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Abstract. Deep learning models show promise for flood
forecasting but often lack interpretability and physical re-
alism. To bridge this gap, we enhance traditional Long
Short-Term Memory (LSTM) networks by integrating: (1) a
feature-time attention mechanism that emphasizes criti-
cal input features and historical moments by learning dy-
namic weights, and (2) physics-guided constraints that en-
force fundamental hydrological principles by considering the
monotonic relationships between inputs and outputs. Tested
in China’s Luan River Basin for 1-6h flood predictions,
the proposed physics-guided feature-time-based multi-head
attention mechanism LSTM (PHY-FTMA-LSTM) outper-
forms standard LSTM and attention-only variants. It achieves
exceptional accuracy with Nash-Sutcliffe efficiency (NSE)
values of 0.988 at r 41 and maintains strong performance
at 0.908 at ¢ 4- 6, offering valuable insights for enhancing in-
terpretability and physical consistency in deep learning ap-
proaches.

1 Introduction

Floods are one of the most common and destructive natu-
ral hazards, posing a great threat to human life, infrastruc-
ture, and socio-economic conditions (Kellens et al., 2013;
Mourato et al., 2021). Building reliable and accurate flood
forecasting models is the foundation for sustainable flood
risk management with a focus on prevention and protection,
and is one of the most challenging tasks in hydrological fore-
casting (Birkholz et al., 2014; Zhang et al., 2016).
Traditional hydrological models simulate hydrological
processes such as rainfall runoff with a clear physical

meaning, but their construction often demands rich hydro-
meteorological data and subsurface information. Addition-
ally, the large number of parameters involved poses chal-
lenges in determining their values, limiting their practical
applicability (Chen et al., 2011). In contrast, data-driven
machine learning (ML) models, which do not rely on ex-
plicit consideration of the physical mechanisms governing
hydrological processes and only analyze the statistical re-
lationships between inputs and outputs, have been widely
used in hydrology in recent years (Lima et al., 2016; Yang
et al., 2020; Yu et al., 2006; Zhu et al., 2005). Among
them, deep learning (DL) models with multiple hidden layers
have demonstrated significant advantages, including convo-
lutional neural networks (CNNs), recurrent neural networks
(RNNS5), and their variants such as long short-term memory
neural networks (LSTMs), and gated recurrent units (GRUSs).
LSTM, a type of RNN, is specifically designed for learn-
ing long-term dependencies, and its architectural enhance-
ments effectively address issues such as gradient disappear-
ance and explosion that are inherent to traditional RNNs.
Consequently, LSTM has emerged as a highly favored model
in flood forecasting (Cui et al., 2021; Kao et al., 2020; Lup-
pichini et al., 2022; Lv et al., 2020).

The DL models, with their powerful characterization capa-
bilities, excel in fitting observations and have high prediction
accuracy for hydrological problems such as flood forecast-
ing, but they still have limitations. First, the interpretability of
DL models is poor (Nearing et al., 2021). The inherent black-
box nature of DL models makes it difficult to understand the
significance of model parameters and the decision-making
process. The attention mechanism is an approach to enhance
the interpretability of DL models (Vaswani et al., 2017). At-
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tention allows for the interpretation of feature importance by
selectively emphasizing critical information from a multitude
of input variables through attention weights. Moreover, at-
tention weights can be visualized to gain insights into the
underlying reasoning behind the model’s predictions. The
attention mechanism has been successfully applied in var-
ious domains. Song et al. (2017) proposed an end-to-end
spatio-temporal attention model for recognizing human ac-
tions from skeleton data, selectively attending to distinguish-
able joints within each frame of the input, and assigning dif-
ferent levels of attention to the output of different frames.
Zhang et al. (2021) constructed an anomaly structure by in-
corporating spatial attention and channel attention modules,
which facilitated the creation of feature spaces characterized
by high compactness within the same class and separation
between different classes, resulting in the accurate classifica-
tion of floral images. As for hydrological forecasting, Wang
et al. (2023) introduced an improved spatio-temporal atten-
tion mechanism model (STA-LSTM) for predicting river wa-
ter levels. By visualizing attention weights, they discovered
that the hydrological station closer to the outlet had greater
influence, while the temporal weights decreased with in-
creasing historical moments. However, it should be noted
that the discussed model (STA-LSTM) considers only a sin-
gle historical water level as input, neglecting the potential
influence of other relevant input features on the final predic-
tion. This limitation underscores the need for further research
and development to explore the incorporation of multiple in-
put features in attention mechanisms for more comprehen-
sive and accurate models.

Second, the DL models lack physical mechanisms. DL
models primarily focus on establishing a mapping relation-
ship between inputs and outputs, overlooking the underlying
physical connections between them (Jiang et al., 2020). Con-
sequently, the prediction results obtained from DL models
may be physically inconsistent or unreliable due to extrap-
olation or observation bias (Reichstein et al., 2019). To ad-
dress this limitation, researchers have proposed incorporat-
ing physical constraints into the loss function, which serves
as the optimization objective of DL models. By adding phys-
ical theory as a priori knowledge, the models can be con-
strained to generate outputs that are consistent with the un-
derlying physical principles, thereby enhancing their physi-
cal consistency. Several studies have explored this approach
in different contexts. Read et al. (2019) chose the law of
energy conservation as a physical constraint in tempera-
ture simulation to build a lake water temperature predic-
tion model that conforms to physical theory. Wang et al.
(2020) proposed a theory-guided neural network (TgNN)
framework for groundwater flow that incorporates control
equations, boundary conditions, initial conditions, and expert
knowledge as additional terms in the loss function to guide
the training process. Xie et al. (2021) considered extreme
storm events, long-duration rainless events, and rainfall-
runoff monotonic relationships in the rainfall-runoff process
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at a daily scale and constrained LSTM with these three phys-
ical mechanisms to improve the physical interpretability.

Moreover, the current inputs for the DL models in flood
forecasting are mainly historical runoff, rainfall, and evap-
otranspiration (Leedal et al., 2013; Rahimzad et al., 2021;
Wan et al., 2019), but the initial soil moisture is also a crucial
parameter, particularly for arid watersheds (Grillakis et al.,
2016). The initial soil moisture directly affects the soil in-
filtration capacity, water input and output from the soil, and
ultimately, the flooding process. Therefore, the paper also ex-
plores the effect of initial soil moisture on flood forecasting
through the attention weight visualization matrix.

Based on the above research, this paper proposes a
combined feature-time multi-head attention mechanism and
physical constraints model for flood forecasting, named
PHY-FTMA-LSTM. The main contributions of this work are
outlined as follows: (1) The initial soil moisture in the wa-
tershed is introduced as an input, alongside historical runoff,
rainfall, and evapotranspiration, these four input features are
considered to investigate their influence on the flooding pro-
cess. (2) The dual attention module of features and time
and multiple attention heads are used. The resulting atten-
tion weight matrix is visualized to enhance the interpretabil-
ity of the model, providing insights into the importance of
different features and time dynamics. (3) The physical con-
straints of flood forecasting are combined with the DL mod-
els at hourly scales to enhance the physical consistency of the
model. By optimizing the loss function, the model incorpo-
rates the monotonic relationship between rainfall, evapotran-
spiration, initial soil moisture, and runoff during the flooding
process. This integration ensures that the output aligns with
physical laws.

The novelty of this study is that, for the first time, the at-
tention mechanism and physical constraints are simultane-
ously incorporated into the DL model based on the hourly
scale, and the important parameter of soil moisture content
is added as input to forecast flood with a lead time of 1-6h
in Luan River Basin in China as an example, which improves
the prediction performance of flood forecasting models while
enhancing interpretability and physical law consistency. The
proposed PHY-FTMA-LSTM can effectively leverage key
input information and produce prediction results that con-
form to the monotonicity constraints on the water balance.

2 Methods

To increase the interpretability and physical consistency of
DL models in flood forecasting, this paper establishes a
PHY-FTMA-LSTM model that combines the feature-time-
based multi-head attention mechanism with physical con-
straints (Fig. 1a). The attention mechanism consists of a dual
module: feature-based attention and time-based attention. In
the feature-based attention module, the model generates a
feature-based attention matrix that assigns different weights
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to the input features based on their importance. Similarly, the
time-based attention module generates a time-based attention
matrix that assigns different weights to historical moments.
By taking the element-wise product of these two matrices,
the model generates the feature-time-based attention matrix
(Fig. 1b). To enhance the modeling capability, the multi-head
attention mechanism is utilized. Multiple attention heads are
computed in parallel, and their outputs are averaged to bal-
ance the influence of each subhead. The attention weight ma-
trix is then multiplied with the input matrix, resulting in the
output of the feature-time-based multi-head attention layer
(Fig. 1c). In addition, the physical constraints of the hydro-
logical cycle process are added to the loss function to make
the output conform to the physical laws. And the model is
compared with the original LSTM, the feature-time-based
attention LSTM (FTA-LSTM), and the feature-time-based
multi-head attention LSTM (FTMA-LSTM).

2.1 LSTM

The LSTM model aims to alleviate the weaknesses of or-
dinary RNNs in handling long-time dynamics (Zhao et al.,
2017). Different from the circular structure of the RNN hid-
den layer, the hidden layer of the LSTM introduces the mem-
ory cell, which consists of an input gate, forget gate, and out-
put gate to selectively remember and forget the input data,
and its structure is shown in Fig. 1d. The inputs at time ¢
include the input information x; at ¢, the hidden layer state
hy—1, and the cell state ¢,_; at t — 1. First, the forget gate
determines the extent to which cell state ¢;_; is discarded.
Next, the input gate decides how much of the current exter-
nal information x; to retain and generates the candidate cell
state ¢;. Then, ¢; is updated based on the results of the forget
and input gate. Finally, the output gate decides which state
features of ¢; are output and generates the hidden layer state
variable h; (Duan et al., 1992). The above process can be
expressed as follows:

fr=0 Wy [hi-1.x]+by) 0
i ZU(Wi '[ht—lax[]+bi) @)
¢; = tanh (WC (he—1,x: ]+ bc) €)
c=c-10 fi+¢c O “)
01 =0 Wy [hi—1, %]+ bo) )
h; = o O tanh(c;) (6)

where Wy, W;, W, W, are the weight vectors of the three
gates and the gating unit, respectively. Similarly, b7, b;, b,
b, are the bias vectors. o is the Sigmoid activation function.
tanh is the hyperbolic tangent activation function. © denotes
the vector element product.

2.2 Attention mechanism

The attention mechanism is inspired by the concept of hu-
man visual selective attention, which helps neural networks
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focus on important information while disregarding irrelevant
details, thereby establishing connections between inputs and
outputs (Brauwers and Frasincar, 2023; Niu et al., 2021). By
incorporating the attention mechanism, the model can allo-
cate varying degrees of attention to different historical mo-
ments or feature vectors within the input sequence. This en-
ables the model to automatically identify and prioritize the
most relevant input information, leading to more accurate
modeling of flood causes and trends. Ultimately, this im-
proves the accuracy of flood prediction results and enhances
the interpretability of the model.

In this study, a soft attention module is introduced before
the original LSTM’s input. This module calculates attention
weight matrices separately for input features and historical
moments and then combines them to produce a feature-time
attention weight matrix.

The feature-based attention module can focus on the ef-
fects of different features on predicted floods and improve
the model’s attention to important features. In this paper, the
input features are runoff, rainfall, evapotranspiration, and ini-
tial soil moisture. Let the input be a two-dimensional matrix
X € R**" where k and n denote the number of input features
and the number of historical moments, respectively, then the
input matrix at time ¢ can be regarded as n k-dimensional
vectors X; = [x], x5, .. .,x,’{]lTX .- The input features at each
time step are normalized using the softmax function (Eqs. 7
and 8). The attention weight matrix based on the input fea-
tures is obtained by synthesizing the feature weights of all
historical moments.

t t eix;
o; = softmax(x}) = ———— (7
di—ie "

Tt ot 1T
at—[al,az,...,ak]lxk (8)

where ] is the weight of the ith feature, and k. ol =1.

The time-based attention module allows simulating the re-
lationship between different time steps, focusing on the more
important historical moments. The input matrix of features
can be viewed as X = [x,t{_”_l,x,i_"_Q, -+ X 11xn, and the
same softmax function (Eq. 9) is used to generate the time-
based attention weights (Eq. 10), and the time weights of
all features are synthesized to be the attention weight matrix
based on historical moments.

. . —xf
Bi = softmax (x;) = ﬁ 9)

i=1

Bk =1B1,B2, ..., Bulixn (10)

where ﬂ,i is the weight of the ith time step, and Zi‘: 1 /3,’; =1
Finally, the above two weight matrices are multiplied ele-
ment by element to obtain the attention weight matrix that
focuses on both the input features and historical moments
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Figure 1. (a) The PHY-FTMA-LSTM model architecture. (b) Feature-time-based attention matrix generation process for each attention head.
(¢) Feature-time-based multi-head attention workflow. (d) The internals of LSTM cells.
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(Eq. 11).
FTA = FA O TAT

R I
- : SR (11
t n—1 IBI n—1 al 13;;
kxn
where FA represents feature-based attention weight matrix,
TA represents time-based attention weight matrix.

To enhance model expressiveness and interpretability, this
study also employs a multi-head attention mechanism. This
mechanism involves passing input sequences through m in-
dependent attention heads in parallel. Each head can be seen
as a distinct representation space, enabling the model to con-
currently focus on different parts of the input. As a result, the
model becomes more capable of capturing the intricate rela-
tionships between inputs and gaining a deeper understanding
of the input data.

The multi-head attention mechanism computes m sets of
attention coefficients based on the number of heads, adds the
output tensor of the attention heads using the Add function,
and then balances the effects of different sub-heads by aver-
aging operations. Finally, the average output tensor is multi-
plied by the input to get the final output, which makes the at-
tention head weights more discriminative and better captures
the relationship between sequences. The feature-time-based
multi-head attention weight matrix is as follows:

FTMA =
M 1 1 M
1 Zm 1o i " IBt " Zm:laiﬂ{
i (12)
M 1 1 M
Zm 1% Itc " lBt " Zmzlaltcﬂltc kxn

where M represents the number of attention heads.
2.3 Physical constraints

The LSTM is a black-box model that ignores complex physi-
cal processes, making it difficult to maintain consistency with
the basic principles of flood forecasting (Yokoo et al., 2022).
To overcome this limitation, the physical constraints can be
combined with the DL models to enhance the physical con-
sistency by modifying the model loss function and transform-
ing the prior knowledge of flood forecasting into the penalty
term of the loss function. A soft penalty is often utilized to
enforce constraints on the model’s behavior (Karniadakis et
al., 2021), ensuring adherence to physical principles such as
conservation and monotonicity.

In the DL models for flood forecasting, the occurrence of
flooding due to heavy rainfall is influenced by various fac-
tors, including rainfall intensity, evapotranspiration, infiltra-
tion, and storage dynamics. When considering the input fea-
tures of rainfall, evapotranspiration, and initial soil moisture,
it is important to maintain a monotonic relationship between
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each feature and the resulting runoff. However, the traditional
DL models disregard the physical relationships between in-
puts and outputs. This lack of consistency with the physical
principles of water balance equations undermines the overall
reliability of the model. Therefore, this study incorporates
inequality constraints to enforce the desired monotonic re-
lationships between rainfall, evapotranspiration, initial soil
moisture, and runoff. Under the assumption that all other in-
put variables remain unchanged, a new time series of rainfall,
evapotranspiration, and initial soil moisture is generated re-
spectively by applying random minor increments within the
range [0, 0.1) using the random.uniform function. These new
time series are then combined with the unchanged time series
to form new input data. The difference between the predicted
values corresponding to the new data and the predicted values
corresponding to the original input data is calculated. This
difference is then converted into a specific loss value using
the Rectified Linear Unit (ReLU) function and added to the
loss function.

For rainfall, the runoff should increase if there is a slight
increase in rainfall at the current time step, provided that
other variables are constant, and the monotonic relationship
and losses for rainfall-runoff are expressed as follows:

flp@®)+ Ap,t]— flp@),t]1 =0 (13)
Lossp =

1
2 RLULFLp(0). 1= fIp() + Ap.11} = O (14)
p

where Ap is the small increase in rainfall, Loss;, is the er-
ror in the monotonic relationship of rainfall runoff, Np is the
sample length of the perturbed rainfall, and ReLU is the re-
sponse function.

For evapotranspiration, the runoff should decrease if there
is a slight increase in evapotranspiration at the current time
step, provided that other variables are constant, and the
monotonic relationship and losses for evapotranspiration
runoff are expressed as follows:

fle(t) + Ae,t] —

Losse =

1 Ne
ﬁezl‘:l

fle@),11 <0 5)

{ReLU{f[e(t), 1] — fle(t) + Ae, 1]} <0} (16)

where Ae is the small increase in evapotranspiration, Losse is
the error in the monotonic relationship of evapotranspiration
runoff, N, is the sample length of the perturbed evapotran-
spiration.

For soil moisture, the runoff should increase if the ini-
tial soil moisture of the watershed increases slightly for each
flood event, provided that other variables are constant, and
the monotonic relationship and losses between initial soil
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moisture and runoff are expressed as follows:

Sfls(@) + As,t]— fls(t),1]1 >0 a7

Lossg =
1
FZZV; {ReLU{ f[s(1), 11— fs(t) + As, 11} = 0F (18)

where As is the small increase in initial soil moisture, Lossg
is the error in the monotonic relationship of initial soil mois-
ture runoff, Ny is the sample length of the perturbed initial
soil moisture.

Based on the above physical constraints of flood forecast-
ing, the loss function of the traditional LSTM model is im-
proved with the following equation:

Loss = AdatalLOSSdata + ApLossp + AeLosse +AsLosss  (19)

where Loss is the loss function of the LSTM guided by the
physical constraints of flood forecasting; Lossgat, is the mean
squared error (MSE) of the observed and predicted values of
the LSTM; Adatas Ap, Ae, As are the weighting coefficients of
different losses, respectively. To treat the three physical con-
straints equally, the weighting coefficients of the four losses
are set to {0.7,0.1,0.1,0.1}.

2.4 Evaluation metrics

To evaluate the accuracy of different models for flood fore-
casting, the Nash-Sutcliffe efficiency (NSE), Kling—Gupta
efficiency (KGE), the coefficient of determination (R?), root
mean squared error (RMSE), and mean absolute error (MAE)
are selected for evaluation. The specific equations are as fol-
lows:

Y- 0)’
(0 0))
KGE:1—\/(R—1)2+(a—1)2+(,3—1)2 (21

(S0~ B0~ )’

NSE=1-— (20)

R = ; _2 22)
Yioi(0r = 0) X (01 - 9)
n / 2
RMSE = \/M (23)
| ,
MAE = ZZi:l|Q, -0/ 24

where Q; is the observed value; Q; is the predicted value;
0, is the observed mean value; Q) is the mean value of the
predicted series; o between the standard deviation of the pre-
dicted value and that of the observed value; § is the ratio
between the mean of the predicted value and that of the ob-
served value; n is the total number of samples. The NSE is
commonly used to evaluate hydrological prediction models,
KGE considers the contribution of mean, variance and cor-
relation on model performance, R? is often used to evaluate

Hydrol. Earth Syst. Sci., 29, 5955-5974, 2025

T. Zhang et al.: Interpretable physics-guided DL for flood forecasting

the linear correlation between the forecast process and the
observed process. The values of NSE, KGE and R? range
from O to 1. The closer the result is to 1, the more accurate
the forecast result is and the higher the model credibility is.
RMSE and MAE are used to reflect the degree of deviation
between the predicted and observed values, the smaller the
value the smaller the deviation.

3 Study area and data
3.1 Study area

In this study, the watershed controlled by the Sandaohezi
station in the Luan River Basin was selected as the study
area. The Luan River originates from the northern foot of
Bayangurtu Mountain in Hebei Province, with a total length
of 888 km, and flows through Inner Mongolia, Hebei, and
Liaoning provinces before injecting into the Bohai Sea at
Laoting County, Hebei Province. The station is in the mid-
dle reaches of the mainstream of the Luan River, controlling
a watershed area of 17 100 kmz, accounting for about 40 %
of the total area of the Luan River basin. Geographically, it
is located between 115.5 to 117.7°E longitude and 40.7 to
42.7° N latitude. The elevation of the study area ranges from
370 to 2300 m, with a high northwest to low southeast topog-
raphy. Based on geological conditions and geomorphological
features, the area can be divided into two dominant landform
types: plateau and mountainous terrain. The plateau domi-
nates the northern part of the basin, with elevations ranging
from 1400 to 1600 m and a gentle channel gradient averaging
approximately 0.5 %o. The remaining area comprises moun-
tainous terrain, exhibiting complex topography shaped by
prolonged denudation and erosion. This zone features steep
mountains, densely distributed hills, and interspersed basins,
with slope angles varying between 20 and 40°. In certain ar-
eas, rivers demonstrate downward cutting action, resulting
in significantly steeper channel gradients — typically 2 %c—
6 %o, while some and small tributariesexceed 20 %o. Notably,
flood wave propagation velocities reach 2.0-3.5ms™! due
to these topographic conditions. The northwest of the basin
is located in the temperate continental climate zone, precip-
itation is scarce and concentrated in summer; the southeast
is located in the temperate monsoon climate zone, with cold,
dry winters and hot, rainy summers. The average annual tem-
perature of the basin ranges from 5 to 12 °C, and the aver-
age annual runoff is about 480 x 10° m>. The average annual
rainfall is about 500 mm, and the spatial and temporal dis-
tribution of rainfall within the year is uneven, mainly con-
centrated from May to September, and the precipitation de-
creases from south to north. Floods in the basin are mostly
formed by heavy rainfall, which is short-lived and strong,
making the flooding process steep up and steep down, often
causing disasters in the downstream areas. Consequently, ac-
curate flood forecasting is of utmost importance for effective
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flood control and water resources management in the Luan
River basin. The location of the study area and the stations
are shown in Fig. 2.

3.2 Data

The rainfall and runoff data were obtained from the Hydro-
logical Yearbook of the Haihe River Basin, including rainfall
data from 15 rainfall stations, such as Sandaohezi, Zhang-
baiwan, and Baorono, and runoff data from Sandaohezi hy-
drological station. The period covers 39 years from 1964 to
1989, 1991, and 2006 to 2017. There is a gap in the data for
1990 and 1992 to 2005 due to incomplete data collection.

The evapotranspiration and soil moisture data were ob-
tained from the Global Land Surface Data Assimilation
System (GLDAS) using the GLDAS-Noah model prod-
uct 0.25° x 0.25° spatial resolution, 3 h temporal resolution
dataset, and the evapotranspiration data were averaged back-
ward 3 h, and the soil moisture data were instantaneous val-
ues. Among them, GLDAS-2.0 provides data from 1964 to
2014, and GLDAS-2.1 provides data from 2015.

In this study, 30 flood events during the 39 years were se-
lected (Table 1), and the collected observed runoff data were
linearly interpolated to 1h step data, the observed rainfall
data were averaged to 1 h step data, and the Tyson polygon
method was used to derive the areal rainfall. For evapotran-
spiration and soil moisture, the average values were calcu-
lated for each grid in the watershed at each period, where the
soil moisture was taken as the initial soil moisture before the
onset of rainfall for each flood event. Twenty flood events
were used for model training, ten flood events were used
for model validation. The partitioning of training and valida-
tion sets was designed to ensure balanced representation of
flood characteristics across both datasets, specifically consid-
ering temporal occurrence, peak discharge, and flood dura-
tion. This stratification achieves comprehensive inclusion of
major, moderate, and minor flood magnitudes while encom-
passing diverse hydrograph types — including both single-
peak and multi-peak events — to maintain hydrological pro-
cess representativeness.

Since different input features have different magnitudes,
maximum-minimum normalization was used to process the
input data into the range [0, 1], see Eq. (25).

Xnomm = _Xi — Xmin (25)

Xmax — Xmin

where xporm 1S the normalized data, x; is the original data, and
Xmin and xmax are respectively the minimum and maximum
values of the original data.

3.3 Model construction

This study is based on Python 3.9, and the Numpy, Pan-
das, and Scikit-Learn packages in Python are used for data
processing, and the LSTM, FTA-LSTM, FTMA-LSTM, and
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PHY-FTMA-LSTM models are constructed using the Keras
library in TensorFlow 2.9.1.

The model inputs are runoff, rainfall, evapotranspiration,
and initial soil moisture for a specified time step, and the out-
puts are the discharge from 1 to 6 h of the lead time. All four
models use the ReLLU activation function (Nair and Hinton,
2010), which avoids gradient vanishing and is more effective
compared to the tanh and sigmoid functions. The Adam op-
timizer is used and the LSTM layer is a single layer, with
the number of attention heads set to 3 for the FTMA-LSTM
and PHY-FTMA-LSTM. The mean squared error is the loss
function of the four models, and for PHY-FTMA-LSTM it
incorporates physical constraints, as shown in Eq. (19). To
avoid overfitting, all models employ early stopping based on
the mean squared error loss function, with a maximum itera-
tion limit of 200 epochs. The training process automatically
terminates if no improvement in loss is observed for 20 con-
secutive epochs.

To construct the base models, the common values of the
DL model parameters are used as the initial values. The base
models have an observed input time step of 12 h, a learning
rate of 0.001, batch size of 64, and hidden units set to 128.
After evaluating the performance of the base models, param-
eter optimization is performed separately for each of the four
models, considering that the optimal parameter combinations
may differ among the models. The goal is to study the effects
of the input time step and three hyperparameters (learning
rate, batch size, and hidden units) on the model performance.
The ranges used for parameter optimization are as follows:
input time step of 3 to 24 h, learning rate of 0.00001 to 0.01,
batch size of 16 to 256, and hidden units of 32 to 512. A sin-
gle parameter is varied while the other parameters are taken
as their initial values. Considering the stochastic nature of
the DL model running process, each of the four models is re-
peated five times for each lead time, and the results with the
best prediction performance are selected for analysis.

4 Results
4.1 Model optimization

The LSTM, FTA-LSTM, FTMA-LSTM, and PHY-FTMA-
LSTM base models are established individually, and their
average NSE values during the 1-6 h lead time, measure to
evaluate flood prediction accuracy, are found to be 0.925,
0.930, 0.936, and 0.950, respectively. These results indicate
that all four base models can effectively predict flooding
events. In order to determine the optimal parameter combina-
tion for each model and how individual parameter variations
affect the model performance, the following parameters are
investigated while keeping the other three parameters con-
stant: input time step, learning rate, batch size, and hidden
units.
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Figure 2. Geographical location of the study area and hydrological and rainfall stations.

Table 1. Flood events used in the study.

Dataset Flood Peak discharge Year  Duration
number (m3 s—1 ) (month/day/hour)
Training 3142 1964  08/01/04:00-08/09/12:00

1

2 218 1964  08/13/02:00-08/16/00:00
3 313 1965  07/17/20:00-07/21/12:00
4 204 1966  07/27/16:00-07/31/20:00
5 260 1968  07/27/12:00-07/30/22:00
6 154 1969  08/20/12:00-08/27/12:00
7 296 1971  07/17/15:00-07/29/08:00
8 153 1972 07/19/08:00-07/24/08:00

9 742 1973 08/12/04:00-08/26/08:00
10 213 1975 08/11/00:00-08/16/08:00
11 218 1978  08/25/12:00-09/03/08:00
12 246 1982  07/22/12:00-07/29/16:00
13 313 1983 08/04/00:00-08/11/20:00
14 400 1985  08/24/05:00-08/31/04:00
15 210 1986  08/08/04:00-08/13/08:00
16 87.5 1987  08/19/12:00-08/23/04:00
17 465 1991  06/10/04:00-06/18/00:00
18 70.1 2008  08/10/00:00-08/16/00:00
19 149 2010 07/30/17:00-08/04/20:00
20 80.4 2015 07/27/16:00-07/31/16:00

Validation 21 241 1965  08/26/21:00-08/30/20:00
22 260 1967  06/27/12:00-06/29/22:00
23 164 1970 07/14/12:00-07/16/04:00
24 506.7 1974  07/23/12:00-08/06/08:00
25 313 1979 08/13/04:00-08/21/08:00
26 132 1985  08/11/16:00-08/14/04:00
27 212 1989  06/03/22:00-06/07/04:00
28 205 2011  08/14/10:00-08/20/04:00
29 959 2013  07/21/08:00-07/25/16:00
30 84.2 2013  08/13/09:00-08/21/00:00
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Regarding the input time step of observations, experiments
are conducted by varying the time step within a certain range.
The result depicted in Fig. 3a shows that the average NSE
value for all four models is highest at a time step of 12h and
decreases with increasing time step. The worst performance
is observed at a time step of 24 h. This observation suggests
that longer input sequences introduce more noise, and the in-
clusion of extraneous information adversely affects the final
prediction. Therefore, a 12h input time step is identified as
the optimal choice for flood forecasting in all four models
and is adopted for subsequent experiments. The samples are
constructed through a sliding window, resulting in the gener-
ation of 2859 training samples and 1166 validation samples.

For the learning rate, tests are performed using a learning
rate ranging from 0.00001 to 0.01. The finding, presented
in Fig. 3b, indicates that the performance of the four mod-
els is comparable at learning rates of 0.01 and 0.001. How-
ever, when the learning rate is set to 0.0001 and 0.00001, the
models exhibit slow convergence and degrade performance
rapidly. Considering the possibility of failure to converge at a
very high learning rate, a combined analysis suggests a learn-
ing rate of 0.001 as the optimal choice for all four models in
the subsequent studies.

The batch size optimization ranges from 16 to 256. The re-
sult depicted in Fig. 3c demonstrates varying performances
of the four models with different batch sizes. The LSTM
model achieves the highest average NSE of 0.932 at a batch
size of 128. Similarly, the FTA-LSTM model attained its
highest average NSE of 0.932 at a batch size of 32. On the
other hand, the FTMA-LSTM and PHY-FTMA-LSTM mod-
els reach their highest average NSE values at a batch size
of 64, with 0.936 and 0.950, respectively. Consequently, the
optimal batch size for flood forecasting is determined as 128,
32, 64, and 64 for the LSTM, FTA-LSTM, FTMA-LSTM,
and PHY-FTMA-LSTM models, respectively. These batch
sizes are employed for subsequent studies.

Regarding the hidden units, tests are conducted with the
count varying from 32 to 512. Figure 3d illustrates the dis-
tinct performances of the four models concerning different
hidden units. The LSTM model achieves the highest aver-
age NSE of 0.925 with 64 hidden units. The FTA-LSTM and
FTMA-LSTM models attain their highest average NSE val-
ues of 0.935 and 0.939 with 256 hidden units, respectively.
In contrast, the PHY-FTMA-LSTM model reaches the high-
est average NSE of 0.950 at 128. Accordingly, the optimal
hidden units for flood prediction are identified as 64, 256,
256, and 128 for the LSTM, FTA-LSTM, FTMA-LSTM, and
PHY-FTMA-LSTM models, respectively.

Considering the above parameter optimization process, the
model parameters used in the subsequent study are as fol-
lows (Table 2). Notably, the PHY-FTMA-LSTM model con-
sistently outperforms the other three models across various
parameter values, exhibiting the smallest variation in NSE.
These findings indicate that the PHY-FTMA-LSTM model

https://doi.org/10.5194/hess-29-5955-2025

Table 2. Parameters of models.

Models Input time Learning Batch Hidden

step rate size units
LSTM 12 0.001 128 64
FTA-LSTM 12 0.001 32 256
FTMA-LSTM 12 0.001 64 256
PHY-FTMA-LSTM 12 0.001 64 128

proposed in this paper offers the best and most stable perfor-
mance.

4.2 Model performance evaluation

The LSTM, FTA-LSTM, FTMA-LSTM, and PHY-FTMA-
LSTM models are constructed using the optimal parameters
mentioned above, the evaluation metrics of the forecasting
performance of the four models in the training and valida-
tion periods are shown in Figs. 4 and 5. Detailed metrics data
can be found in the Supplement (Tables S1 and S2). All the
metrics of the four models almost outperform the validation
period in the training period. And with the increase of the
lead time, the gap between the performance of the models in
the training period and the testing period gradually increases.
It can be seen that the three models based on the attention
mechanism outperform the original LSTM model in all lead
times. It indicates that the dual attention module of time
and feature proposed in this paper effectively focuses on the
more significant historical moments and feature variables,
improving the performance of the LSTM model. Among the
attention-based models, the FTMA-LSTM model, which uti-
lizes a multi-headed attention mechanism, achieves better
performance than the FTA-LSTM model with a single at-
tention head in most cases. This demonstrates that the par-
allel computation of the multi-head attention mechanism en-
ables the model to emphasize more important information in
the input compared to the single-head attention mechanism.
Furthermore, the PHY-FTMA-LSTM model, which incorpo-
rates physical constraints, outperforms the other three models
across almost all metrics. Specifically, at the lead time ¢ + 1,
compared to the original LSTM model, the PHY-FTMA-
LSTM model shows an improvement in NSE, KGE, and R2,
increasing from 0.977 to 0.988, from 0.953 to 0.984 and
from 0.979 to 0.988, respectively. Additionally, the RMSE
and MAE decrease by 27.4 % and 49.6 %, respectively. At
the lead time ¢ + 6, NSE increases from 0.865 to 0.908, KGE
from 0.851 to 0.905, R? from 0.886 to 0.911, and RMSE and
MAE decrease by 21.1 % and 15.1 %, respectively. These
results mean that incorporating physical constraints enables
the DL model to understand the monotonic relationship pre-
sented in the flooding process, improving forecast accuracy
by enhancing the model’s physical consistency.

As the lead time increases, the performance of all four
models declines, suggesting that their robustness and gen-
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Figure 3. The NSE values for 6 lead times with different (a) Input time steps of observations, (b) Learning rate, (c) Batch size, and (d) Hidden

units.

eralization gradually deteriorate. However, the extent of the
decline in the four model metrics varies. In terms of NSE,
when transitioning from a 1 to a 6h lead time, the PHY-
FTMA-LSTM model exhibits the smallest decline of 0.065
during the training period, while the LSTM, FTA-LSTM, and
FTMA-LSTM models experience decreases of 0.072, 0.079,
and 0.073 respectively. During the validation period, the NSE
value decreases by 0.080 for the PHY-FTMA-LSTM model
and by 0.112, 0.109, and 0.104 for the LSTM, FTA-LSTM
and FTMA-LSTM models, respectively. Maintaining high
accuracy in longer lead times is crucial in practical applica-
tions. Extended lead times necessitate more comprehensive
information for accurate predictions, presenting challenges
for the models. Nonetheless, the PHY-FTMA-LSTM model
exhibits minimal degradation, indicating its superior ability
to adapt to longer lead times and maintain high precision.
This superiority may be attributed to the unique characteris-
tics and structure of the PHY-FTMA-LSTM model. It likely
encompasses considerations of physical factors and key in-
put features, enabling a better capture of flood complexity
and variability. This advantage positions the model favorably
in scenarios requiring predictions further into the future.

Hydrol. Earth Syst. Sci., 29, 5955-5974, 2025

Figure 6 displays the scatter plots for the LSTM, FTA-
LSTM, FTMA-LSTM, and PHY-FTMA-LSTM models dur-
ing the training and validation periods. When the foresight
period is 1 h, all models demonstrate predictions that closely
track the ideal 1 : 1 line. The PHY-FTMA-LSTM model out-
performs the others, exhibiting the narrowest scatter distribu-
tion. However, as the lead time increases, the scatter plots of
the four models show varying degrees of deterioration, be-
coming more uneven and scattered. The high discharge pre-
diction error increases in the training period, and the vali-
dation period reveals numerous underestimated discharges.
Among them, the PHY-FTMA-LSTM model performs the
best (with the narrowest scatter distribution), followed by the
FTA-LSTM and FTMA-LSTM models. The LSTM model
performs the worst. Notably, during the validation period, for
longer foresight periods, the high flow scatter of all models
deviates further from the ideal 1 : 1 line. One possible expla-
nation is the scarcity of high flow instances in the training
data. As the lead time increases, the models struggle to cap-
ture the necessary information, leading to underestimation
and poorer predictions. For a foresight period of 6 h, the scat-
ter plots of the LSTM, FTA-LSTM, and FTMA-LSTM mod-
els both in the training and validation periods exhibit discrete
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Figure 4. Performance of the four models for flood forecasting at different lead times for training (a) NSE, (b) KGE, (c) R2, (d) RMSE, and

(e) MAE.

distributions. In contrast, the PHY-FTMA-LSTM model’s
scatter plot shows the narrowest band and is closest to the
ideal 1 : 1 line. Consequently, the PHY-FTMA-LSTM model
achieves the highest prediction accuracy, effectively reducing
prediction errors for longer lead times. The FTA-LSTM and
FTMA-LSTM models follow while the LSTM model per-
forms the worst in terms of prediction accuracy.

https://doi.org/10.5194/hess-29-5955-2025

4.3 Typical flood event forecast results

Floods in the basin are mainly two types, single-peak and
double-peak, so two typical flood events were selected to an-
alyze the specific flood process: a double-peak flood event
(19740723) with a peak discharge of 507 and 290 m>s~!,
and a single-peak flood event (19790813) with a peak dis-
charge of 313 m>s~!. Figures 7 and 8 illustrate the flood pro-
cesses of the two events predicted by the four models. It can
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Figure 5. Performance of the four models for flood forecasting at different lead times for validation (a) NSE, (b) KGE, (c) RZ, (d) RMSE,

and (e) MAE.

be observed that as the lead time increases, the prediction
hydrographs from all four models gradually deviate from the
observed values and the three evaluation metrics decrease.
Notably, the LSTM model exhibits the greatest decline in
prediction performance, followed by the FTA-LSTM and
FTMA-LSTM models. In contrast, the PHY-FTMA-LSTM
model demonstrates relatively better performance across the
evaluated flood events.

Hydrol. Earth Syst. Sci., 29, 5955-5974, 2025

Based on the analysis of prediction hydrographs, the four
models exhibit better performance in predicting the double-
peak flood event compared to the single-peak flood event.
Additionally, the models demonstrate higher accuracy in pre-
dicting the rising stage of floods in contrast to the falling
stage. Specifically, the prediction errors increase as the dura-
tion of the flood increases, and there is a time lag in predict-
ing the occurrence of the second flood peak. When it comes
to the single-peak flood event, the predictions by the four
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Figure 6. Scatter plots of observed and predicted discharges in the training and validation periods (a)  + 1, (b) t +2, (¢) t + 3, (d) t + 4,
(e) t + 5, and (f)  + 6, in which yellow represents the training period and blue represents the validation period.
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Figure 7. Comparison of observed and predicted values of the 19740723 flood event by the four models (a) 41, (b) 42, (¢) r+3, (d) r +4,
(e) t+5, and (f)  + 6 (The x axis displays dates in MM-DD-HH format, representing month, day, and hour respectively).

models display greater fluctuations, and the time lag prob-
lem is more pronounced, along with an overestimation of the
peak discharge.

Regarding the 19740723 flood event, the LSTM model
generally underestimates the discharge values, and the dis-
crepancy with the observed hydrograph gradually increases
as the lead time increases. Although the FTA-LSTM and
FTMA-LSTM models also underestimate the discharge, their
errors are reduced, indicating improved performance com-
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pared to the LSTM model. In contrast, the PHY-FTMA-
LSTM model predicts the flood hydrograph more accurately.
However, when the foresight period is 6 h, the PHY-FTMA-
LSTM model experiences significant prediction errors due to
anomalous fluctuations.

For the 19790813 flood event, the LSTM model demon-
strates a noticeable deviation from the predicted hydrograph
with increasing lead times. The FTA-LSTM and FTMA-
LSTM models exhibit better performance, as their predicted
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Figure 8. Comparison of observed and predicted values of the 19790813 flood event by the four models (a) 41, (b) 42, (¢) r +3, (d) r +4,

(e)t+5,and (f) ¢t + 6.

hydrographs are closer to the observed ones. However, there
is some overestimation of the peak discharge in these models.
Additionally, all three models suffer from a more severe time
lag issue in longer foresight periods. In contrast, the PHY-
FTMA-LSTM model shows smaller volume errors and is
closer to the observed hydrograph. Nevertheless, this model
exhibits a more pronounced overestimation of the peak dis-
charge.
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In conclusion, the LSTM model exhibits poor prediction
performance for longer lead times. On the other hand, the
FTA-LSTM, FTMA-LSTM, and PHY-FTMA-LSTM mod-
els show improved performance with longer lead times and
higher forecasting accuracy. Among these models, the PHY-
FTMA-LSTM model stands out by producing better predic-
tions for both single-peak and multi-peak flood events, but
it may encounter challenges with predicting anomalous fluc-
tuations at longer lead times. Additionally, the PHY-FTMA-
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LSTM model mitigates the issue of time lag to some extent
by considering the physical monotonicity relationship.

4.4 Visual attention analysis

To investigate the changes in features and time attention of
PHY-FTMA-LSTM with different lead times, the attention
weights of PHY-FTMA-LSTM are visualized in Fig. 9. The
figure consists of six subplots representing lead times ranging
fromr+1tot+6.

From Fig. 9, it can be observed that the distribution pat-
tern of the weights remains relatively similar across different
forecasting periods. The temporal attention weights decrease
as the historical moment increases. Among the feature-based
weights, runoff has the highest proportion, followed by rain-
fall, and finally the initial soil moisture and evapotranspira-
tion. These results align with hydrological principles, where
runoff is considered the most direct manifestation of the
flooding process and holds the highest importance. Rainfall,
as the main driver of flood formation, significantly influences
flooding. In contrast, the effects of initial soil moisture and
evapotranspiration in the basin are more indirect and there-
fore receive lower weights. In the case of the Luan River
basin, which is relatively arid, the initial soil moisture of
the basin is typically not saturated. During a rainfall-induced
flood, there is a possibility of transitioning from infiltration-
excess runoff to saturation-excess runoff. Hence, special at-
tention should be given to the role of the initial soil moisture,
which carries slightly greater relative importance than evap-
otranspiration.

As the forecasting horizon extends, the feature-time-based
weights of the model become more concentrated, with
the time-based weights gradually moving forward. Conse-
quently, the model places more emphasis on the values that
are closer to the current moment. Additionally, the feature-
based attention module exhibits a gradual increase in atten-
tion to rainfall while decreasing attention to evapotranspira-
tion and the initial soil moisture. Notably, runoff retains its
status as the most influential factor.

5 Discussion

The input time step of observations, learning rate, batch size,
and hidden units are significant parameters that influence the
performance of the model, and the optimal parameters may
vary for different structural models (Xiang et al., 2020; Cao
et al., 2022). In this study, four models, namely LSTM, FTA-
LSTM, FTMA-LSTM, and PHY-FTMA-LSTM, have been
constructed. To ensure that each model achieves its optimal
prediction performance and to investigate the impact of dif-
ferent parameter variations on model performance, the same
parameter values are utilized to build the four base models
individually. After confirming that the base models meet the
accuracy requirements for flood forecasting, the optimal pa-
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rameter combination for each model is determined. This is
done by selecting the parameter value associated with the
highest NSE obtained through single parameter tuning. The
single parameter is changed while keeping the initial val-
ues of the other three parameters constant. This approach
ensures that the subsequent analysis reflects the best perfor-
mance achievable by each model’s specific structure. More-
over, it enables a more explicit evaluation of the performance
changes resulting from the addition of attention mechanisms
and physical constraints to the model.

In terms of model performance evaluation metrics, the
PHY-FTMA-LSTM model demonstrates the best overall per-
formance. However, a closer examination reveals that its
KGE score may not necessarily be optimal. This could be at-
tributed to the comprehensiveness of the KGE metric, which
considers factors such as correlation, mean consistency, and
variance consistency of the flow. Fluctuations in the KGE
score may arise from various uncertainties related to data
quality, model structure, and flood forecasting.

With an increase in the forecast period, the performance
of the model, particularly the LSTM model, shows a signif-
icant decrease, consistent with the findings reported by Xu
et al. (2021). They provided NSE, RMSE, and Bias indices
for the LSTM model in forecast periods of 1-12h, demon-
strating that the LSTM model meets prediction requirements
for short forecast periods. However, as the forecast period ex-
tends, the accuracy diminishes, leading to underestimation of
flood peaks and significant fluctuations. Similar conclusions
were drawn in the studies conducted (Cui et al., 2021; Ding
et al., 2020). The longer the foresight period, the lower the
correlation between input and output variables. The models
face increased difficulty due to the lack of future information
and the challenges associated with flood forecasting.

The addition of an attention mechanism effectively en-
hances the accuracy of flood forecasting in the original
LSTM model. As the lead time increases, the temporal
weights gradually shift forward, causing the model to pay
greater attention to values closer to the current moment. This
finding aligns with the conclusions of studies on temporal
attention conducted by Ding et al. (2020) and Wang et al.
(2023). However, there is a difference between their studies
and the current one, as they incorporated a spatial attention
module to focus on the relevance of spatial locations, while
this study introduces a feature attention module to highlight
the importance of different input features in flood forecast-
ing.

Incorporating physical constraints into the model en-
hances the understanding of the monotonic relationships be-
tween variables in the flooding process and improves the
physical consistency of the model. This study considers
the monotonic relationships between rainfall, evapotranspi-
ration, initial soil moisture, and runoff in the watershed. In
a study by Xie et al. (2021), three physical conditions re-
lated to the rainfall-runoff forecasting process were encoded
into the loss function at the daily scale. Experimental re-
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Figure 9. The visualization of feature-time-based attention weights of the PHY-FTMA-LSTM (a) t+1, (b) r+2, (¢) t+3, (d) r +4, (e) 1 +5,
and (f) t 4+ 6 (The X coordinate variables F1 to F4 represent the input features of runoff, rainfall, evapotranspiration, and initial soil moisture
of the watershed, respectively. The Y coordinate variables represent the input history moments).

sults on 531 watersheds in the CAMELS dataset showed that
the model achieved an improvement from 0.52 to 0.61 in
the NSE mean compared to the LSTM model. In this study,
flood forecasting is performed at a finer time scale, specifi-
cally at the hourly scale, and additional monotonic relation-
ship constraints between evapotranspiration, initial soil water
content, and runoff are incorporated.

Notably, across all forecast periods — particularly at # + 5
and ¢4 6 — scatterplot points (Fig. 6) exhibit deviant be-
havior forming curve patterns for discharge values exceed-
ing approximately 300 m>3s~!. The analysis reveals that the
outliers primarily cluster during the 19740723 flood event,
mainly attributable to training dataset limitations. This ex-
treme event featured both an exceptionally prolonged dura-
tion and high peak discharge — characteristics absent from the

https://doi.org/10.5194/hess-29-5955-2025

training data. Consequently, the model demonstrates insuffi-
cient capacity to simulate such threshold-exceeding events,
yielding suboptimal performance. However, as this repre-
sents an extreme scenario, model accuracy is expected to im-
prove with expanded data accumulation.

Furthermore, the dataset was partitioned solely into train-
ing and validation sets primarily due to limitations in avail-
able historical flood events — only 30 events were utilized,
most with relatively short durations. This resulted in a limited
sample size and insufficient additional floods for model test-
ing; future data acquisitions will be incorporated to enhance
robustness. To maximize coverage of flood diversity and cap-
ture spatiotemporal heterogeneity, we partitioned data based
on temporal occurrence, peak discharge, and flood duration.
This methodology follows established precedents (e.g., Lv
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et al., 2020; Read et al., 2019; Xie et al., 2021; Jiang et al.,
2020) where dual-set partitioning is widely adopted beyond
flood forecasting applications. Crucially, our results are con-
tingent upon the specific flood event partitioning of training
and validation sets detailed in Table 1, with no investigation
of alternative partitioning impacts. Future research could em-
ploy cross-validation or bootstrapping to evaluate model ro-
bustness and stability across different dataset divisions.

Flood forecasting is challenged by various complex factors
such as meteorological conditions and rainfall patterns, and
the uncertainty of these factors increases over time (Cheng
et al., 2021; Hu et al., 2019). Consequently, the models are
prone to significant prediction errors. When the forecast pe-
riod extends to 6 h, each model exhibits a significant devia-
tion from the observed hydrograph and more anomalous fluc-
tuations. While our framework currently caps at 6 h predic-
tions, extending this horizon requires confronting two fun-
damental constraints: (1) Input deficiency: The absence of
real-time meteorological forecasts prevents runoff anticipa-
tion prior to precipitation; (2) Structural saturation: Memory
decay in recurrent units limits long-range dependency cap-
ture. To address current limitations, future research will pur-
sue a dual-track improvement strategy: Near-term efforts will
focus on implementing error correction techniques, specifi-
cally K-nearest neighbors (KNN) and backpropagation (BP)
algorithms, coupled with advanced data assimilation meth-
ods such as Ensemble Kalman and Particle filters to enhance
real-time forecasting accuracy. While more fundamental en-
hancements will involve the strategic integration of numer-
ical weather prediction inputs — specifically the European
Centre for Medium-Range Weather Forecasts (ECMWF) and
China Meteorological Administration Global Forecast Sys-
tem (CMA-GFS) datasets — to enable pre-rainfall runoff an-
ticipation and systematically extend predictive lead times be-
yond the current 6 h threshold. Thereby addressing both im-
mediate performance gaps and long-term capability require-
ments in flood forecasting.

6 Conclusions

This research introduces a DL model called PHY-FTMA-
LSTM, which combines feature-time-based multi-head at-
tention mechanisms with physical constraints. The primary
aim is to explore how incorporating interpretability and phys-
ical constraints into DL models affects flood forecasting ac-
curacy. The evaluation of the flood forecasting results from
1 to 6 h during the foresight period in the Luan River basin
yields the following conclusions:

1. The attention mechanism that considers both features
and time effectively enhances the model’s prediction
performance, surpassing that of the original LSTM
model. The FTMA-LSTM model, equipped with an in-
creased number of attention heads, further improves ac-
curacy by considering more information through par-
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allel computation. Taking the integration of physical
constraints into account, the PHY-FTMA-LSTM model
achieves the best performance, exhibiting stable results.
For a lead time of 7 + 1, the NSE, KGE, R?, RMSE, and
MAE reaches 0.988, 0.984, 0.988, 11.50, and 4.26, re-
spectively. Additionally, NSE, KGE, and R? also could
reach 0.908, 0.905, and 0.911 for a lead time of ¢ + 6.

2. The incorporation of a feature-time-based multi-head
attention mechanism improves interpretability by di-
recting attention to the most valuable features and his-
torical moments within the inputs. The weight matrix
visualization reveals that runoff emerges as the most in-
fluential feature in flood forecasting, followed by rain-
fall, and finally initial soil moisture and evapotranspi-
ration. Furthermore, the weight distribution becomes
more concentrated with increasing lead time.

3. The model combines physical constraints by consider-
ing the monotonic relationships between rainfall, evap-
otranspiration, initial soil moisture, and runoff at an
hourly scale. This augmentation significantly improves
the model’s predictive capacity for flood processes, in-
cluding flood peaks, while reducing the lag time.

In this study, we have successfully incorporated both the
attention mechanism and physical mechanism into a DL
model to improve the accuracy of flood prediction while en-
suring interpretability and physical consistency. While our
current framework demonstrates strong performance within
6 h predictions, we recognize two key constraints for ex-
tending this horizon: the input deficiency due to missing
real-time meteorological forecasts and the structural satura-
tion caused by memory decay in recurrent units. To address
these limitations, future research will provide improvements
through error correction techniques and data assimilation, as
well as fundamental enhancements through the integration
of ECMWF/CMA-GFS numerical weather prediction inputs
to enable pre-rainfall runoff prediction and extend the fore-
cast period beyond 6h. Additionally, we suggest exploring
other interpretation techniques to deepen understanding of
the model’s decision-making, while expanding the physical-
DL integration through more detailed basin subsurface infor-
mation and novel combination methods.

Code and data availability. The rainfall and flood data and
model codes used in this study are available at https:/
github.com/zran1/PHY_FTMA_LSTM (last access: 13 October
2025) (https://doi.org/10.5281/zenodo.17337746, Zhang, 2025).
The evapotranspiration and initial soil moisture data are extracted
from the GLDAS Noah Land Surface Model (Beaudoing and
Rodell, 2019; D. Beaudoing and Rodell, 2020), which is freely
available at https://disc.gsfc.nasa.gov/datasets (last access: 13 Oc-
tober 2025).
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