Articles | Volume 29, issue 21
https://doi.org/10.5194/hess-29-6093-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6093-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effect of rainfall variability on Nitrogen dynamics in a small agricultural catchment
Qiaoyu Wang
The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
College of Water Conservancy and Hydropower Engineer, Hohai University, Nanjing, China
The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
College of Hydrology and Water Resources, Hohai University, Nanjing, China
Ingo Heidbüchel
UFZ – Helmholtz-Centre for Environmental Research GmbH, Department of Hydrogeology, Leipzig, Germany
Hochschule Koblenz, Koblenz, Germany
Teng Xu
The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
College of Water Conservancy and Hydropower Engineer, Hohai University, Nanjing, China
Chunhui Lu
CORRESPONDING AUTHOR
The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
College of Hydrology and Water Resources, Hohai University, Nanjing, China
Related authors
No articles found.
Teng Xu, Sinan Xiao, Sebastian Reuschen, Nils Wildt, Harrie-Jan Hendricks Franssen, and Wolfgang Nowak
Hydrol. Earth Syst. Sci., 28, 5375–5400, https://doi.org/10.5194/hess-28-5375-2024, https://doi.org/10.5194/hess-28-5375-2024, 2024
Short summary
Short summary
We provide a set of benchmarking scenarios for geostatistical inversion, and we encourage the scientific community to use these to compare their newly developed methods. To facilitate transparent, appropriate, and uncertainty-aware comparison of novel methods, we provide some accurate reference solutions, a high-end reference algorithm, and a diverse set of benchmarking metrics, all of which are publicly available. With this, we seek to foster more targeted and transparent progress in the field.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Zhaoyang Luo, Jun Kong, Lili Yao, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-634, https://doi.org/10.5194/hess-2021-634, 2022
Manuscript not accepted for further review
Short summary
Short summary
Watertable fluctuations and seawater intrusion are characteristic features of coastal unconfined aquifers. A modified expression is first proposed for the dynamic effective porosity due to watertable fluctuations. Then, the new expression is implemented in existing Boussinesq equations and a numerical model, allowing for examination of the effects of the dynamic effective porosity on watertable fluctuations and seawater intrusion in coastal unconfined aquifers, respectively.
Zhaoyang Luo, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci., 25, 6591–6602, https://doi.org/10.5194/hess-25-6591-2021, https://doi.org/10.5194/hess-25-6591-2021, 2021
Short summary
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Cited articles
Altermann, M. and Mautschke, J.: Ergebnisbericht über quartärge bologische bodenhydrologische Untersuchungen im Gebiet des Schäfertals und Waldbachs bei Siptenfelde, VEB Geologische Forschung und Erkundung (GFE), Halle (Saale), 1970.
Altermann, M. and Steininger, M.: Vom Bodenprofil zum Gebietswasserhaushalt Untersuchungen aus dem Unterharz, Mitteilungen der DBG, 74, 167–170, 1994.
Altermann, M., Pretzschel, M., Mautschke, J., and Erbe, C.: Zur Kennzeichnung der quartären Deckschichten im Unterharz, Petermanns Geografische Mitteilungen 2/77, 1977.
Alvarez-Cobelas, M., Angeler, D. G., and Sánchez-Carrillo, S.: Export of nitrogen from catchments: a worldwide analysis, Environ. Pollut., 156, 261–269, https://doi.org/10.1016/j.envpol.2008.02.016, 2008.
Anis, M. R. and Rode, M.: Effect of climate change on overland flow generation: A case study in central Germany, Hydrol. Process., 29, 2478–2490, 2015.
Bach, M. and Frede, H.-G.: Agricultural nitrogen, phosphorus and potassium balances in Germany methodology and trends 1970 to 1995, Zeitschrift für Pflanzenernährung und Bodenkunde, 161, 385–393, https://doi.org/10.1002/jpln.1998.3581610406, 1998.
Bach, M., Godlinski, F., and Greef, J. M.: Handbuch Berechnung der Stickstoff-Bilanz für die Landwirtschaft in Deutschland, Jahre 1990–2008, Berichte aus dem Julius Kühn-Institut, Saphir Verl, https://doi.org/10.5073/20141010-144128, 2011.
Ballard, T. C., Sinha, E., and Michalak, A. M.: Long-term changes in precipitation and temperature have already impacted nitrogen loading, Environ. Sci. Technol., 53, 5080–5090, 2019.
Bauwe, A., Kahle, P., Tiemeyer, B., and Lennartz, B.: Hydrology is the key factor for nitrogen export from tile-drained catchments under consistent land-management, Environ. Res. Lett., 15, 094050, https://doi.org/10.1088/1748-9326/aba580, 2020.
Borchardt, D.: Geoökologische Erkundung und hydrologische Analyse von Kleineinzugsgebieten des unteren Mittelgebirgsbereichs, dargestellt am Beispiel von Experimentalgebieten der oberen Selke/Harz, Petermanns Geografische Mitteilungen, 4/82, 1981.
Cabrera, M.: Modeling the flush of nitrogen mineralization caused by drying and rewetting soils, Soil Sci. Soc. Am. J., 57, 63–66, 1993.
Cramer, M. D., Hawkins, H.-J., and Verboom, G. A.: The importance of nutritional regulation of plant water flux, Oecologia, 161, 15–24, https://doi.org/10.1007/s00442-009-1364-3, 2009.
Creed, I. F. and Band, L. E.: Export of nitrogen from catchments within a temperate forest: evidence for a unifying mechanism regulated by variable source area dynamics, Water Resour. Res., 34, 3105–3120, 1998.
Delpla, I., Jung, A.-V., Baures, E., Clement, M., and Thomas, O.: Impacts of climate change on surface water quality in relation to drinking water production, Environ. Int., 35, 1225–1233, https://doi.org/10.1016/j.envint.2009.07.001, 2009.
Doherty, J. E. and Hunt, R. J.: Approaches to highly parameterized inversion-a guide to using pest for groundwater-model calibration, Tech. rep. 2010–5211, US Geological Survey, Reston, VA, 2010.
Dumont, E. L., Harrison, J. A., Kroeze, C., Bakker, E. J., and Seitzinger, S. P.: Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: results from a spatially explicit, global model, Global Biogeochem. Cycles, 19, GB4S02, https://doi.org/10.1029/2005GB002488, 2005.
Dupas, R., Musolff, A., Jawitz, J. W., Rao, P. S. C., Jäger, C. G., Fleckenstein, J. H., Rode, M., and Borchardt, D.: Carbon and nutrient export regimes from headwater catchments to downstream reaches, Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, 2017.
Ehrhardt, S., Ebeling, P., Dupas, R., Kumar, R., Fleckenstein, J. H., and Musolff, A.: Nitrate transport and retention in Western European catchments are shaped by hydroclimate and subsurface properties, Water Resour. Res., 57, e2020WR029469, https://doi.org/10.1029/2020WR029469, 2021.
Fierer, N. and Schimel, J. P.: Effects of drying-rewetting frequency on soil carbon and nitrogen transformations, Soil Biol. Biochem., 34, 777–787, 2002.
Fink, A. H., Brücher, T., Krüger, A., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.: The 2003 European summer heatwaves and drought–synoptic diagnosis and impacts, Weather, 59, 209–216, 2004.
Geris, J., Comtea, J. C., Franchib, F., Petrosc, A., Tirivarombob, S., Selepeng, A., and Villholth, K.: Surface water-groundwater interactions and local land use control water quality impacts of extreme rainfall and flooding in a vulnerable semi-arid region of Sub-Saharan Africa, J. Hydrol., 609, 127834, https://doi.org/10.1016/j.jhydrol.2022.127834, 2022.
Graeff, T., Zehe, E., Reusser, D., Lück, E., Schröder, B., Wenk, G., John, H., and Bronstert, A.: Process identification through rejection of model structures in a mid-mountainous rural catchment: Observations of rainfall-runoff response, geophysical conditions and model inter-comparison, Hydrol. Process., 23, 702–718, https://doi.org/10.1002/hyp.7171, 2009.
Hanel, M., Rakovec, O., Markonis, Y., Maca, P., Samaniego, L., Kysely, J., and Kumar, R.: Revisiting the recent European droughts from a long-term perspective, Sci. Rep., 8, 1–11, 2018.
Hannappel, S., Köpp, C., and Bach, T.: Charakterisierung des Nitratabbauvermögens der Grundwasserleiter in Sachsen-Anhalt, Grundwasser – Zeitschrift der Fachsektion Characterization of the denitrification potential of aquifers in Saxony-Anhalt, Hydrogeologie, 23, 311–321, 2018.
Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming, Sci. Rep., 10, 1–10, https://doi.org/10.1038/s41598-020-68872-9, 2020.
Hesse, C. and Krysanova, V.: Modeling climate and management change impacts on water quality and in-stream processes in the Elbe River Basin, Water, 8, 40, https://doi.org/10.3390/w8020040, 2016.
Heumann, S., Ringe, H., and Bottcher, J.: Field-specific simulations of net N mineralization based on digitally available soil and weather data. I. Temperature and soil water dependency of the rate coefficients, Nutr. Cycl. Agroecosyst., 91, 219–234, https://doi.org/10.1007/s10705-011-9457-x, 2011.
Hofstra, N. and Bouwman, A. F.: Denitrification in agricultural soils: summarizing published data and estimating global annual rates, Nutr. Cycl. Agroecosyst., 72, 267–278, https://doi.org/10.1007/s10705-005-3109-y, 2005.
Howarth, R. W., Swaney, D. P., Boyer, E. W., Marino, R., Jaworski, N., and Goodale, C.: The influence of climate on average nitrogen export from large watersheds in the Northeastern United States, Biogeochemistry, 79, 163–186, 2006.
Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
Kane, E., Betts, E., Burgin, A. J., Clilverd, H., Crenshaw, C. L., Fellman, J., Myers-Smith, I., O'donnell, J., Sobota, D. J., and Van Verseveld, W. J.: Precipitation control over inorganic nitrogen import–export budgets across watersheds: a synthesis of longterm ecological research, Ecohydrology, 1, 105–117, 2008.
Knapp, A. K. and Smith, M. D.: Variation among biomes in temporal dynamics of aboveground primary production, Science, 291, 481–484, 2001.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 drought from a hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017.
Leitner, S., Dirnböck, T., Kobler, J., and Zechmeister-Boltenstern, S.: Legacy effects of drought on nitrate leaching in a temperate mixed forest on karst, J. Environ. Manage., 262, 110338, https://doi.org/10.1016/j.jenvman.2020.110338, 2020.
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer, B.: Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales, Hydrol. Res., 41, 3–4, 2010.
Liu, E., Mei, X., Gong, D., Yan, C., and Zhuang, Y.: Effects of drought on N absorption and utilization in winter wheat at different developmental stages, Chin. J. Plant Ecol., 34, 555–562, 2010.
Min, S. K., Zhang, X., Zwiers, F. W., and Hegerl, G. C.: Human contribution to more-intense precipitation extremes, Nature, 470, 378–381, 2011.
Mitchell, M. J., Driscoll, C. T., Kahi, J. S., Likens, G. E., Murdoch, P. S., and Pardo, L. H.: Climatic control of nitrate loss from forested watersheds in the northeast United States, Environ. Sci. Technol., 30, 2609–2612, 1996.
Mosley, L. M.: Drought impacts on the water quality of freshwater systems; review and integration, Earth Sci. Rev., 140, 203–214, 2015.
Nguyen, T. V., Kumar, R., Lutz, S. R., Musolff, A., Yang, J., and Fleckenstein, J. H.: Modeling nitrate export from a mesoscale catchment using storage selection functions, Water Resour. Res., 56, e2020WR028490, https://doi.org/10.1029/2020WR028490, 2021.
Ondrasek, G., Begić, B. H., Zovko, M., Filipović, L., Meriño-Gergichevich, C., Savić, R., and Rengel, Z.: Biogeochemistry of soil organic matter in agroecosystems & environmental implications, Sci. Total Environ., 658, 1559–1573, https://doi.org/10.1016/j.scitotenv.2018.12.243, 2019.
Orth, R., Vogel, M. M., Luterbacher, J., Pfister, C., and Seneviratne, S. I.: Did European temperatures in 1540 exceed present-day records, Environ. Res. Lett., 11, 1–10, 2016.
Otkin, J., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M., Hain, C., and Basara, J. B.: Flash droughts: A review and assessment of the challenges imposed by rapid onset droughts in the United States, B. Am. Meteorol. Soc., 99, 911–919, https://doi.org/10.1175/BAMS-D-17-0149.1, 2018.
Pall, P., Aina, T., Stone, D., Stott, P., Nozawa, T., Hillberts, A., Lohmann, D., and Allen, M.: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000, Nature, 470, 382–385, 2011.
Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., and Sanderson, B. M.: Precipitation variability increases in a warmer climate, Sci. Rep., 7, 17966, https://doi.org/10.1038/s41598-017-17966-y, 2017.
RIVM – National Institue for Public Health and the Environment: Agricultural practices and water quality in the Netherlands; status (2016–2019) and trend (1992–2019), https://www.rivm.nl/bibliotheek/rapporten/2020-0184.pdf, last access: 15 Septemper 2021.
Robinson, J. and Sivapalan, M.: Temporal scales and hydrological regimes: Implications for flood frequency scaling, Water Resour. Res., 33, 2981–2999, https://doi.org/10.1029/97WR01964, 1997.
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D. B., Rammig, A., Rigling, A., Rose, L., Ruehr, N. K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C. S., and Kahmen, A.: A first assessment of the impact of the extreme 2018 summer drought on Central European forests, Basic Appl. Ecol., 45, 86–103, https://doi.org/10.1016/j.baae.2020.04.003, 2020.
Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., and Van Lanen, H. A. J.: Impacts of European drought events: insights from an international database of text-based reports, Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016.
Stevenson, F. J.: Humus chemistry: genesis, composition, reactions, Second Edition, Wiley, J. Chem Educ., 512 pp., https://doi.org/10.1021/ed072pA93.6, ISBN 978-0-471-59474-1, 1995.
Therrien, R., McLaren, Sudicky, R. E., and Panday, S.: Hydrogeosphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport, Groundwater Simulations Group, University of Waterloo, Waterloo, ON, 2010.
Thieken, A. H., Kienzler, S., Kreibich, H., Kuhlicke, C., Kunz, M., Mühr, B., Müller, M., Otto, A., Petrow, T., Pisi, S., and Schröter, K.: Review of the flood risk management system in Germany after the major flood in 2013, Ecol. Soc., 21, 51, https://doi.org/10.5751/ES-08547-210251, 2016.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res., 47, 123–138, 2011.
Ulbrich, U., Brücher, T., Fink, A., Leckebusch, G. C., Krüger, A., and Pinto, J. G.: The central European floods of August 2002: Part 1 – Rainfall periods and flood development, Weather, 58, 371–377, https://doi.org/10.1256/wea.61.03A, 2003.
Van Meter, K. J., Basu, N. B., and Van Cappellen, P.: Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and susquehanna river basins, Global Biogeochem. Cycles, 31, 2–23, https://doi.org/10.1002/2016GB005498, 2017.
Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., Johnes, P. J., Katzenberger, J., Martinelli, L. A., Matson, P. A., Nziguheba, G., Ojima, D., Palm, C. A., Robertson, G. P., Sanchez, P. A., Townsend, A. R., and Zhang, F. S.: Nutrient imbalances in agricultural development, Science, 324, 1519–1520, https://doi.org/10.1126/science.1170261, 2009.
Voit, P. and Heistermann, M.: A downward-counterfactual analysis of flash floods in Germany, Nat. Hazards Earth Syst. Sci., 24, 2147–2164, https://doi.org/10.5194/nhess-24-2147-2024, 2024.
Wang, Q.: The effect of rainfall variability on Nitrogen dynamics in a small agricultural catchment, HydroShare [code and data set], https://doi.org/10.4211/hs.1199c12ae64447bd87d5c005a11e984c, 2025.
Wang, Q., Yang, J., Heidbüchel, I., Yu, X., and Lu, C.: Flow paths and wetness conditions explain spatiotemporal variation of nitrogen retention for a temperate, humid catchment, J. Hydrol., 625, 130024, https://doi.org/10.1016/j.jhydrol.2023.130024, 2023.
Watmough, S. A., Aherne, C. E. J., and Dillon, P. J.: Climate Effects on Stream Nitrate Concentrations at 16 Forested Catchments in South Central Ontario, Environ. Sci. Technol., 38, 2383-8, https://doi.org/10.1021/es035126l, 2004.
Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., and Wade, A. J.: A review of the potential impacts of climate change on surface water quality, Hydrol. Sci. J., 54, 101–123, 2009.
Williams, A. P., Seager, R., Abatzoglou, J. T., Cook, B. I., Smerdon, J. E., and Cook, E. R.: Contribution of anthropogenic warming to California drought during 2012–2014, Geophys. Res. Lett., 42, 6819–6828, https://doi.org/10.1002/2015GL064924, 2015.
Wilusz, D. C., Harman, C. J., and Ball, W. P.: Sensitivity of catchment transit times to rainfall variability under present and future climates, Water Resour. Res., 53, 10231–10256, https://doi.org/10.1002/2017WR020894, 2017.
Winter, C., Nguyen, T. V., Musolff, A., Lutz, S. R., Rode, M., Kumar, R., and Fleckenstein, J. H.: Droughts can reduce the nitrogen retention capacity of catchments, Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, 2023.
Wollschläger, U., Attinger, S., Borchardt, D., Brauns, M., Cuntz, M., and Dietrich, P.: The bode hydrological observatory: A platform for integrated, interdisciplinary hydro-ecological research within the Tereno Harz/central German lowland observatory, Environ. Earth Sci., 76, 29, https://doi.org/10.1007/s12665-016-6327-5, 2016.
Yang, J., Graf, T., and Ptak, T.: Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study, J. Contam. Hydrol., 177, 107–121, 2015.
Yang, J., Heidbüchel, I., Musolff, A., Reinstorf, F., and Fleckenstein, J. H.: Exploring the dynamics of transit times and subsurface mixing in a small agricultural catchment, Water Resour. Res., 54, https://doi.org/10.1002/2017WR021896, 2018.
Yang, J., Heidbüchel, I., Musolff, A., Xie, Y., Lu, C., and Fleckenstein, J. H.: Using nitrate as a tracer to constrain age selection preferences in catchments with strong seasonality, J. Hydrol., 603, 126889, https://doi.org/10.1016/j.jhydrol.2021.126889, 2021.
Yang, X., Rode, M., Jomaa, S., Merbach, I., Tetzlaff, D., Soulsby, C., and Borchardt, D.: Functional multi-scale integration of agricultural nitrogen-budgets into catchment water quality modeling, Geophys. Res. Lett., 49, e2021GL096833, https://doi.org/10.1029/2021GL096833, 2022.
Zhang, W., Furtado. K., Wu. P., Zhou. T., Chadwick. R., Marzin, C., Rostron, J., and Sexton, D.: Increasing precipitation variability on daily-to-multiyear time scales in a warmer world, Sci. Adv., 7, eabf8021, https://doi.org/10.1126/sciadv.abf8021, 2021.
Zhang, W., Zhou, T., and Wu, P.: Anthropogenic amplification of precipitation variability over the past century, Science, 385, 427–432, https://doi.org/10.1126/science.adp0212, 2024.
Zhou, X., Jomaa, S., Yang, X., Merz, R., Wang, Y., and Rode, M.: Exploring the relations between sequential droughts and stream nitrogen dynamics in central Germany through catchment-scale mechanistic modelling, J. Hydrol., 614, 128615, https://doi.org/10.1016/j.jhydrol.2022.128615, 2022.
Zwolsman, J. J. G. and van Bokhoven, A. J.: Impact of summer droughts on water quality of the Rhine River – a preview of climate change?, Water Sci. Technol., 56, 45–55, 2007.
Short summary
Extreme storms and droughts have profound impacts on water quality. We adopted a stochastic rainfall generator to test how rainfall changes affect the transformation and transport of nitrogen (N) and its potential effects on water quality. We found that wet/dry conditions and patterns within a year influence N transformation and transport. Mineralization and plant uptake are key processes governing the impact of nitrate on water quality under varying rainfall conditions.
Extreme storms and droughts have profound impacts on water quality. We adopted a stochastic...