817.2003.00720.x, 2004.
Dokulil, M. T.: Impact of climate warming on European inland waters, Inland Waters, 4, 27–40, https://doi.org/10.5268/IW-4.1.705, 2014.
Dorthe, D., Pfister, M., and Lane, S. N.: Model Inputs and Data Requirements for Process-Based Stream Temperature Modeling in Regulated Peri-Alpine Rivers, Water Resour. Res., 61, e2024WR038860, https://doi.org/10.1029/2024WR038860, 2025a.
Dorthe, D., Micoulet, G., and Pfister, M.: Simulation des Zusammenhangs von Stratifikation und Turbinenbetrieb eines Mittelland-Stausees mit der Qualität des nachfolgenden Fliessgewässers, Wasser Energ. Luft – SWV, Schweizerischer Wasserwirtschaftsverband, https://arodes.hes-so.ch/record/15788?v=pdf (last access: 11 November 2025), 2025b.
Dugdale, S. J., Hannah, D. M., and Malcolm, I. A.: River temperature modelling: A review of process-based approaches and future directions, Earth-Sci. Rev., 175, 97–113, https://doi.org/10.1016/j.earscirev.2017.10.009, 2017.
Dugdale, S. J., Malcolm, I. A., Kantola, K., and Hannah, D. M.: Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes, Sci. Total Environ., 610–611, 1375–1389, https://doi.org/10.1016/j.scitotenv.2017.08.198, 2018.
Erickson, T. R. and Stefan, H. G.: Linear Air/Water Temperature Correlations for Streams during Open Water Periods, J. Hydrol. Eng., 5, 317–321, https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(317), 2000.
Ficklin, D. L., Barnhart, B. L., Knouft, J. H., Stewart, I. T., Maurer, E. P., Letsinger, S. L., and Whittaker, G. W.: Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers, Hydrol. Earth Syst. Sci., 18, 4897–4912, https://doi.org/10.5194/hess-18-4897-2014, 2014.
Fuso, F., Stucchi, L., Bonacina, L., Fornaroli, R., and Bocchiola, D.: Evaluation of water temperature under changing climate and its effect on river habitat in a regulated Alpine catchment, J. Hydrol., 616, 128816, 2023.
Gillet, C. and Quétin, P.: Effect of temperature changes on the reproductive cycle of roach in Lake Geneva from 1983 to 2001, J. Fish Biol., 69, 518–534, https://doi.org/10.1111/j.1095-8649.2006.01123.x, 2006.
Goodell, C.: Breaking HEC-RAS Code, User's Guide Autom. HEC-RAS, 645, ISBN 978-0-9908918-0-2, 2014.
Greig, S. M., Sear, D. A., and Carling, P. A.: A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos, Hydrol. Process., 21, 323–334, https://doi.org/10.1002/hyp.6188, 2007.
Hannah, D. M. and Garner, G.: River water temperature in the United Kingdom: Changes over the 20th century and possible changes over the 21st century, Prog. Phys. Geogr., 39, 68–92, https://doi.org/10.1177/0309133314550669, 2015.
HEC (Hydrologic Engineering Center): HEC-RAS River Analysis System, Version 6.3 [software], U.S. Army Corps of Engineers, Institute for Water Resources, https://www.hec.usace.army.mil/software/hec-ras/download.aspx (last access: 11 November 2025), 2022.
Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P., and Malcolm, I. A.: A spatio-temporal statistical model of maximum daily river temperatures to inform the management of Scotland's Atlantic salmon rivers under climate change, Sci. Total Environ., 612, 1543–1558, https://doi.org/10.1016/j.scitotenv.2017.09.010, 2018.
Johnson, M. F., Albertson, L. K., Algar, A. C., Dugdale, S. J., Edwards, P., England, J., Gibbins, C., Kazama, S., Komori, D., MacColl, A. D. C., Scholl, E. A., Wilby, R. L., de Oliveira Roque, F., and Wood, P. J.: Rising water temperature in rivers: Ecological impacts and future resilience, WIREs Water, 11, e1724, https://doi.org/10.1002/wat2.1724, 2024.
Jonsson, B. and Jonsson, N.: A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow, J. Fish Biol., 75, 2381–2447, https://doi.org/10.1111/j.1095-8649.2009.02380.x, 2009.
Kędra, M. and Wiejaczka, Ł.: Climatic and dam-induced impacts on river water temperature: Assessment and management implications, Sci. Total Environ., 626, 1474–1483, https://doi.org/10.1016/j.scitotenv.2017.10.044, 2018.
Leach, J. A. and Moore, R. D.: Empirical Stream Thermal Sensitivities May Underestimate Stream Temperature Response to Climate Warming, Water Resour. Res., 55, 5453–5467, https://doi.org/10.1029/2018WR024236, 2019.
Leon, A. S. and Goodell, C.: Controlling hec-ras using matlab, Environ. Model. Softw., 84, 339–348, 2016.
Lugowska, K. and Witeska, M.: The effect of temperature on early development of barbel Barbus barbus (L.), Aquac. Res., 49, 2495–2502, https://doi.org/10.1111/are.13709, 2018.
Michel, A., Brauchli, T., Lehning, M., Schaefli, B., and Huwald, H.: Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour, Hydrol. Earth Syst. Sci., 24, 115–142, https://doi.org/10.5194/hess-24-115-2020, 2020.
Michel, A., Sharma, V., Lehning, M., and Huwald, H.: Climate change scenarios at hourly time-step over Switzerland from an enhanced temporal downscaling approach, Int. J. Climatol., 41, 3503–3522, 2021a.
Michel, A., Råman Vinnå, C. L. M., Bouffard, D., Epting, J., Huwald, H., Schaefli, B., Schmid, M., and Wüest, A. J.: Evolution of stream and lake water temperature under climate change, Hydro-CH2018 Project. Commissioned by the Federal Office for the Environment (FOEN), https://doi.org/10.16904/envidat.207, 2021b.
Michel, A., Schaefli, B., Wever, N., Zekollari, H., Lehning, M., and Huwald, H.: Future water temperature of rivers in Switzerland under climate change investigated with physics-based models, Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, 2022.
Muelchi, R., Rössler, O., Schwanbeck, J., Weingartner, R., and Martius, O.: An ensemble of daily simulated runoff data (1981–2099) under climate change conditions for 93 catchments in Switzerland (Hydro-CH2018-Runoff ensemble), Geosci. Data J., 9, 46–57, 2022.
Null, S. E., Viers, J. H., Deas, M. L., Tanaka, S. K., and Mount, J. F.: Stream temperature sensitivity to climate warming in California's Sierra Nevada: impacts to coldwater habitat, Clim. Change, 116, 149–170, https://doi.org/10.1007/s10584-012-0459-8, 2013.
Nürnberg, G. K.: Lake responses to long-term hypolimnetic withdrawal treatments, Lake Reserv. Manag., 23, 388–409, https://doi.org/10.1080/07438140709354026, 2007.
OFEV: Eclusées – Mesures d'assainissement, Un module de l'aide à l'exécution Renaturation des eaux, https://www.bafu.admin.ch/dam/bafu/fr/dokumente/wasser/uv-umwelt-vollzug/schwall-sunk-massnahmen.pdf.download.pdf/UV-1701-f.pdf (last access: 1 November 2025), 2017a.
OFEV: Impulsions pour une adaptation de la Suisse aux changements climatiques, https://www.bafu.admin.ch/bafu/fr/home/themen/thema-klima/klima--publikationen-und-studien/publikationen-klima/impulse-fuer-klimaangepasste-schweiz.html (last access: 1 November 2025), 2017b.
Olden, J. D. and Naiman, R. J.: Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity, Freshw. Biol., 55, 86–107, https://doi.org/10.1111/j.1365-2427.2009.02179.x, 2010.
O'Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., Schneider, P., Lenters, J. D., McIntyre, P. B., Kraemer, B. M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M. G., Anneville, O., Arvola, L., Austin, J., Bailey, J. L., Baron, J. S., Brookes, J. D., de Eyto, E., Dokulil, M. T., Hamilton, D. P., Havens, K., Hetherington, A. L., Higgins, S. N., Hook, S., Izmest'eva, L. R., Joehnk, K. D., Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G., Livingstone, D. M., MacIntyre, S., May, L., Melack, J. M., Mueller-Navarra, D. C., Naumenko, M., Noges, P., Noges, T., North, R. P., Plisnier, P.-D., Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L. G., Rusak, J. A., Salmaso, N., Samal, N. R., Schindler, D. E., Schladow, S. G., Schmid, M., Schmidt, S. R., Silow, E., Soylu, M. E., Teubner, K., Verburg, P., Voutilainen, A., Watkinson, A., Williamson, C. E., and Zhang, G.: Rapid and highly variable warming of lake surface waters around the globe, Geophys. Res. Lett., 42, 10773–10781, https://doi.org/10.1002/2015GL066235, 2015.
Pfaundler, M. and Keusen, M.: Veränderungen von Schwall-Sunk: Hydrologische Datenanalyse zur Charakterisierung von Schwall-Sunk Phänomenen in der Schweiz, Bundesamt für Umwelt, BAFU, https://www.bafu.admin.ch/dam/bafu/de/dokumente/wasser/uw-umwelt-wissen/veraenderungen_vonschwall-sunk.1.pdf.download.pdf/veraenderungen_vonschwall-sunk.pdf (last access : 1 November 2025), 2007.
Piccolroaz, S., Calamita, E., Majone, B., Gallice, A., Siviglia, A., and Toffolon, M.: Prediction of river water temperature: a comparison between a new family of hybrid models and statistical approaches, Hydrol. Process., 30, 3901–3917, https://doi.org/10.1002/hyp.10913, 2016.
Piotrowski, A. P., Osuch, M., and Napiorkowski, J. J.: Influence of the choice of stream temperature model on the projections of water temperature in rivers, J. Hydrol., 601, 126629, https://doi.org/10.1016/j.jhydrol.2021.126629, 2021.
Råman Vinnå, L., Medhaug, I., Schmid, M., and Bouffard, D.: The vulnerability of lakes to climate change along an altitudinal gradient, Commun. Earth Environ., 2, 35, https://doi.org/10.1038/s43247-021-00106-w, 2021.
Rehana, S.: River Water Temperature Modelling Under Climate Change Using Support Vector Regression, in: Hydrology in a Changing World: Challenges in Modeling, edited by: Singh, S. K. and Dhanya, C. T., Springer International Publishing, Cham, 171–183, https://doi.org/10.1007/978-3-030-02197-9_8, 2019.
Reynard, E., Bonriposi, M., Graefe, O., Homewood, C., Huss, M., Kauzlaric, M., Liniger, H., Rey, E., Rist, S., Schädler, B., Schneider, F., and Weingartner, R.: Interdisciplinary assessment of complex regional water systems and their future evolution: how socioeconomic drivers can matter more than climate, WIREs Water, 1, 413–426, https://doi.org/10.1002/wat2.1032, 2014.
Santiago, J. M., Muñoz-Mas, R., Solana-Gutiérrez, J., García de Jalón, D., Alonso, C., Martínez-Capel, F., Pórtoles, J., Monjo, R., and Ribalaygua, J.: Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish, Hydrol. Earth Syst. Sci., 21, 4073–4101, https://doi.org/10.5194/hess-21-4073-2017, 2017.
Seyedhashemi, H., Moatar, F., Vidal, J.-P., Diamond, J. S., Beaufort, A., Chandesris, A., and Valette, L.: Thermal signatures identify the influence of dams and ponds on stream temperature at the regional scale, Sci. Total Environ., 766, 142667, https://doi.org/10.1016/j.scitotenv.2020.142667, 2021.
Seyedhashemi, H., Vidal, J.-P., Diamond, J. S., Thiéry, D., Monteil, C., Hendrickx, F., Maire, A., and Moatar, F.: Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature, Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, 2022.
Snyder, C. D., Hitt, N. P., and Young, J. A.: Accounting for groundwater in stream fish thermal habitat responses to climate change, Ecol. Appl., 25, 1397–1419, https://doi.org/10.1890/14-1354.1, 2015.
Svenning, M.-A., Sandem, K., Halvorsen, M., Kanstad-Hanssen, Ø., Falkegård, M., and Borgstrøm, R.: Change in relative abundance of Atlantic salmon and Arctic charr in Veidnes River, Northern Norway: a possible effect of climate change?, Hydrobiologia, 783, 145–158, https://doi.org/10.1007/s10750-016-2690-1, 2016.
Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G., McCann, K. S., Savage, V., Tunney, T. D., and O'Connor, M. I.: Increased temperature variation poses a greater risk to species than climate warming, Proc. R. Soc. B Biol. Sci., 281, 20132612, https://doi.org/10.1098/rspb.2013.2612, 2014.
van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., and Kabat, P.: Global river discharge and water temperature under climate change, Glob. Environ. Change, 23, 450–464, https://doi.org/10.1016/j.gloenvcha.2012.11.002, 2013.
Watts, G., Battarbee, R. W., Bloomfield, J. P., Crossman, J., Daccache, A., Durance, I., Elliott, J. A., Garner, G., Hannaford, J., Hannah, D. M., Hess, T., Jackson, C. R., Kay, A. L., Kernan, M., Knox, J., Mackay, J., Monteith, D. T., Ormerod, S. J., Rance, J., Stuart, M. E., Wade, A. J., Wade, S. D., Weatherhead, K., Whitehead, P. G., and Wilby, R. L.: Climate change and water in the UK – past changes and future prospects, Prog. Phys. Geogr. Earth Environ., 39, 6–28, https://doi.org/10.1177/0309133314542957, 2015.
Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E., and Nobilis, F.: Recent advances in stream and river temperature research, Hydrol. Process., 22, 902–918, https://doi.org/10.1002/hyp.6994, 2008.
White, J. C., Khamis, K., Dugdale, S., Jackson, F. L., Malcolm, I. A., Krause, S., and Hannah, D. M.: Drought impacts on river water temperature: A process-based understanding from temperate climates, Hydrol. Process., 37, e14958, https://doi.org/10.1002/hyp.14958, 2023.
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., and Sharma, S.: Global lake responses to climate change, Nat. Rev. Earth Environ., 1, 388–403, https://doi.org/10.1038/s43017-020-0067-5, 2020.
Woolway, R. I. and Merchant, C. J.: Worldwide alteration of lake mixing regimes in response to climate change, Nat. Geosci., 12, 271–276, https://doi.org/10.1038/s41561-019-0322-x, 2019.
Zhang, Z. and Johnson, B. E.: Aquatic nutrient simulation modules (NSMs) developed for hydrologic and hydraulic models, US Army Engineer Research and Development Center, Environmental Laboratory, https://hdl.handle.net/11681/10112 (last access: 11 November 2025), 2016.
Zolezzi, G., Siviglia, A., Toffolon, M., and Maiolini, B.: Thermopeaking in Alpine streams: event characterization and time scales, Ecohydrology, 4, 564–576, https://doi.org/10.1002/eco.132, 2011.
Short summary
This study explores how climate change affects river temperatures under hydropower influence using numerical modeling. While average warming is similar to natural rivers, hydropower both increases vulnerability in low-flow areas and helps limit extreme temperatures through cold lake releases in summer. This research helps adapt hydropower production to protect aquatic species in a changing climate.
This study explores how climate change affects river temperatures under hydropower influence...