Articles | Volume 29, issue 21
https://doi.org/10.5194/hess-29-5955-2025
https://doi.org/10.5194/hess-29-5955-2025
Research article
 | 
04 Nov 2025
Research article |  | 04 Nov 2025

Deep learning of flood forecasting by considering interpretability and physical constraints

Ting Zhang, Ran Zhang, Jianzhu Li, and Ping Feng

Model code and software

Interpretable physics-guided DL for flood forecasting (v1.0.0) Ran Zhang https://doi.org/10.5281/zenodo.17337746

Download
Short summary
This study presents a model integrating attention mechanisms and physical constraints to improve flood prediction. It forecasts floods up to 6 h in advance. The model enhances accuracy by focusing on critical input features and historical patterns. Results demonstrate its superior performance compared to other models, offering improved flood prediction with greater interpretability and alignment with physical laws.
Share