Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5453-2025
https://doi.org/10.5194/hess-29-5453-2025
Research article
 | 
21 Oct 2025
Research article |  | 21 Oct 2025

Improving streamflow simulation through machine learning-powered data integration and its potential for forecasting in the Western U.S.

Yuan Yang, Ming Pan, Dapeng Feng, Mu Xiao, Taylor Dixon, Robert Hartman, Chaopeng Shen, Yalan Song, Agniv Sengupta, Luca Delle Monache, and F. Martin Ralph

Related authors

Image-based classification of stream stage to support ephemeral stream monitoring
Sarah E. Ogle, Garrett McGurk, Anahita Jensen, Fred Martin Ralph, and Morgan C. Levy
Hydrol. Earth Syst. Sci., 30, 709–742, https://doi.org/10.5194/hess-30-709-2026,https://doi.org/10.5194/hess-30-709-2026, 2026
Short summary
Technical note: Separating signal from noise in large-domain hydrologic model evaluation – Benchmarking model performance under sampling uncertainty
Gaby J. Gründemann, Wouter J. M. Knoben, Yalan Song, Katie van Werkhoven, and Martyn P. Clark
EGUsphere, https://doi.org/10.5194/egusphere-2025-6460,https://doi.org/10.5194/egusphere-2025-6460, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Comparing multi-model mosaic and multi-model combination methods to simulate streamflow across the contiguous USA
Cyril Thébault, Wouter J. M. Knoben, Nans Addor, Andrew J. Newman, Diana Spieler, Nicolás A. Vásquez, Yalan Song, Gaby J. Gründemann, Shaun Carney, Mukesh Kumar, Katie van Werkhoven, Chaopeng Shen, Andrew W. Wood, and Martyn P. Clark
EGUsphere, https://doi.org/10.5194/egusphere-2025-6083,https://doi.org/10.5194/egusphere-2025-6083, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Ensembling differentiable process-based and data-driven models with diverse meteorological forcing datasets to advance streamflow simulation
Peijun Li, Yalan Song, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 29, 6829–6861, https://doi.org/10.5194/hess-29-6829-2025,https://doi.org/10.5194/hess-29-6829-2025, 2025
Short summary
From RNNs to Transformers: benchmarking deep learning architectures for hydrologic prediction
Jiangtao Liu, Chaopeng Shen, Fearghal O'Donncha, Yalan Song, Wei Zhi, Hylke E. Beck, Tadd Bindas, Nicholas Kraabel, and Kathryn Lawson
Hydrol. Earth Syst. Sci., 29, 6811–6828, https://doi.org/10.5194/hess-29-6811-2025,https://doi.org/10.5194/hess-29-6811-2025, 2025
Short summary

Cited articles

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Inf. Fusion, 76, 243–297, https://doi.org/10.1016/j.inffus.2021.05.008, 2021. 
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., and Jetz, W.: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling, Sci. Data, 5, 180040, https://doi.org/10.1038/sdata.2018.40, 2018a. 
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., and Jetz, W.: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling, links to files in GeoTIFF format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.867115, 2018b. 
Ayana, Ö., Kanbak, D. F., Kaya Keleş, M., and Turhan, E.: Monthly streamflow prediction and performance comparison of machine learning and deep learning methods, Acta Geophys., 71, 2905–2922, https://doi.org/10.1007/s11600-023-01023-6, 2023. 
Baker, S. A., Rajagopalan, B., and Wood, A. W.: Enhancing Ensemble Seasonal Streamflow Forecasts in the Upper Colorado River Basin Using Multi-Model Climate Forecasts, J. Am. Water Resour. Assoc., 57, 906–922, https://doi.org/10.1111/1752-1688.12960, 2021. 
Download
Short summary
We explore a machine learning-based data integration method that integrates streamflow (Q) and snow water equivalent (SWE) to improve streamflow estimates at various lag times (1–10 d, 1–6 months) and timescales (daily and monthly) over Western US basins. Benefits rank as: integrating Q at the daily scale > Q at the monthly scale > SWE at the monthly scale > SWE at the daily scale. Results highlight the method’s potential for short- and long-term streamflow forecasting in the Western US.
Share