Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5453-2025
https://doi.org/10.5194/hess-29-5453-2025
Research article
 | 
21 Oct 2025
Research article |  | 21 Oct 2025

Improving streamflow simulation through machine learning-powered data integration and its potential for forecasting in the Western U.S.

Yuan Yang, Ming Pan, Dapeng Feng, Mu Xiao, Taylor Dixon, Robert Hartman, Chaopeng Shen, Yalan Song, Agniv Sengupta, Luca Delle Monache, and F. Martin Ralph

Related authors

Ensembling differentiable process-based and data-driven models with diverse meteorological forcing datasets to advance streamflow simulation
Peijun Li, Yalan Song, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 29, 6829–6861, https://doi.org/10.5194/hess-29-6829-2025,https://doi.org/10.5194/hess-29-6829-2025, 2025
Short summary
From RNNs to Transformers: benchmarking deep learning architectures for hydrologic prediction
Jiangtao Liu, Chaopeng Shen, Fearghal O'Donncha, Yalan Song, Wei Zhi, Hylke E. Beck, Tadd Bindas, Nicholas Kraabel, and Kathryn Lawson
Hydrol. Earth Syst. Sci., 29, 6811–6828, https://doi.org/10.5194/hess-29-6811-2025,https://doi.org/10.5194/hess-29-6811-2025, 2025
Short summary
Soil oxygen dynamics: a key mediator of tile drainage impacts on coupled hydrological, biogeochemical, and crop systems
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci., 29, 6393–6417, https://doi.org/10.5194/hess-29-6393-2025,https://doi.org/10.5194/hess-29-6393-2025, 2025
Short summary
Impacts of Air–sea Coupling on Systematic Errors in Medium-Range Winter Forecasts over the North Pacific and North Atlantic
Tien-Yiao Hsu, Matthew R. Mazloff, Sarah T. Gille, Hai Lin, K. Andrew Peterson, Rui Sun, Aneesh C. Subramanian, and Luca Delle Monache
EGUsphere, https://doi.org/10.5194/egusphere-2025-4142,https://doi.org/10.5194/egusphere-2025-4142, 2025
Short summary
Imagery classification of stream stage to support ephemeral stream monitoring
Sarah E. Ogle, Garrett McGurk, Anahita Jensen, Fred Martin Ralph, and Morgan C. Levy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2297,https://doi.org/10.5194/egusphere-2025-2297, 2025
Short summary

Cited articles

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Inf. Fusion, 76, 243–297, https://doi.org/10.1016/j.inffus.2021.05.008, 2021. 
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., and Jetz, W.: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling, Sci. Data, 5, 180040, https://doi.org/10.1038/sdata.2018.40, 2018a. 
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., and Jetz, W.: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling, links to files in GeoTIFF format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.867115, 2018b. 
Ayana, Ö., Kanbak, D. F., Kaya Keleş, M., and Turhan, E.: Monthly streamflow prediction and performance comparison of machine learning and deep learning methods, Acta Geophys., 71, 2905–2922, https://doi.org/10.1007/s11600-023-01023-6, 2023. 
Baker, S. A., Rajagopalan, B., and Wood, A. W.: Enhancing Ensemble Seasonal Streamflow Forecasts in the Upper Colorado River Basin Using Multi-Model Climate Forecasts, J. Am. Water Resour. Assoc., 57, 906–922, https://doi.org/10.1111/1752-1688.12960, 2021. 
Download
Short summary
We explore a machine learning-based data integration method that integrates streamflow (Q) and snow water equivalent (SWE) to improve streamflow estimates at various lag times (1–10 d, 1–6 months) and timescales (daily and monthly) over Western US basins. Benefits rank as: integrating Q at the daily scale > Q at the monthly scale > SWE at the monthly scale > SWE at the daily scale. Results highlight the method’s potential for short- and long-term streamflow forecasting in the Western US.
Share