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Abstract. Accurate streamflow forecasts are crucial but re-
main challenging for the arid Western United States (U.S.).
Recently, machine learning methods such as long short-term
memory (LSTM) have exhibited high accuracy in streamflow
simulation and strong abilities to integrate observations to
enhance performance. This study evaluated an LSTM-based
data integration approach that incorporates streamflow (Q)
and snow water equivalent (SWE) observations to improve
streamflow estimations across different lag times (1-10d, 1-
6 months) and timescales (daily and monthly) over hundreds
of basins in the Western U.S. Integrating Q at the daily scale
provided the greatest improvements, increasing the median
Kling-Gupta Efficiency (KGE) of 646 basins from 0.80 to
0.96 when integrating 1d lagged Q, and remaining at 0.89
even with a 10d lag. Integrating Q at the monthly scale also
enhanced streamflow estimations, though to a lesser extent
than at the daily scale, with the median KGE rising from
0.80 to 0.86 when integrating 1-month lagged streamflow.
The next most notable improvement resulted from integrat-
ing SWE at the monthly scale, where the median KGE im-
proved to 0.86 when integrating 1-month lagged SWE. Fur-
thermore, SWE integration showed greater benefits at the
monthly scale in snow-dominated basins during snowmelt
season, which was beneficial for spring-summer flow esti-
mations. However, integrating SWE at the daily scale did not
show improvements. These results highlight the potential of
this LSTM-based data integration approach for both short-

term and long-term streamflow forecasting due to its perfor-
mance, automation and efficiency.

1 Introduction

Accurate, reliable, and easily implementable hydrological
forecasts are crucial for Western United States (U.S.), a re-
gion characterized by arid conditions and high water demand
(Baker et al., 2021; Fleming et al., 2021; Hunt et al., 2022;
Pierce et al., 2008). Short-term forecasts aid in flood risk mit-
igation, while long-term forecasts facilitate water allocation,
reservoir operations, hydropower generation, and drought re-
silience (Broxton et al., 2023; Yaseen et al., 2015). However,
this region’s complex topography, including deserts, moun-
tains, valleys, and coastal areas, along with its localized cli-
mate dynamics, such as atmospheric rivers, monsoons, and
seasonal snowpack, pose significant challenges for accurate
streamflow forecasting (Zeng et al., 2018).

Operational agencies employ various streamflow fore-
cast practices, tailored to their specific needs and regional
characteristics. The U.S. Department of Agriculture Natu-
ral Resources Conservation Service (NRCS) utilizes princi-
pal component regression (PCR), a statistical model to pre-
dict streamflow based on selected predictors (Garen, 1992;
Perkins et al., 2009). The National Weather Service (NWS)
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River Forecast Centers (RFC) developed the Hydrological
Ensemble Forecast System (HEFS), which uses the Sacra-
mento Soil Moisture Accounting (SAC-SMA) and SNOW-
17 models to generate streamflow forecasts across differ-
ent timescales (Brown et al., 2014; Demargne et al., 2014).
While historically successful, these techniques have become
less skillful due to regional climate change and other tech-
nical limitations, necessitating potential upgrades or replace-
ments (Fleming and Goodbody, 2019). For instance, the re-
cently developed National Water Model is intended to serve
as the basis for the future U.S. streamflow forecasting sys-
tem (Cosgrove et al., 2024). Additionally, these models re-
quire extensive manual expertise for domain-specific imple-
mentation, such as subjective predictor selection, careful em-
pirical regression identification, and labor-intensive parame-
ter calibration (Fleming et al., 2021). Moreover, they strug-
gle to ingest new observations to enhance streamflow fore-
casts without substantial structural modifications, such as re-
calibrating regressions or integrating data assimilation tech-
niques (Franz et al., 2014; Gichamo and Tarboton, 2019). For
example, the California-Nevada RFC (CNRFC) employs a
“forecasters-in-the-loop” approach, where forecasters man-
ually adjust predictions as new information becomes avail-
able, leveraging their prior experience to enhance forecast
accuracy.

With the ever-increasing data availability and large ad-
vancements in computing technologies, machine learning
(ML) models have emerged as promising alternatives to alle-
viate these limitations. ML models can automatically extract
useful information from complex datasets and generate accu-
rate estimation without requiring extensive knowledge of the
underlying physical systems (LeCun et al., 2015; Prasad et
al., 2017; Schmidhuber, 2015; Shen, 2018; Shen et al., 2023),
thereby reducing the need for manual interventions. More-
over, ML models can easily absorb new datasets during train-
ing (Shen, 2018), scale efficiently to multiple catchments
(Feng et al., 2020; Kratzert et al., 2018), and extrapolate pro-
ficiently to ungauged basins (Feng et al., 2021; Kratzert et
al., 2019a). Therefore, a surge in applying ML models for
streamflow forecasting has been observed in recent years
(Fleming et al., 2021; Nearing et al., 2024). For example, the
multi-model machine learning metasystem (M*) is currently
being developed as the next-generation operational forecast-
ing system in NRCS (Fleming and Goodbody, 2019). Among
the various ML models, one increasingly popular model is
the Long Short-Term Memory (LSTM) network, a specifi-
cally designed version of recurrent neural network (RNN) for
long-term sequential datasets (Greff et al., 2016; Hochreiter
and Schmidhuber, 1997). With its unique structure of mem-
ory cells and gating mechanisms, LSTM effectively manages
the flow of information over long sequences, enabling the re-
tention of relevant input data while discarding less important
information. A growing body of research has demonstrated
LSTM’s seemingly incomparable performance in streamflow
estimation at both daily and monthly scales (Ayana et al.,
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2023; Cheng et al., 2020; Clark et al., 2024; Dalkilic et al.,
2023; Feng et al., 2020, 2021; Frame et al., 2022; Gauch et
al., 2021; Kratzert et al., 2019a; Lees et al., 2021; Nearing et
al., 2024).

Incorporating observations is important to improve
streamflow estimation, as it helps adjust model states to bet-
ter represent actual hydrological conditions (Sabzipour et al.,
2023). In the context of LSTM-based models, this can be
achieved through methods such as data assimilation (DA) or
data integration (DI, Feng et al., 2020; Song et al., 2024),
the latter also referred to as “autoregression” in Nearing et
al. (2022). Similar to traditional DA in hydrological mod-
els, DA in LSTM-based models computes the difference be-
tween simulations and observations, and propagates it back-
ward into the model to update the model’s internal states.
This process relies on inverse procedures, such as variational
optimization, and ensemble-based conditional probability es-
timation, which are not only computationally intensive but
also highly sensitive to parameters related to error distribu-
tions, regularization coefficients, and resampling procedures
(Bannister, 2017; Nearing et al., 2018; Snyder et al., 2008).
In contrast, DI directly incorporates observations as inputs
and lets LSTM autonomously learn how to optimally utilize
this information to enhance estimation. A comparative anal-
ysis by Nearing et al. (2022) demonstrated that DI is more
accurate and computationally efficient than DA, making it a
preferable approach for improving LSTM-based streamflow
estimation.

Several studies have demonstrated that directly integrat-
ing streamflow observations into the LSTM inputs can sig-
nificantly improve daily streamflow estimation but only at
one or several gauges (Khoshkalam et al., 2023; Le et al.,
2019; Sabzipour et al., 2023). Feng et al. (2020), Mangukiya
et al. (2023) and Nearing et al. (2022) extended this analy-
sis to large-scale datasets, yet their findings remained con-
strained to the daily timescale. On the other hand, snow is
the primary source of water in the Western U.S., contributing
approximately 53 % of the total streamflow (Li et al., 2017).
Despite its critical role, few studies have investigated the im-
pact of integrating snow observations into LSTM on stream-
flow estimation. One exception is Thapa et al. (2020), which
showed that incorporating snow cover area as an input im-
proved monthly streamflow estimation, though this analysis
was limited to only one gauge. Furthermore, different hydro-
logical variables exhibit varying persistence within the water
cycle. Snow, for example, has a longer memory effect since
it acts as a natural reservoir that stores water during win-
ter and gradually releases water throughout the spring and
summer snowmelt season. However, a gap remains in the lit-
erature regarding the comprehensive evaluation of how dif-
ferent observations, such as streamflow (Q) and snow water
equivalent (SWE), affect streamflow estimation across mul-
tiple timescales.

Motivated by the demonstrated performance of LSTM,
this study evaluated a flexible LSTM-based data integra-
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tion approach that incorporates different observations (Q
and SWE) to improve streamflow simulations across mul-
tiple timescales and hundreds of basins in the Western U.S.
In this study, retrospective simulations were conducted using
observed meteorological forcings, rather than weather fore-
casts. Given that accurate simulations form the foundation
of reliable streamflow forecasting, the demonstrated perfor-
mance of this data integration approach in retrospective sim-
ulations underscores its potential value for forecasting appli-
cations. The findings of this study provide critical insights
into (1) the effectiveness of LSTM-based data integration for
improving streamflow forecasting in the Western U.S. and
(2) the different influence of Q and SWE observations on
forecast performance across varying timescales.

2 Methods
2.1 Data

We selected a total of 646 basins (all dots in Fig. 1a) in
the Western U.S. from the U.S. Geological Survey (USGS)
Geospatial Attributes of Gages for Evaluating Streamflow 11
(GAGEII; Falcone, 2011; Falcone et al., 2010) database for
model training. Basin selection was based on several criteria,
including boundary accuracy, basin area, data length, reser-
voir influences, and visual inspection (Appendix A). To fur-
ther investigate the effect of integrating SWE data, we iden-
tified a subset of 429 snow-dominated basins (blue dots in
Fig. 1a) from the selected 646 basins (Appendix A), while the
remaining basins (orange) are classified as rain-dominated.

We utilized five forcing variables from CW3E 1km 1-
hourly Meteorological Forcing on NWM Grid (CW3E-
Forcing, Pan, 2025) dataset and monthly leaf area index
(LAI) climatology (no interannual change) from PROBA-
V (Fuster et al., 2020) (Table E1). CW3E-Forcing is gen-
erated using an elevation-based downscaling and merging
procedure to ingest a series of inputs from different sources
with different temporal/spatial resolutions, domains, peri-
ods of coverage, and lag times. Key features of this forcing
dataset include its long-term record (spanning from 1979 to
the present), high resolution (1 km, 1h), and national-scale
coverage across the conterminous United States. Here, we
utilized the aggregated daily retrospective data from 1983
to 2022. Note that in this study, we performed retrospective
experiments to show the effectiveness of the DI-LSTM ap-
proach, therefore, no forecasted forcings were used.

To inform LSTM about basin rainfall-runoff behaviors,
we calculated the top 10 sensitive basin attributes accord-
ing to Kratzert et al. (2019b), including climate, topography,
and soil attributes (Table E1) as additional inputs to train
the models. These attributes were static and appended to the
forcing data as input for LSTM.

The daily streamflow data, used both as the training target
as well as the input of streamflow integration experiments,
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were obtained directly from the USGS Water Information
System.

For SWE, we used the daily 4 km gridded SWE data from
the University of Arizona dataset (Broxton et al., 2016; Zeng
et al., 2018). This dataset is derived through ordinary Krig-
ing interpolation of SWE values from the Snow Telemetry
(SNOTEL) sites and further enhanced by incorporating snow
depth measurements from thousands of NWS Cooperative
Observer Program (COOP) stations (Dawson et al., 2017).

All gridded data were spatially averaged to the basin scale
from their original resolutions. All dynamic datasets were ag-
gregated to both daily and monthly timescales to conduct ex-
periments at these two temporal resolutions.

2.2 Modeling

Due to the great potential of LSTM in hydrological model-
ing, we adopted the LSTM model to investigate the effects of
data integration. Additional LSTM details are in Appendix B.

Overall, we trained two types of LSTM models to assess
the potential of leveraging lagged observations to improve
streamflow estimation (Fig. 1b). The first type is a standard
LSTM model that does not perform data integration (DI)
and does not use any historical Q or SWE observations. It
serves as a valuable benchmark for the comparison against
DI-LSTM model. The inputs consist solely of forcings and
basin attributes at the current time step and can be expressed
as:

I' =[x}, Al (1)

Where ¢ is the current time step, I’ represents the raw in-
put to the model (before data pre-processing), x’0 stands for
dynamic forcings, and A represents static basin attributes.

The second type of model is DI-LSTM, which refers to
the incorporation of lagged observations (y) into the model
(Fig. 1c). The inputs of DI-LSTM can be expressed as:

I' =[x}, A, y'™M], 2)

where N is the lag time step, and y’ " is N-step lagged Q or

SWE directly from observations. In other words, we fed a N-
step-lagged variable y, and let DI-LSTM decide how to use it
to dynamically update both cell and hidden states, as well as
the LSTM weights, thereby minimizing the accumulation of
compounding errors and achieving a better estimation. The
only difference between DI-LSTM model and the standard
LSTM is whether lagged observations are incorporated in
the inputs. Compared with the complex DA techniques used
in conceptual or process-based models, this LSTM-powered
DI method is relatively straightforward. Its higher compu-
tational efficiency and lower development costs make it a
promising candidate for operational implementation.

2.3 Experiments

In this study, we evaluated our DI algorithm with two vari-
ables: lagged Q and SWE. Given that the effects of DI are
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Figure 1. (a) Study basins: blue dots stand for snow-dominated basins, orange dots stand for rain-dominated basins. (b) models: LSTM vs.
DI-LSTM model. (¢) DI-LSTM with data integration of N-step lagged observations.

expected to vary across different timescales, we tested the al-
gorithm at both daily and monthly scales across all selected
basins. For the daily scale, lag times ranged from 1 to 10d
were considered, aligning with the focus of short-term op-
erational forecasts, which typically target lead times within
10d due to rapidly increasing uncertainty beyond this range.
For the monthly scale, 1- to 6-month lags were chosen to
reflect typical forecasting horizons used in broader water re-
source planning and management. In the following text, we
used DI(Q-N) or DI(SWE-N) to denote the integration with
Q or SWE from N time steps ago. Additionally, to assess
whether integrating SWE has a more pronounced effect in
snow-dominated basins, we conducted an additional set of
LSTM and DI(SWE-N) experiments specifically for the 429
snow-dominated basins. In total, 52 experiments were con-
ducted in this study. A summary of these experiments is pro-
vided in Table 1.

For each experiment, training data from all selected basins
during the 1983-2002 period was used to train LSTM and
DI-LSTM models, enabling the network to learn a general
understanding of the rainfall-runoff process. The inputs in-
cluded six meteorological features and 10 static basin at-
tributes (Table E1). The loss function was the Root-Mean-
Squared Error (RMSE). Standard pre-processing techniques,
including normalization and standardization, were applied to
ensure compatibility across different input types and to fa-
cilitate effective parameter optimization (See Appendix C
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for details). Lagged observations were directly appended to
the original LSTM inputs and underwent the same prepro-
cessing procedures. Hyperparameters, such as the number
of hidden/cell states and the length of the input sequence,
were determined separately for daily and monthly scales. For
the daily scale, hyperparameter combinations were inherited
from our previous studies (Feng et al., 2020; Song et al.,
2024; Yang et al., 2025). For the monthly scale, hyperparam-
eters were determined through a simple grid search across a
predefined range of values (Table E2). Final selections were
based on analysis of training and validation RMSE learn-
ing curves, with the chosen settings minimizing validation
RMSE while avoiding overfitting. A fast and flexible LSTM
framework from the open-source hydroDL repository (Fang
et al., 2021) was implemented.

Missing values are common in streamflow data, yet a naive
LSTM cannot operate if any of its inputs are missing. To
address this limitation in DI(Q) experiments, we initially
trained the standard LSTM model by filling in missing data
with the mean of the training period and subsequently re-
placed the missing lagged streamflow data with the corre-
sponding LSTM-modeled streamflow data at the same lag
time. To prevent missing target (streamflow) values from in-
fluencing the model training, for all experiments, the loss
function calculation excluded simulations where the corre-
sponding streamflow observations were missing.

https://doi.org/10.5194/hess-29-5453-2025
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Table 1. Experiments.
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Time Scale Lag Time (N) DI Observations  Training Basins Experiment Name

Daily 1-10d 0 All Daily DI(Q-N)
SWE All & snow-dominated®  Daily DI(SWE-N)

Monthly 1-6 months 0 All Monthly DI(Q-N)

SWE

All & snow-dominated*  Monthly DI(SWE-N)

* Only used in Sect. 4.2

To account for stochasticity in the neural network training
and to provide more reliable results (Fig. E1), we performed
an ensemble of six randomly seeded trainings, and the mean
of all six model simulations was used for the model evalua-
tion.

2.4 Evaluation

We evaluated the ensemble mean simulations from two types
of models, LSTM and DI-LSTM, for 2003-2022, indepen-
dent from the training period. The differences between the
two kinds of simulations showed the effect of integrat-
ing lagged observations. Metrics adopted to evaluate model
performance included the modified Kling-Gupta Efficiency
(KGE, Kling et al., 2012) and its three component metrics:
correlation coefficient (CC, for temporal coherence), relative
variability (RV, for bias in variability), and relative bias (RB,
for bias in magnitude). The equations of the four metrics are
shown in Table E3. We also calculated the percent bias of
the top 2 % peak flow range (FHV) and the percent bias of
the bottom 30 % low flow range (FLV) to highlight the per-
formance of the model for peak flows and baseflow, respec-
tively.

3 Results
3.1 The effectiveness of DI( Q) at the daily scale

The daily baseline LSTM without any DI already showed
a very promising simulation, with a median KGE of 0.80, a
median CC of 0.92, a median RV of 0.94, and a median RB of
—10.34 % during the test period (Table 2, Fig. 2). Better per-
formance can be seen over more humid regions, while only
12 basins show negative KGE values (Fig. 3), these basins
are located in hyper-arid regions with predominantly zero
streamflow throughout the evaluation period (e.g., gauge c¢ in
Fig. E2). This result, consistent with previous studies, such
as Feng et al. (2024), Kratzert et al. (2019b) and Nearing et
al. (2024), highlights the ability of a large-scale LSTM model
to learn hydrologic behaviors across diverse basins without
strong prior structural assumptions.

Overwhelming benefits were observed from integrat-
ing lagged streamflow, consistent with previous studies in
CONUS (Feng et al., 2020; Nearing et al., 2022), India (Man-
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gukiya et al., 2023) and Canada (Khoshkalam et al., 2023;
Sabzipour et al., 2023). Compared to the baseline LSTM, all
DI(Q) experiments exhibited significantly improved median
values (Table 2, p <= 0.05, Kolmogorov-Smirnov test, Egh-
bali, 1979; Smirnov, 1948) as well as substantially reduced
variability across all metrics (Fig. 2). After integrating the
1d lagged streamflow, the median KGE, CC, RV and RB
improved to 0.96, 0.98, 0.96 and 1.24 %, respectively, ap-
proaching nearly perfect values. Negative KGE values were
observed in only three basins, all located in hyper-arid re-
gions with mean daily streamflow below 1 m?s~!. Integrat-
ing lagged daily streamflow also improved the relative bias
of both low and high flows. Although the median FLV re-
mained largely unchanged, which was already close to zero,
the variability of FLV was largely reduced, indicating consis-
tently low values across basins. The underestimation of high
flows was significantly reduced, with median values shift-
ing closer to zero and a narrower range of variability. The
compaction of FHV was less pronounced than that of FLV.
Peak flows often occur over shorter timescales (e.g., during
storm events lasting less than 1 d), and thus their predictabil-
ity relies more on immediate forcings than on accumulated
hydrologic memory. As a result, the integration of lagged
streamflow was less effective in improving high flow esti-
mates than low flow estimates. Nevertheless, the benefits of
DI(Q) were still noticeable with FHV, demonstrating the role
of antecedent conditions in influencing flooding.

Spatially, ubiquitous and heterogeneous benefits from
daily DI(Q-N) can be observed over the whole Western U.S.
Taking DI(Q-1) as an example, most gauges experienced a
boost of 0.1-0.3 in KGE, and about 83 % of basins had a
KGE larger than 0.9 (Fig. 3). The largest improvements were
found in the Rocky Mountains and Sierra Nevada Ranges,
where KGE values were boosted from < 0.6 to 0.9-1. For
instance, gauges a and b (Fig. E2), located in this moun-
tainous region, illustrate cases where DI(Q-1) substantially
improved streamflow simulations. At gauge a, both under-
estimation and overestimation were notably reduced, result-
ing in a high KGE of 0.965. At gauge b, DI(Q-1) effectively
corrected the pronounced underestimation of baseflow, yield-
ing strong overall performance. Improvements were also ob-
served in the northern region. At gauge d in the Pacific
Northwest (Fig. E2), DI(Q-1) reduced peak flow overestima-
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Table 2. Median KGE of LSTM, DI(Q) and DI(SWE) experiments.

Y. Yang et al.: Improving Q simulation through ML-based data integration

Daily Scale | Monthly Scale | Monthly scale, April-July

Q0 SWE| 0 SWE | Q SWE
LSTM 0.80 0.80 | 0.80 0.80 | 0.76 0.76
N =1 (day/month) 096 0.80 | 0.86 0.82 | 0.81 0.79
N =2 (day/month) 0.95 0.80 | 0.85 0.82 | 0.79 0.78
N =3 (day/month) 094 081 | 0.85 0.82 | 0.80 0.78
N =4 (day/month) 093 080 | 0.84 0.81 | 0.78 0.76
N =5 (day/month) 0.92 0.80 | 0.84 0.81 | 0.78 0.76
N =6 (day/month) 092 0.80 | 0.83 0.80 | 0.78 0.76
N =7 (day/month) 0.91 0.81
N =8 (day/month) 0.90 0.81 - - - -
N =9 (day/month) 090 0.81 - - - -
N =10 (day/month) 0.89  0.80 - - - -
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Figure 2. Performance of LSTM (black) and DI(Q-N) (N = 1-10) experiments (red) at the daily scale. The “B” on the x-axis stands for
baseline LSTM, and N stands for DI(Q-N) experiment. The black horizontal line stands for the median value of the baseline LSTM. The
grey horizontal line shows perfect value for RV, RB, FLV, and FHV. The boxplots display the median, 25th/75th percentiles, the lowest datum
above Q1 —1.5-(Q3 — Q1) (lower whisker), and the highest datum below Q3+ 1.5-(Q3 — Q1) (upper whisker).

tion and increased the KGE to 0.947. The spatial pattern of
improvements shows a positive correlation with the stream-
flow autocorrelation, with the strongest benefits in regions
with high streamflow autocorrelation (Fig. E3). In several
southern basins, utilizing lagged streamflow observations did
not improve simulations. For example, DI(Q-1) did not im-
prove the simulation at gauge c¢ in the southwest (Fig. E2),
which exhibited no baseflow and 1 d flash peaks. One possi-
ble explanation is that these are highly arid basins with low
streamflow autocorrelation and flash floods (Li et al., 2022;
Mangukiya and Sharma, 2025; Saharia et al., 2017). The sud-
den sharp streamflow peaks in these basins typically persist
for less than one day and have little relationship with the pre-
vious day’s streamflow, limiting the effectiveness of lagged
streamflow observations.

Hydrol. Earth Syst. Sci., 29, 5453-5476, 2025

In general, more recent observations typically contribute
more to predictive improvements (Cheng et al., 2020;
Sabzipour et al., 2023). The benefits of daily DI(Q) gradu-
ally decayed as N increased, with a corresponding widening
of metric variability (Fig. 2). This gradual decay of DI(Q)
benefits, to a certain extent, reflects the memory length of
hydrological processes (Feng et al., 2020; Sabzipour et al.,
2023). However, even in the DI(Q-10) experiment, the me-
dian KGE, CC, RV and RB remained at 0.89, 0.95, 0.95
and —3.00 %, respectively, still outperforming the baseline
LSTM. This demonstrates that integrating streamflow from
10d ago remains valuable for daily streamflow simulations.
If implemented in a forecasting mode, the results suggest that
near real-time streamflow observations could be leveraged to
enhance short range streamflow forecast across these basins

https://doi.org/10.5194/hess-29-5453-2025
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Figure 3. Comparison of KGE spatial patterns over the Western U.S. for experiments at the daily scale (left), monthly scale (middle) and
monthly scale but only evaluation for April to July (right). From top to bottom: (a—¢) LSTM, (d—f) DI(Q-1), (g-i) AKGE = KGEpy(-1) —
KGE; sTm- N1/N2 on (g)—(i) stands for the number of basins where DI(Q-1)/LSTM performs better, respectively.

in the Western U.S., relative to models without such obser-
vations.

3.2 The effectiveness of DI( Q) at the monthly scale

At the monthly scale, the baseline LSTM simulated stream-
flow well, achieving a median KGE of 0.80, quite similar
to the daily-scale results. This consistency in performance
across temporal resolutions aligns with findings from Yao et
al. (2023), indicating that the standard LSTM is largely unaf-
fected by changes in temporal resolution. Integrating lagged
streamflow observations from 1 to 6 months ago also signifi-
cantly improved model performance, yielding higher median
values and reduced variability across all metrics. Monthly
DI(Q-1) achieved a median KGE of 0.86 (Fig. 4a) and en-
hanced simulations in about 76 % of basins (Fig. 3). For ex-
ample, DI(Q-1) largely reduced the underestimation in the
baseflow and overestimation in the peak flow, leading to
much higher KGE values for gauges a, b and d in Fig. E2.
However, its effectiveness remained limited in hyper-arid re-
gions, such as at gauge ¢ (Fig. E2), where overall simulation
accuracy did not improve. DI(Q-6) still exhibited a higher
median KGE (0.83) and a smaller spread, showing the ad-
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vantage of integrating monthly streamflow. However, the im-
provements at the monthly scale were less pronounced than
those at the daily scale. This was expected since the monthly
streamflow autocorrelation is usually weaker (Fig. E3), and
lagged streamflow provides reduced predictive value. Effec-
tive water management in the Western U.S. depends heavily
on spring-summer (April-July) streamflow volume forecasts,
commonly referred to as seasonal Water Supply Forecasts
(WSFs). To assess model performance during this critical
period, we evaluated streamflow from April to July. When
evaluated specifically for the April-July period, LSTM per-
formed slightly worse than the full-year analysis, with a
median KGE of 0.76, but with a similar spatter pattern
(Fig. 3). As in the full-year results, several arid basins in
the southern region exhibited very low KGE values, high-
lighting the need for further research to improve simulations
in arid environments. However, integrating lagged monthly
streamflow significantly contributes to better performance,
with higher median KGE values for monthly DI(Q-1) and
monthly DI(Q-6) (0.81 and 0.78, respectively) as well as re-
duced variability (Fig. 4c). The improvements for the April—-
July flow exhibited a spatial pattern similar to those observed
for year-round flow, albeit with reduced magnitude. This dif-
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ference in magnitude is likely attributable to loss functions in
monthly DI(Q) experiments being optimized for year-round
flow rather than specifically tailored to the April-July period.

3.3 The effectiveness of DI(SWE) at the daily scale

In contrast to daily DI(Q), integrating lagged SWE data at
the daily scale did not improve streamflow simulations in
terms of KGE (Fig. 5). This outcome aligns with expec-
tations, as snow-related processes typically have a longer
memory effect. Moreover, temperature, one of the model
inputs, partially reflects snow dynamics, which the LSTM
can effectively leverage through its memory states to esti-
mate streamflow. However, significant improvements were
still observed in CC and RV, indicating that DI(SWE) can
enhance temporal dynamics and reduce variability biases.
The overestimation was reduced, particularly during low-
flow conditions, while underestimation worsened, leading
to poorer RB medians. This increased underestimation may
stem from the prevalence of seasonal snowpack in most
basins, where abundant days with zero SWE values could
introduce bias when integrated into the model. Addition-
ally, the quality of the SWE dataset itself likely plays a role.
Further investigation, such as utilizing SWE data from Air-
borne Snow Observatory (ASO, Painter et al., 2016) or snow
course, is needed to better understand the underestimation
issue.

Spatially, most improvements were observed in the Rocky
Mountains (Fig. 6), where deeper snowpack usually ex-
ists and flow is dominated by snow. To further investigate
whether the effect of integrating lagged SWE varies across
different snowpacks, we evaluated model performance sep-
arately over rain-dominated basins (orange dots in Fig. 1a)
and snow-dominated basins (blue dots in Fig. 1b). Figure 7a
and e present the KGE values of the LSTM model, while
Fig. 7b and f show the KGE differences between DI(SWE)
and LSTM at the daily scale for both types of basins. The
baseline LSTM performed better in snow-dominated basins,
with a higher median KGE of 0.80 (compared to 0.77 for
rain-dominated basins) and smaller variability (Fig. 7). In
terms of KGE differences, snow-dominated basins showed
no obvious improvement, with a median AKGE of zero,
while more rain-dominated basins exhibited negative AKGE
after integrating lagged SWE. These rain-dominated basins
are mainly located on the west side of the Cascade Moun-
tains, the eastern slope of the Rocky Mountains, and the
Southwest, where snowmelt is less dominant and rainfall
contributes significantly to streamflow. Consequently, utiliz-
ing lagged SWE data did not show an impact on streamflow;
instead, adding more zero SWE values into the LSTM model
led to increased underestimation, ultimately degrading per-
formance. To illustrate the effect of daily DI(SWE) in dif-
ferent hydrologic regimes, we highlight two representative
gauges from snow- and rain-dominated basins. Gauge a, lo-
cated in Yellowstone National Park (Fig. E4), sits at a high
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elevation (2355 m) and receives substantial winter snowfall,
which serves as a primary contributor to streamflow. Integrat-
ing daily SWE data at this site helped reduced the underesti-
mation of peak flows. In contrast, gauge b, situated in Cali-
fornia’s Central Coast region (Fig. E4), experiences minimal
snowfall and is predominantly influenced by seasonal rain-
fall. As a result, incorporating near-zero SWE data did not
improve simulation performance at this site.

Considering the delayed effect of snow processes on
streamflow generation, we further investigated the effect
of integrating SWE from different seasons (accumulation
and snowmelt) on streamflow. The snow accumulation and
snowmelt season are defined individually for each basin
and each water year following the methodology of Trujillo
and Molotch (2014) (Appendix D). Here we focused ex-
clusively on snow-dominated basins, as minimal improve-
ments were observed in rain-dominated basins (Fig. 7).
Figure 8 shows the metric differences between DI(SWE)
and LSTM during accumulation and snowmelt seasons over
snow-dominated basins. The percentage of basins with pos-
itive ACC increased from 53 %—-61 % during accumulation
season to 73 %—77 % during snowmelt season. Notably, the
median values of ACC during snowmelt season exceeded
even the 75th percentiles of accumulation season (Fig. 8b),
indicating stronger performance gains in temporal dynam-
ics. More improvements were also observed in RV dur-
ing snowmelt season, with more basins showing RV values
closer to ideal value 1 (negative | RV-1 |) and larger negative
median A|RV-1] (Fig. 8c). However, larger A|RB| were also
observed during the snowmelt season. As a result, when con-
sidering the comprehensive metric, KGE, snowmelt season
demonstrated only a slight improvement in median AKGE
compared to the accumulation season.

3.4 The effectiveness of DI(SWE) at the monthly scale

Due to the long memory of snow processes in the hydro-
logical cycle, integrating lagged SWE at the monthly scale
provided benefits to streamflow simulation, as evidenced by
slightly higher median KGE values as well as smaller spreads
(Fig. 4). For instance, integrating lagged SWE from one
month ago led to improved KGE in about 65 % of basins
(Fig. 6), with the median KGE increasing from 0.80 to
0.82. A similar spatial pattern of improvements, with slightly
higher magnitude as indicated by the darker blue dots in
Fig. 6i, was also observed when evaluating spring-summer
(April-July) streamflow.

The benefits of DI(SWE) at the monthly scale gradually
declined as N increased, reflecting the decreasing persis-
tence of snow in the hydrological cycle and its diminishing
predictive value over longer lag periods (Fig. 4). However,
DI(SWE-6) still showed some improvements, with slightly
higher 25th and 75th percentiles and smaller interquartiles,
despite an almost unchanged median. This suggests that in-
tegrating SWE data from six months ago remains informa-
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Figure 5. Performance of LSTM (black) and DI(SSWE-N) (N = 1-10) experiments (green) at the daily scale. The “B” on the x-axis stands for
baseline LSTM, and N stands for the DI(SWE-N) experiment. The black horizontal line stands for the median value of the baseline LSTM.
The grey horizontal line shows perfect value for RV, RB, FLV, and FHV.

tive for streamflow simulation. Therefore, if implemented
in a forecasting mode, the findings suggest that near real-
time SWE observations have the potential to enhance long-
term monthly streamflow forecasts, relative to models with-
out such observations.

The benefits of DI(SWE) at the monthly scale were more
pronounced in snow-dominated basins compared to rain-
dominated basins (Fig. 7c and g). For example, as shown
in Fig. E4, the snow-dominated gauge a exhibited substan-
tial improvement in peak flow simulation, while the hy-
grograph at the rain-dominated gauge b showed little to
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change. This improvement difference became even more ev-
ident when evaluating streamflow from April to July, the pri-
mary snowmelt season (Fig. 7d and i), further emphasizing
the greater impact of DI(SWE) in snow-dominated basins
during snowmelt season.
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4 Discussions

4.1 Comparison of integrating different observations
at different timescales

Figure 9 summarizes the median KGE values for all exper-
iments at different timescales over all basins, as shown in
Figs. 2, 4, and 5, separately. The benefits of different integra-
tion experiments can be roughly ranked as follows:

daily DI(Q) > monthly DI(Q) > monthly DI(SWE)
> daily DI(SWE)

Consistent patterns were also observed specifically over
snow-dominated basins, as shown in Fig. ES. It is coun-
terintuitive that even over snow-dominated basins at the
monthly scale and during April-July period, integrating
lagged streamflow observations provided greater improve-
ments than integrating SWE, despite snow being a key pre-
dictor of spring-summer flow in the snow-dominated West-
ern U.S. (Fleming et al., 2024; Koster et al., 2010; Shukla
and Lettenmaier, 2011; Wood et al., 2016). This outcome
is likely attributable to the inherent characteristics of the
LSTM architecture. Due to its memory-based structure, the
LSTM is well-suited for capturing long-term dependencies
and cumulative processes. As a result, it can effectively learn
the snow-related dynamics implicitly from historical mete-
orological forcings (e.g., precipitation and temperature) and
streamflow responses, without requiring explicit SWE input
(Feng et al., 2020; Jiang et al., 2022; Modi et al., 2025). For
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example, the model may internally infer snowpack accumu-
lation when precipitation coincides with subfreezing temper-
atures and simulate melt-driven streamflow increases when
temperature rise. Consequently, because the model already
captures key snow dynamics internally, the integration of
external SWE observations provides less incremental value
than integrating direct streamflow observations.

In the monthly-scale analysis, DI(Q) yielded slightly
greater improvements when evaluated over the entire year,
whereas DI(SWE) showed a marginally larger enhancement
in spring-summer flow estimates when integrating lagged
SWE from 1-3 months prior.

4.2 Comparison of DI(SWE) between snow-dominated
basins and all basins

From the above analysis, we found that DI(SWE) experi-
ments showed greater improvements when evaluated over
snow-dominated basins. To further explore this, we con-
ducted the same DI(SWE) experiments exclusively trained
over snow-dominated basins to determine if additional gains
could be achieved. As expected, training the models (both
LSTM and DI(SWE)) over a more homogeneous group
of basins provided higher performance (Fig. E6). Fig-
ure 10 shows the median AKGE between DI(SWE) and
the corresponding baseline LSTM over all basins and snow-
dominated basins. Similar to daily DI(SWE) trained over
all basins, daily DI(SWE) trained exclusively over snow-
dominated basins did not enhance streamflow estimation
and even slightly degraded performance. However, at the
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Figure 9. Median KGE values of all experiments at the daily scale (left), monthly scale(middle) and monthly scale but only evaluation for
April to July (right) over all basins. N on the x-axis stands for DI(Q-N) or DI(SWE-N) experiment.

monthly scale, DISSWE) improved streamflow estimations
for both the whole year flow and April-July flow. This im-
provement became more pronounced for the April-July pe-
riod, reinforcing the finding that integrating SWE has a larger
effect on streamflow estimation over snow-dominated basins
during snowmelt season.

4.3 Potential operational forecast applications and
limitations

ML is gaining popularity in hydrology research and oper-
ational communities. This trend is driven by several key
factors, including its easy implementation without substan-
tial development and operational costs, strong model per-
formance, ability to handle complex prediction tasks, and
flexible model structure to adapt new datasets as additional
predictors during training. Moreover, ML enables automated
and objective modeling, minimizing the need for extensive
manual interventions and subjective decision-making (Flem-
ing et al., 2021, 2024; Modi et al., 2025).

This study evaluated the performance of an LSTM-
powered data integration model that integrates lagged Q and
SWE observations across various lag times at both daily and
monthly scales. The pronounced improvements observed in
the retrospective experiments highlight its potential for fore-
casting applications. In forecasting mode, recent observa-
tions can be incorporated into the LSTM model to dynam-
ically update hydrological conditions, reducing the initial-
ization errors compared to models that rely solely on fore-
casted forcings. In this framework, the “lag time” in retro-
spective simulations corresponds to the “lead time” in fore-
casting mode. In other words, integrating recent Q or SWE
data into the LSTM model could enhance streamflow fore-
casts in the Western U.S. at both short lead times (daily scale)
and extended lead times (monthly scale), relative to the base-
line LSTM model without such integration. Given its demon-
strated effectiveness, flexibility, and automation, this data in-
tegration framework hold promises for real-time hydrolog-
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ical forecasting, offering valuable applications in water re-
source management.

Despite much promise, the DI-LSTM approach would
have certain limitations when applied to operational stream-
flow forecasting. First, the improvements demonstrated in
this study may be less pronounced in real-world fore-
casting applications. Here, retrospective simulations were
used, leveraging observed meteorological forcings to eval-
uate the effectiveness of DI-LSTM for streamflow simula-
tions, thereby providing an upper bound on potential perfor-
mance. However, operational forecast systems rely on pre-
dicted forcings, which inherently contain significant uncer-
tainties that impact streamflow forecasts. Additionally, the
accuracy of weather forecasts is expected to decay with in-
creasing lead time, further diminishing the DI-LSTM predic-
tive skill for longer lead time. Therefore, further research is
necessary to assess the performance of DI-LSTM in an oper-
ational setting using actual forecasted meteorological inputs.
Moreover, collaboration with the meteorological community
is essential to improving the accuracy of forcing predictions.
Second, this study provides deterministic streamflow estima-
tion with limited uncertainty analysis. Uncertainty is inher-
ent in all aspects of hydrological modeling, and its estima-
tion is critical for actionable hydrological forecasts (Fang et
al., 2020; Klotz et al., 2022). To address uncertainty due to
random initial weights and biases, this study employed six
repeated runs with different random seeds. However, uncer-
tainties related to model inputs and observational data for
model training were not explicitly considered. Recent stud-
ies have introduced various methods to quantify uncertainty
in ML-based models for different uncertainty sources, such
as Markov Chain Monte Carlo, variational inference, Monte
Carlo dropout, Mixture density networks and ensemble tech-
niques (Abdar et al., 2021). Future work should further ex-
plore uncertainty quantification to enhance forecast reliabil-
ity and underpin decision-making in water resources man-
agement.
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5 Conclusions

Based on LSTM, we evaluated a flexible data integration
approach (DI-LSTM) incorporating different observations,
e.g., O and SWE, across multiple lag times at both daily
and monthly scales over hundreds of basins in the Western
U.S. By comparing DI-LSTM with the baseline LSTM, we
assessed the impact of integrating lagged observations on
streamflow estimations. The key findings in the Western U.S.
are summarized as follows:

1. The baseline LSTM without integrating any lagged ob-
servations already showed strong predictive capability
in the Western U.S., achieving a median KGE of 0.80 at
both daily and monthly scales.

2. Integrating Q at the daily scale yielded the most sub-
stantial improvements, with significantly improved me-
dian values and reduced spread across all performance
metrics. The median KGE across 646 basins increased
to 0.96 with the integration of 1 d lagged streamflow and
remained at 0.89 even with a 10d lag. Integrating Q
at the monthly scale also improved streamflow estima-
tions, though to a lesser extent, with the median KGE
increasing from 0.80 to 0.86 when integrating stream-
flow from 1 month ago.

3. Integrating lagged SWE at the monthly scale led to bet-
ter accuracy, whereas its integration at the daily scale
did not improve streamflow estimations. This finding
reflects the long-term memory of snow processes in
the hydrological cycle, which extends beyond short
timescales.

4. The benefits of integrating SWE were more pronounced
in snow-dominated basins during the snowmelt sea-
son, highlighting its value for improving spring-summer
flow estimations.

5. Opverall, the benefits of integrating different observa-
tions at different timescales for streamflow estima-
tions can be roughly ranked as follows: daily DI(Q) >
monthly DI(Q) > monthly DI(SWE) > daily DI(SWE).
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Due to its strong predictive performance, automation without
the need for extensive domain-specific customization, and
flexibility to ingest additional observations, the DI-LSTM
approach demonstrates large potential for short-term (e.g.,
1-10d) and long-term (1-6 months) operational streamflow
forecasts in the Western U.S. However, further studies, such
as using real forecasted forcing data, are needed to assess its
performance under realistic forecasting conditions.

Appendix A: Training basin selection and
snow-dominated basin selection

We performed a screening to identify suitable training basins
in the Western US by implementing the following procedure:

1. Basin area: Only basins within the range of 50—
5000km? were selected. Basins smaller than 50 km?
were discarded due to probable artificial boundaries.
The maximum area threshold was applied since chan-
nel routing effects become apparent at the daily scale in
larger basins (Gericke and Smithers, 2014).

2. Data length: only basins with at least 10 year data dur-
ing the training period (1983-2002) were selected to en-
sure sufficient data for training.

3. Reservoir influences: To minimize the effect of river
regulation by dams or reservoirs, only basins with de-
gree of regulation (DOR) no greater than 0.1 were se-
lected (Ouyang et al., 2021). The DOR is defined as
the ratio of total reservoir capacity within a basin to the
mean annual cumulative discharge, with total reservoir
capacity data sourced from GAGEII.

4. Visual inspection: Since some data are collected manu-
ally, they may contain errors in reported discharge val-
ues. We excluded basins with potentially erroneous dis-
charge records, such as those with an unreasonably high
magnitude far exceeding precipitation or with abrupt,
dramatic differences between time intervals.

For most basins in the Western U.S., streamflow during
the April-July period (spring to early summer) is primar-
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ily driven by snowmelt or contemporaneous rainfall. In this
region, 1 April is widely used as the transition point from
snow accumulation season and snowmelt (Musselman et al.,
2021). The maximum SWE between October and April is
commonly used as an indicator of the total snow available
for melt-driven streamflow (Musselman et al., 2021; Mote et
al., 2018).

To quantify the relative contributions of snowmelt and
rainfall to streamflow, we calculated two correlation indices:
(1) the correlation between maximum SWE (October to
April) and total streamflow volume (April-July), denoted as
Corr(maxSWE, Qiot), and (2) the correlation between to-
tal rainfall (April-July) and total streamflow volume for the
same period, denoted as Corr( Py, Qror)- Based on these in-
dices, snow-dominated basins were identified using the fol-
lowing two criteria:

1. Corr(maxSWE, Qo) > Corr(Prot, Qrot)
2. Corr(maxSWE, Qo) > 0.1,

Criterion 1 ensures that snow has a greater influence than
rainfall on streamflow, while criterion 2 excludes basins
with negligible snow influence, thereby retaining only those
basins where snowmelt meaningfully contributes to stream-
flow.

Appendix B: LSTM model

LSTM introduces “memory cells” and “gates” to keep and
filter information. Cell states allow information to be stored
over long time periods, which is desirable for modeling pro-
cesses such as snow accumulation and snowmelt. The input,
forget and output gates control the flow of information, con-
trolling what to let in, what to forget, and what to output
from the system, respectively. These gates are all trained au-
tomatically and simultaneously, using input data to predict
the target variable. The forward propagation equations of the
LSTM model are described by the following equations:

Input transformation: x* = ReLU (W;I" 4+ b;), (B1)
Input node: g’ = tanh <D (Wgex') +D (wghh’*‘> + bg) ., (B2)
Input gate: i' = o (D (Wix') +D (Wi ™) +51),  (B3)
Forget gate: f =0 (D(Wyx) +D (Wpuh' ™) +b5), (B4

Output gate: o' = o (D (Woxx')+D (Wyhh’_l) + b0> , (B3

Cell state: s' = g' ©i' +s' 7' o f, (B6)
Hidden state: A" = tanh (s") © o, (B7)
Output: y' = Wy, h' + b, (B8)

where I’ represents the raw input to the model, x’ represents
the input vector to the LSTM cell. ReLU is the rectified lin-
ear unit, o is the sigmoidal function, © is the element-wise
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multiplication operator, D is the dropout operator. W and b
with different subscripts represent the gate-specific network
weights and bias parameters, respectively. g’ is the output
of the input node, i’, f’, o' are the input, forget, and output
gates, respectively; k' represents the hidden states, s’ repre-
sents the memory cell states and y’ represents the predicted
output.

Appendix C: Data pre-processing for LSTM and
DI-LSTM

During the iterations of the training process, basins from
the entire dataset were randomly sampled to form a mini-
batch each time to calculate the loss function. This batch-
ing method typically assumes that model errors are identi-
cally distributed among basins within the same mini-batch.
Without data preprocessing or normalization, the loss func-
tion would inherently pay more attention to wetter and larger
basins compared to drier or smaller basins. To prevent this
imbalance, we applied standard pre-processing techniques,
including normalization and standardization, following Feng
et al. (2020).

First, we normalized the daily discharge by basin area and
mean daily precipitation to obtain a dimensionless discharge
value as the target variable.

Then we transformed the distributions of daily discharge
and precipitation as close to Gaussian as possible, since these
two typically have Gamma distributions, using the equation:

v* =logj (+vv+0.1) (CD)

where v and v* are the variables before and after transforma-
tion, respectively. 0.1 is added inside the log to avoid making
the log of zero. Transforming the data to a Gaussian distribu-
tion enhances the stability and efficiency of gradient-based
optimization methods in LSTM. Additionally, it reduces the
impact of extreme peak values during model training, im-
proving the model’s representation of low-flow conditions.

Finally, standardization was applied to all input features
(forcings, static basin attributes, and lagged observations), as
well as the output (discharge) by subtracting the mean value
and then dividing by the standard deviation of training-period
data.

Appendix D: Snow season definition

The snow accumulation and snowmelt season are defined in-
dividually for each basin and each water year (1 October to
30 September) following the methodology of Trujillo and
Molotch (2014). For each water year each basin, the date of
peak annual SWE is identified. The snow season is then de-
fined as the continuous period during which SWE remains
greater than zero and includes the peak SWE. This snow
season is subsequently divided into two parts: the accumu-
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Figure D1. Snow season definitions. Peak SWE is the highest snow
water equivalent (SWE) value in a water year.

lation season, which occurs before the peak SWE date, and
the snowmelt season, which follows it (Fig. D1).

Note that the seasonal analysis in this study focuses ex-
clusively on the main SWE curve, i.e., the continuous SWE
curve associated with the peak SWE. In basin-years with in-
termittent snow, there may be several snow accumulation and
melt cycles prior to and/or after the main SWE curve which
are not accounted for in this analysis.

Appendix E
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Figure E1. Performance comparison between the ensemble mean and individual random seed simulations across different experiments at the
daily scale: (a) LSTM, (b) DI(Q-1), and (c) DISSWE-1). “meanflow” refers to the ensemble mean derived from six simulations, while “seed
17 through “seed 6” represent the results from individual random seeds.
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Figure E2. Time series plots for selected basins to illustrate the benefits of DI(Q) across different flow regimes. Numbers in the legends
represent KGE values of the simulations. (al-d1) time series comparisons for the daily experiments, (a2—d2) time series comparisons for
the monthly experiments. (e) the locations of the corresponding basins.
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Figure E4. Time series plots for selected basins to illustrate the benefits of DI(SWE) across snow- and rain-dominated basins. Numbers
in the legends represent KGE values of the simulations. (al-b1) time series comparisons for the daily experiments, (a2-b2) time series
comparison for the monthly experiments. (c) the locations of the corresponding basins.
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Table E1. Summary of the forcing data and attribute variables used in this study.

5471

Variable Data Source Units
Forcing Daily precipitation CW3E-Forcing (Pan, 2025) mmd~!

Daily maximum temperature CW3E-Forcing (Pan, 2025) °C

Daily minimum temperature CW3E-Forcing (Pan, 2025) °C

Daily mean surface downwelling shortwave CW3E-Forcing (Pan, 2025) Wm2

Daily mean 10 m wind CW3E-Forcing (Pan, 2025) ms~!

Monthly LAI climatology PROBA-V LAI (Fuster et al., 2020) -
Attributes  Mean daily precipitation CW3E-Forcing (Pan, 2025) mmd !

High precipitation duration — the average duration ~CW3E-Forcing (Pan, 2025) days

of high precipitation events (number of consecutive

days > 5 times mean daily precipitation)

Fraction of precipitation falling as snow (i.e., on days CW3E-Forcing (Pan, 2025) -

colder than 0 °C)

Aridity — P/PET, where PET is estimated by the Harg- CW3E-Forcing (Pan, 2025) -

reaves (1994) method

Frozen days — days colder than 0 °C CW3E-Forcing (Pan, 2025) days

Area basin boundary file km?

Mean elevation

GMTED (Amatulli et al., 2018a)

m above sea level

Mean slope GMTED (Amatulli et al., 2018a) °
Geological permeability GLHYMPS V2 (Huscroft et al., 2018a)  m?
Soil sand content SoilGrids (Hengl et al., 2017) %

Table E2. Hyperparameters for the LSTM or DI-LSTM model.

Hyperparameter Daily Scale Monthly Scale

Best value Grid search  Best value
Length of training instances 365 12, 24, 36, 48 48
Mini-batching size 100 50, 100, 150, 200 50
LSTM dropout rate 0.5 0,0.2,0.5 0.5
LSTM hidden size 256 128, 256 256
Number of training epochs 300 [100, 600] 300

Number of stacked LSTM layer

1

1

1
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Table E3. The definition of KGE and its three component metrics.

Metric  Equation Perfect
Value
_ €ov(0o,0m)
CcC CC= UQ(}, 7 1
_ 90m/HOm
RV RV = %Q,\?/MQO o 1
RB  RB=2=l9mi—21 Qi 10 0
Ziv Qo,i
KGE KGE=1 —\/(CC— 1)2 +RB2 + (RV-1)2 1

Note, Qo, Om represent streamflow observations and simulations, respectively. cov,
o and pu represent covariance, standard deviation and mean, respectively.

Code and data availability. The source codes for LSTM-based
rainfall-runoff simulations are from hydroDL, which is available at:
https://doi.org/10.5281/zenodo.5015120 (Fang et al., 2021).

CW3E-Forcing is available at: https://www.reachhydro.
org/home/records/1-km-conus-forcing (last access: 10 Oc-
tober 2025) (https://doi.org/10.5281/zenodo.14714512,
Pan, 2025). The PROBA-V LAI is available at: https:
/Mland.copernicus.eu/global/products/lai  (last access: 10 Oc-
tober 2025). Elevation data from GMTED is available at:
https://doi.org/10.1594/PANGAEA.867115 (Amatulli et al.,
2018b). Geological permeability from GLHYMPS V2 is avail-
able at: https://doi.org/10.5683/SP2/TTJNIU (Huscroft et al.,
2018b). Soil sand content data from SoilGrids is available at:
https://soilgrids.org/ (last access: 10 October 2025).

The daily streamflow data from USGS is available at:
https://waterdata.usgs.gov/nwis  (last access: 10  October
2025). UA SWE dataset: https://climate.arizona.edu/data/
UA_SWE/DailyData_4km/ (last access: 10 October 2025).
The reservoir storage information is from GAGEII attributes:
https://pubs.usgs.gov/publication/70046617  (last access: 10
October 2025).
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