Articles | Volume 29, issue 11
https://doi.org/10.5194/hess-29-2429-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2429-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An extension of the logistic function to account for nonstationary drought losses
Tongtiegang Zhao
CORRESPONDING AUTHOR
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
Zecong Chen
CORRESPONDING AUTHOR
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
Yongyong Zhang
Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Bingyao Zhang
School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
Related authors
Tongtiegang Zhao, Qiang Li, Tongbi Tu, and Xiaohong Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3, https://doi.org/10.5194/egusphere-2025-3, 2025
Short summary
Short summary
The recent WeatherBench 2 provides a versatile framework for the verification of deterministic and ensemble forecasts. In this paper, we present an explicit extension to binary forecasts of hydroclimatic extremes. Sixteen verification metrics for binary forecasts are employed and scorecards are generated to showcase the predictive performance. The extension facilitates more comprehensive comparisons of hydroclimatic forecasts and provides useful information for forecast applications.
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024, https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Short summary
The local performance plays a critical part in practical applications of global streamflow reanalysis. This paper develops a decomposition approach to evaluating streamflow analysis at different timescales. The reanalysis is observed to be more effective in characterizing seasonal, annual and multi-annual features than daily, weekly and monthly features. Also, the local performance is shown to be primarily influenced by precipitation seasonality, longitude, mean precipitation and mean slope.
Qiang Li and Tongtiegang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1449, https://doi.org/10.5194/egusphere-2024-1449, 2024
Preprint withdrawn
Short summary
Short summary
This paper focuses on the effect of the water balance constraint on the robustness of the long short-term memory (LSTM) network in learning rainfall-runoff relationships. Through large-sample tests, it is found that incorporating this constraint into the LSTM improves the robustness, while the improvement tends to decrease as the amount of training data increases. The results point to the compensation effects between training data and process knowledge on the LSTM’s performance.
Qiang Li and Tongtiegang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-2841, https://doi.org/10.5194/egusphere-2023-2841, 2024
Preprint archived
Short summary
Short summary
The lack of physical mechanism is a critical issue for the use of popular deep learning models. This paper presents an in-depth investigation of the fundamental mass balance constraint for deep learning-based rainfall-runoff prediction. The robustness against data sparsity, random parameters initialization and contrasting climate conditions are detailed. The results highlight that the water balance constraint evidently improves the robustness in particular when there is limited training data.
Huayang Cai, Bo Li, Junhao Gu, Tongtiegang Zhao, and Erwan Garel
Ocean Sci., 19, 603–614, https://doi.org/10.5194/os-19-603-2023, https://doi.org/10.5194/os-19-603-2023, 2023
Short summary
Short summary
For many problems concerning water resource utilization in estuaries, it is essential to be able to express observed salinity distributions based on simple theoretical models. In this study, we propose an analytical salt intrusion model inspired from a theory for predictions of flood hydrographs in watersheds. The newly developed model can be well calibrated using a minimum of three salinity measurements along the estuary and has been successfully applied in 21 estuaries worldwide.
Huayang Cai, Hao Yang, Pascal Matte, Haidong Pan, Zhan Hu, Tongtiegang Zhao, and Guangliang Liu
Ocean Sci., 18, 1691–1702, https://doi.org/10.5194/os-18-1691-2022, https://doi.org/10.5194/os-18-1691-2022, 2022
Short summary
Short summary
Quantifying spatial–temporal water level dynamics is essential for water resources management in estuaries. In this study, we propose a simple yet powerful regression model to examine the influence of the world’s largest dam, the Three Gorges Dam (TGD), on the spatial–temporal water level dynamics within the Yangtze River estuary. The presented method is particularly useful for determining scientific strategies for sustainable water resources management in dam-controlled estuaries worldwide.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Tongtiegang Zhao, Haoling Chen, Quanxi Shao, Tongbi Tu, Yu Tian, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 5717–5732, https://doi.org/10.5194/hess-25-5717-2021, https://doi.org/10.5194/hess-25-5717-2021, 2021
Short summary
Short summary
This paper develops a novel approach to attributing correlation skill of dynamical GCM forecasts to statistical El Niño–Southern Oscillation (ENSO) teleconnection using the coefficient of determination. Three cases of attribution are effectively facilitated, which are significantly positive anomaly correlation attributable to positive ENSO teleconnection, attributable to negative ENSO teleconnection and not attributable to ENSO teleconnection.
Tongtiegang Zhao, Wei Zhang, Yongyong Zhang, Zhiyong Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1–16, https://doi.org/10.5194/hess-24-1-2020, https://doi.org/10.5194/hess-24-1-2020, 2020
Andrew Schepen, Tongtiegang Zhao, Quan J. Wang, and David E. Robertson
Hydrol. Earth Syst. Sci., 22, 1615–1628, https://doi.org/10.5194/hess-22-1615-2018, https://doi.org/10.5194/hess-22-1615-2018, 2018
Short summary
Short summary
Rainfall forecasts from dynamical global climate models (GCMs) require post-processing before use in hydrological models. Existing methods generally lack the sophistication to achieve calibrated forecasts of both daily amounts and seasonal accumulated totals. We develop a new statistical method to post-process Australian GCM rainfall forecasts for 12 perennial and ephemeral catchments. Our method produces reliable forecasts and outperforms the most commonly used statistical method.
Andrew Schepen, Tongtiegang Zhao, Q. J. Wang, Senlin Zhou, and Paul Feikema
Hydrol. Earth Syst. Sci., 20, 4117–4128, https://doi.org/10.5194/hess-20-4117-2016, https://doi.org/10.5194/hess-20-4117-2016, 2016
Short summary
Short summary
Australian seasonal streamflow forecasts are issued by the Bureau of Meteorology with up to two weeks' delay. Timelier forecast release will enhance forecast value and enable sub-seasonal forecasting. The bureau's forecasting approach is modified to allow timelier forecast release, and changes in reliability and skill are quantified. The results are combined with insights into the forecast production process to recommend a more flexible forecasting system to better meet the needs of users.
Tongtiegang Zhao, Qiang Li, Tongbi Tu, and Xiaohong Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3, https://doi.org/10.5194/egusphere-2025-3, 2025
Short summary
Short summary
The recent WeatherBench 2 provides a versatile framework for the verification of deterministic and ensemble forecasts. In this paper, we present an explicit extension to binary forecasts of hydroclimatic extremes. Sixteen verification metrics for binary forecasts are employed and scorecards are generated to showcase the predictive performance. The extension facilitates more comprehensive comparisons of hydroclimatic forecasts and provides useful information for forecast applications.
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024, https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Short summary
The local performance plays a critical part in practical applications of global streamflow reanalysis. This paper develops a decomposition approach to evaluating streamflow analysis at different timescales. The reanalysis is observed to be more effective in characterizing seasonal, annual and multi-annual features than daily, weekly and monthly features. Also, the local performance is shown to be primarily influenced by precipitation seasonality, longitude, mean precipitation and mean slope.
Qiang Li and Tongtiegang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1449, https://doi.org/10.5194/egusphere-2024-1449, 2024
Preprint withdrawn
Short summary
Short summary
This paper focuses on the effect of the water balance constraint on the robustness of the long short-term memory (LSTM) network in learning rainfall-runoff relationships. Through large-sample tests, it is found that incorporating this constraint into the LSTM improves the robustness, while the improvement tends to decrease as the amount of training data increases. The results point to the compensation effects between training data and process knowledge on the LSTM’s performance.
Yongyong Zhang, Yongqiang Zhang, Xiaoyan Zhai, Jun Xia, Qiuhong Tang, Wei Wang, Jian Wu, Xiaoyu Niu, and Bing Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-126, https://doi.org/10.5194/hess-2024-126, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
It is challenging to investigate flood variabilities and their formation mechanisms from massive event samples. This study explores spatiotemporal variabilities of 1446 flood events using hierarchical and partitional clustering methods. Control mechanisms of meteorological and physio-geographical factors are explored for individual flood event classes using constrained rank analysis. It provides insights into comprehensive changes of flood events, and aids in flood prediction and control.
Qiang Li and Tongtiegang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-2841, https://doi.org/10.5194/egusphere-2023-2841, 2024
Preprint archived
Short summary
Short summary
The lack of physical mechanism is a critical issue for the use of popular deep learning models. This paper presents an in-depth investigation of the fundamental mass balance constraint for deep learning-based rainfall-runoff prediction. The robustness against data sparsity, random parameters initialization and contrasting climate conditions are detailed. The results highlight that the water balance constraint evidently improves the robustness in particular when there is limited training data.
Huayang Cai, Bo Li, Junhao Gu, Tongtiegang Zhao, and Erwan Garel
Ocean Sci., 19, 603–614, https://doi.org/10.5194/os-19-603-2023, https://doi.org/10.5194/os-19-603-2023, 2023
Short summary
Short summary
For many problems concerning water resource utilization in estuaries, it is essential to be able to express observed salinity distributions based on simple theoretical models. In this study, we propose an analytical salt intrusion model inspired from a theory for predictions of flood hydrographs in watersheds. The newly developed model can be well calibrated using a minimum of three salinity measurements along the estuary and has been successfully applied in 21 estuaries worldwide.
Huayang Cai, Hao Yang, Pascal Matte, Haidong Pan, Zhan Hu, Tongtiegang Zhao, and Guangliang Liu
Ocean Sci., 18, 1691–1702, https://doi.org/10.5194/os-18-1691-2022, https://doi.org/10.5194/os-18-1691-2022, 2022
Short summary
Short summary
Quantifying spatial–temporal water level dynamics is essential for water resources management in estuaries. In this study, we propose a simple yet powerful regression model to examine the influence of the world’s largest dam, the Three Gorges Dam (TGD), on the spatial–temporal water level dynamics within the Yangtze River estuary. The presented method is particularly useful for determining scientific strategies for sustainable water resources management in dam-controlled estuaries worldwide.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Tongtiegang Zhao, Haoling Chen, Quanxi Shao, Tongbi Tu, Yu Tian, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 5717–5732, https://doi.org/10.5194/hess-25-5717-2021, https://doi.org/10.5194/hess-25-5717-2021, 2021
Short summary
Short summary
This paper develops a novel approach to attributing correlation skill of dynamical GCM forecasts to statistical El Niño–Southern Oscillation (ENSO) teleconnection using the coefficient of determination. Three cases of attribution are effectively facilitated, which are significantly positive anomaly correlation attributable to positive ENSO teleconnection, attributable to negative ENSO teleconnection and not attributable to ENSO teleconnection.
Tongtiegang Zhao, Wei Zhang, Yongyong Zhang, Zhiyong Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1–16, https://doi.org/10.5194/hess-24-1-2020, https://doi.org/10.5194/hess-24-1-2020, 2020
Andrew Schepen, Tongtiegang Zhao, Quan J. Wang, and David E. Robertson
Hydrol. Earth Syst. Sci., 22, 1615–1628, https://doi.org/10.5194/hess-22-1615-2018, https://doi.org/10.5194/hess-22-1615-2018, 2018
Short summary
Short summary
Rainfall forecasts from dynamical global climate models (GCMs) require post-processing before use in hydrological models. Existing methods generally lack the sophistication to achieve calibrated forecasts of both daily amounts and seasonal accumulated totals. We develop a new statistical method to post-process Australian GCM rainfall forecasts for 12 perennial and ephemeral catchments. Our method produces reliable forecasts and outperforms the most commonly used statistical method.
Andrew Schepen, Tongtiegang Zhao, Q. J. Wang, Senlin Zhou, and Paul Feikema
Hydrol. Earth Syst. Sci., 20, 4117–4128, https://doi.org/10.5194/hess-20-4117-2016, https://doi.org/10.5194/hess-20-4117-2016, 2016
Short summary
Short summary
Australian seasonal streamflow forecasts are issued by the Bureau of Meteorology with up to two weeks' delay. Timelier forecast release will enhance forecast value and enable sub-seasonal forecasting. The bureau's forecasting approach is modified to allow timelier forecast release, and changes in reliability and skill are quantified. The results are combined with insights into the forecast production process to recommend a more flexible forecasting system to better meet the needs of users.
Y. Y. Zhang, Q. X. Shao, A. Z. Ye, H. T. Xing, and J. Xia
Hydrol. Earth Syst. Sci., 20, 529–553, https://doi.org/10.5194/hess-20-529-2016, https://doi.org/10.5194/hess-20-529-2016, 2016
Short summary
Short summary
We developed an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality and ecology, and considering the interference of human activities. The parameter sensitivity and autocalibration modules were also developed to improve the simulation efficiency. The proposed model was applied in the Shaying River catchment, which is a highly regulated and heavily polluted region in China.
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Modelling approaches
Probabilistic downscaling of EURO-CORDEX precipitation data for the assessment of future areal precipitation extremes for hourly to daily durations
Impact Webs: A novel conceptual modelling approach for characterising and assessing complex risks
Technical Note: Operational calibration and performance improvement for hydrodynamic models in data-scarce coastal areas
Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts
A systematic review of climate change science relevant to Australian design flood estimation
Technical Note: Resolution enhancement of flood inundation grids
Floods and droughts: a multivariate perspective
Technical note: Statistical generation of climate-perturbed flow duration curves
Deep learning methods for flood mapping: a review of existing applications and future research directions
Extreme floods in Europe: going beyond observations using reforecast ensemble pooling
Hydroinformatics education – the Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training
Wetropolis extreme rainfall and flood demonstrator: from mathematical design to outreach
Technical note: The beneficial role of a natural permeable layer in slope stabilization by drainage trenches
Assessing the impacts of reservoirs on downstream flood frequency by coupling the effect of scheduling-related multivariate rainfall with an indicator of reservoir effects
Observation operators for assimilation of satellite observations in fluvial inundation forecasting
Contribution of potential evaporation forecasts to 10-day streamflow forecast skill for the Rhine River
Inundation mapping based on reach-scale effective geometry
Effects of variability in probable maximum precipitation patterns on flood losses
The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data
A comparison of the discrete cosine and wavelet transforms for hydrologic model input data reduction
Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset
Technical note: Design flood under hydrological uncertainty
Topography- and nightlight-based national flood risk assessment in Canada
Regime shifts in annual maximum rainfall across Australia – implications for intensity–frequency–duration (IFD) relationships
Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs
A continuous rainfall model based on vine copulas
Estimates of global dew collection potential on artificial surfaces
Climate changes of hydrometeorological and hydrological extremes in the Paute basin, Ecuadorean Andes
An assessment of the ability of Bartlett–Lewis type of rainfall models to reproduce drought statistics
Modeling root reinforcement using a root-failure Weibull survival function
Socio-hydrology: conceptualising human-flood interactions
Application of a model-based rainfall-runoff database as efficient tool for flood risk management
Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis
HydroViz: design and evaluation of a Web-based tool for improving hydrology education
Web 2.0 collaboration tool to support student research in hydrology – an opinion
SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach
Discharge estimation combining flow routing and occasional measurements of velocity
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application
Comment on "A praxis-oriented perspective of streamflow inference from stage observations – the method of Dottori et al. (2009) and the alternative of the Jones Formula, with the kinematic wave celerity computed on the looped rating curve" by Koussis (2009)
An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting
Abbas El Hachem, Jochen Seidel, and András Bárdossy
Hydrol. Earth Syst. Sci., 29, 1335–1357, https://doi.org/10.5194/hess-29-1335-2025, https://doi.org/10.5194/hess-29-1335-2025, 2025
Short summary
Short summary
The influence of climate change on areal precipitation extremes is examined. After an upscaling of reference observations, the climate model data are corrected, and a downscaling to a finer spatial scale is done. For different temporal durations and spatial scales, areal precipitation extremes are derived. The final result indicates an increase in the expected rainfall depth compared to reference values. However, the increase varied with the duration and area size.
Edward Sparkes, Davide Cotti, Angel Valdiviezo Ajila, Saskia E. Werners, and Michael Hagenlocher
EGUsphere, https://doi.org/10.5194/egusphere-2024-2844, https://doi.org/10.5194/egusphere-2024-2844, 2024
Short summary
Short summary
Impact Webs are a methodology designed to better understand and characterize complex risks. Understanding the complexity of risks, is a key step in reducing and managing disaster risks. This paper outlines the rationale for Impact Webs and the steps for co-creation and use. Impact Webs allow for an in-depth analysis while accounting for their interactions within the systems in which they exist. They can be used to provide guidance for risk management options.
Francisco Rodrigues do Amaral, Benoît Camenen, Tin Nguyen Trung, Tran Anh Tu, Thierry Pellarin, and Nicolas Gratiot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1563, https://doi.org/10.5194/egusphere-2024-1563, 2024
Short summary
Short summary
This study explores how to improve models predicting water flow in South Vietnam's Saigon and Dongnai rivers, where data is scarce. By testing three different methods to adjust the river model using river water level and river discharge measurements, we found ways to better predict river behavior. These findings can help manage water resources more effectively and aid decision-making for flood protection and environmental conservation.
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 27, 2479–2497, https://doi.org/10.5194/hess-27-2479-2023, https://doi.org/10.5194/hess-27-2479-2023, 2023
Short summary
Short summary
I discuss different types of multivariate hydrological extremes and their dependencies, including regional extremes affecting multiple locations, such as spatially connected flood events; consecutive extremes occurring in close temporal succession, such as successive droughts; extremes characterized by multiple characteristics, such as floods with jointly high peak discharge and flood volume; and transitions between different types of extremes, such as drought-to-flood transitions.
Veysel Yildiz, Robert Milton, Solomon Brown, and Charles Rougé
Hydrol. Earth Syst. Sci., 27, 2499–2507, https://doi.org/10.5194/hess-27-2499-2023, https://doi.org/10.5194/hess-27-2499-2023, 2023
Short summary
Short summary
The proposed approach is based on the parameterisation of flow duration curves (FDCs) to generate hypothetical streamflow futures. (1) We sample a broad range of future climates with modified values of three key streamflow statistics. (2) We generate an FDC for each hydro-climate future. (3) The resulting ensemble is ready to support robustness assessments in a changing climate. Our approach seamlessly represents a large range of futures with increased frequencies of both high and low flows.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Short summary
Deep learning methods have been increasingly used in flood management to improve traditional techniques. While promising results have been obtained, our review shows significant challenges in building deep learning models that can (i) generalize across multiple scenarios, (ii) account for complex interactions, and (iii) perform probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in deep learning to flood mapping.
Manuela I. Brunner and Louise J. Slater
Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022, https://doi.org/10.5194/hess-26-469-2022, 2022
Short summary
Short summary
Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System to increase the sample size available to estimate the frequency of extreme flood events. We demonstrate that such ensemble pooling produces more robust estimates than observation-based estimates.
Thorsten Wagener, Dragan Savic, David Butler, Reza Ahmadian, Tom Arnot, Jonathan Dawes, Slobodan Djordjevic, Roger Falconer, Raziyeh Farmani, Debbie Ford, Jan Hofman, Zoran Kapelan, Shunqi Pan, and Ross Woods
Hydrol. Earth Syst. Sci., 25, 2721–2738, https://doi.org/10.5194/hess-25-2721-2021, https://doi.org/10.5194/hess-25-2721-2021, 2021
Short summary
Short summary
How can we effectively train PhD candidates both (i) across different knowledge domains in water science and engineering and (ii) in computer science? To address this issue, the Water Informatics in Science and Engineering Centre for Doctoral Training (WISE CDT) offers a postgraduate programme that fosters enhanced levels of innovation and collaboration by training a cohort of engineers and scientists at the boundary of water informatics, science and engineering.
Onno Bokhove, Tiffany Hicks, Wout Zweers, and Thomas Kent
Hydrol. Earth Syst. Sci., 24, 2483–2503, https://doi.org/10.5194/hess-24-2483-2020, https://doi.org/10.5194/hess-24-2483-2020, 2020
Short summary
Short summary
Wetropolis is a
table-topdemonstration model with extreme rainfall and flooding, including random rainfall, river flow, flood plains, an upland reservoir, a porous moor, and a city which can flood. It lets the viewer experience extreme rainfall and flood events in a physical model on reduced spatial and temporal scales with an event return period of 6.06 min rather than, say, 200 years. We disseminate its mathematical design and how it has been shown most prominently to over 500 flood victims.
Gianfranco Urciuoli, Luca Comegna, Marianna Pirone, and Luciano Picarelli
Hydrol. Earth Syst. Sci., 24, 1669–1676, https://doi.org/10.5194/hess-24-1669-2020, https://doi.org/10.5194/hess-24-1669-2020, 2020
Short summary
Short summary
The aim of this paper is to demonstrate, through a numerical approach, that the presence of soil layers of higher permeability, a not unlikely condition in some deep landslides in clay, may be exploited to improve the efficiency of systems of drainage trenches for slope stabilization. The problem has been examined for the case that a unique pervious layer, parallel to the ground surface, is present at an elevation higher than the bottom of the trenches.
Bin Xiong, Lihua Xiong, Jun Xia, Chong-Yu Xu, Cong Jiang, and Tao Du
Hydrol. Earth Syst. Sci., 23, 4453–4470, https://doi.org/10.5194/hess-23-4453-2019, https://doi.org/10.5194/hess-23-4453-2019, 2019
Short summary
Short summary
We develop a new indicator of reservoir effects, called the rainfall–reservoir composite index (RRCI). RRCI, coupled with the effects of static reservoir capacity and scheduling-related multivariate rainfall, has a better performance than the previous indicator in terms of explaining the variation in the downstream floods affected by reservoir operation. A covariate-based flood frequency analysis using RRCI can provide more reliable downstream flood risk estimation.
Elizabeth S. Cooper, Sarah L. Dance, Javier García-Pintado, Nancy K. Nichols, and Polly J. Smith
Hydrol. Earth Syst. Sci., 23, 2541–2559, https://doi.org/10.5194/hess-23-2541-2019, https://doi.org/10.5194/hess-23-2541-2019, 2019
Short summary
Short summary
Flooding from rivers is a huge and costly problem worldwide. Computer simulations can help to warn people if and when they are likely to be affected by river floodwater, but such predictions are not always accurate or reliable. Information about flood extent from satellites can help to keep these forecasts on track. Here we investigate different ways of using information from satellite images and look at the effect on computer predictions. This will help to develop flood warning systems.
Bart van Osnabrugge, Remko Uijlenhoet, and Albrecht Weerts
Hydrol. Earth Syst. Sci., 23, 1453–1467, https://doi.org/10.5194/hess-23-1453-2019, https://doi.org/10.5194/hess-23-1453-2019, 2019
Short summary
Short summary
A correct estimate of the amount of future precipitation is the most important factor in making a good streamflow forecast, but evaporation is also an important component that determines the discharge of a river. However, in this study for the Rhine River we found that evaporation forecasts only give an almost negligible improvement compared to methods that use statistical information on climatology for a 10-day streamflow forecast. This is important to guide research on low flow forecasts.
Cédric Rebolho, Vazken Andréassian, and Nicolas Le Moine
Hydrol. Earth Syst. Sci., 22, 5967–5985, https://doi.org/10.5194/hess-22-5967-2018, https://doi.org/10.5194/hess-22-5967-2018, 2018
Short summary
Short summary
Inundation models are useful for hazard management and prevention. They are traditionally based on hydraulic partial differential equations (with satisfying results but large data and computational requirements). This study presents a simplified approach combining reach-scale geometric properties with steady uniform flow equations. The model shows promising results overall, although difficulties persist in the most complex urbanised reaches.
Andreas Paul Zischg, Guido Felder, Rolf Weingartner, Niall Quinn, Gemma Coxon, Jeffrey Neal, Jim Freer, and Paul Bates
Hydrol. Earth Syst. Sci., 22, 2759–2773, https://doi.org/10.5194/hess-22-2759-2018, https://doi.org/10.5194/hess-22-2759-2018, 2018
Short summary
Short summary
We developed a model experiment and distributed different rainfall patterns over a mountain river basin. For each rainfall scenario, we computed the flood losses with a model chain. The experiment shows that flood losses vary considerably within the river basin and depend on the timing of the flood peaks from the basin's sub-catchments. Basin-specific characteristics such as the location of the main settlements within the floodplains play an additional important role in determining flood losses.
Guillaume Le Bihan, Olivier Payrastre, Eric Gaume, David Moncoulon, and Frédéric Pons
Hydrol. Earth Syst. Sci., 21, 5911–5928, https://doi.org/10.5194/hess-21-5911-2017, https://doi.org/10.5194/hess-21-5911-2017, 2017
Short summary
Short summary
This paper illustrates how an integrated flash flood monitoring (or forecasting) system may be designed to directly provide information on possibly flooded areas and associated impacts on a very detailed river network and over large territories. The approach is extensively tested in the regions of Alès and Draguignan, located in south-eastern France. Validation results are presented in terms of accuracy of the estimated flood extents and related impacts (based on insurance claim data).
Ashley Wright, Jeffrey P. Walker, David E. Robertson, and Valentijn R. N. Pauwels
Hydrol. Earth Syst. Sci., 21, 3827–3838, https://doi.org/10.5194/hess-21-3827-2017, https://doi.org/10.5194/hess-21-3827-2017, 2017
Short summary
Short summary
The accurate reduction of hydrologic model input data is an impediment towards understanding input uncertainty and model structural errors. This paper compares the ability of two transforms to reduce rainfall input data. The resultant transforms are compressed to varying extents and reconstructed before being evaluated with standard simulation performance summary metrics and descriptive statistics. It is concluded the discrete wavelet transform is most capable of preserving rainfall time series.
Ricardo Zubieta, Augusto Getirana, Jhan Carlo Espinoza, Waldo Lavado-Casimiro, and Luis Aragon
Hydrol. Earth Syst. Sci., 21, 3543–3555, https://doi.org/10.5194/hess-21-3543-2017, https://doi.org/10.5194/hess-21-3543-2017, 2017
Short summary
Short summary
This paper indicates that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, in comparison to observed rainfall (by 11.1 % and 15.7 %, respectively). Statistical analysis indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets for estimating observed streamflows in Andean–Amazonian regions (Ucayali Basin, southern regions of the Amazon Basin of Peru and Ecuador).
Anna Botto, Daniele Ganora, Pierluigi Claps, and Francesco Laio
Hydrol. Earth Syst. Sci., 21, 3353–3358, https://doi.org/10.5194/hess-21-3353-2017, https://doi.org/10.5194/hess-21-3353-2017, 2017
Short summary
Short summary
The paper provides an easy-to-use implementation of the UNCODE framework, which allows one to estimate the design flood value by directly accounting for sample uncertainty. Other than a design tool, this methodology is also a practical way to quantify the value of data in the design process.
Amin Elshorbagy, Raja Bharath, Anchit Lakhanpal, Serena Ceola, Alberto Montanari, and Karl-Erich Lindenschmidt
Hydrol. Earth Syst. Sci., 21, 2219–2232, https://doi.org/10.5194/hess-21-2219-2017, https://doi.org/10.5194/hess-21-2219-2017, 2017
Short summary
Short summary
Flood mapping is one of Canada's major national interests. This work presents a simple and effective method for large-scale flood hazard and risk mapping, applied in this study to Canada. Readily available data, such as remote sensing night-light data, topography, and stream network were used to create the maps.
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 19, 4735–4746, https://doi.org/10.5194/hess-19-4735-2015, https://doi.org/10.5194/hess-19-4735-2015, 2015
Short summary
Short summary
Rainfall intensity-frequency-duration (IFD) relationships are required for the design and planning of water supply and management systems around the world. Currently IFD information is based on the "stationary climate assumption". However, this paper provides evidence of regime shifts in annual maxima rainfall time series using 96 daily rainfall stations and 66 sub-daily rainfall stations across Australia. Importantly, current IFD relationships may under- or overestimate the design rainfall.
P. A. Marker, N. Foged, X. He, A. V. Christiansen, J. C. Refsgaard, E. Auken, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 19, 3875–3890, https://doi.org/10.5194/hess-19-3875-2015, https://doi.org/10.5194/hess-19-3875-2015, 2015
H. Vernieuwe, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 19, 2685–2699, https://doi.org/10.5194/hess-19-2685-2015, https://doi.org/10.5194/hess-19-2685-2015, 2015
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
D. E. Mora, L. Campozano, F. Cisneros, G. Wyseure, and P. Willems
Hydrol. Earth Syst. Sci., 18, 631–648, https://doi.org/10.5194/hess-18-631-2014, https://doi.org/10.5194/hess-18-631-2014, 2014
M. T. Pham, W. J. Vanhaute, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 17, 5167–5183, https://doi.org/10.5194/hess-17-5167-2013, https://doi.org/10.5194/hess-17-5167-2013, 2013
M. Schwarz, F. Giadrossich, and D. Cohen
Hydrol. Earth Syst. Sci., 17, 4367–4377, https://doi.org/10.5194/hess-17-4367-2013, https://doi.org/10.5194/hess-17-4367-2013, 2013
G. Di Baldassarre, A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, https://doi.org/10.5194/hess-17-3295-2013, 2013
L. Brocca, S. Liersch, F. Melone, T. Moramarco, and M. Volk
Hydrol. Earth Syst. Sci., 17, 3159–3169, https://doi.org/10.5194/hess-17-3159-2013, https://doi.org/10.5194/hess-17-3159-2013, 2013
T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar
Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, https://doi.org/10.5194/hess-17-1331-2013, 2013
E. Habib, Y. Ma, D. Williams, H. O. Sharif, and F. Hossain
Hydrol. Earth Syst. Sci., 16, 3767–3781, https://doi.org/10.5194/hess-16-3767-2012, https://doi.org/10.5194/hess-16-3767-2012, 2012
A. Pathirana, B. Gersonius, and M. Radhakrishnan
Hydrol. Earth Syst. Sci., 16, 2499–2509, https://doi.org/10.5194/hess-16-2499-2012, https://doi.org/10.5194/hess-16-2499-2012, 2012
K. X. Soulis and J. D. Valiantzas
Hydrol. Earth Syst. Sci., 16, 1001–1015, https://doi.org/10.5194/hess-16-1001-2012, https://doi.org/10.5194/hess-16-1001-2012, 2012
G. Corato, T. Moramarco, and T. Tucciarelli
Hydrol. Earth Syst. Sci., 15, 2979–2994, https://doi.org/10.5194/hess-15-2979-2011, https://doi.org/10.5194/hess-15-2979-2011, 2011
A. Elshorbagy, G. Corzo, S. Srinivasulu, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 14, 1943–1961, https://doi.org/10.5194/hess-14-1943-2010, https://doi.org/10.5194/hess-14-1943-2010, 2010
A. D. Koussis
Hydrol. Earth Syst. Sci., 14, 1093–1097, https://doi.org/10.5194/hess-14-1093-2010, https://doi.org/10.5194/hess-14-1093-2010, 2010
J. A. Velázquez, T. Petit, A. Lavoie, M.-A. Boucher, R. Turcotte, V. Fortin, and F. Anctil
Hydrol. Earth Syst. Sci., 13, 2221–2231, https://doi.org/10.5194/hess-13-2221-2009, https://doi.org/10.5194/hess-13-2221-2009, 2009
Cited articles
AghaKouchak, A., Mirchi, A., Madani, K., Di Baldassarre, G., Nazemi, A., Alborzi, A., Anjileli, H., Azarderakhsh, M., Chiang, F., Hassanzadeh, E., Huning, L. S., Mallakpour, I., Martinez, A., Mazdiyasni, O., Moftakhari, H., Norouzi, H., Sadegh, M., Sadeqi, D., Van Loon, A. F., and Wanders, N.: Anthropogenic Drought: Definition, Challenges, and Opportunities, Rev. Geophys., 59, e2019RG000683, https://doi.org/10.1029/2019RG000683, 2021.
Apurv, T. and Cai, X.: Regional Drought Risk in the Contiguous United States, Geophys. Res. Lett., 48, e2020GL092200, https://doi.org/10.1029/2020GL092200, 2021.
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Miralles, D. G., Beck, H. E., Siegmund, J. F., Alvarez-Garreton, C., Verbist, K., Garreaud, R., Boisier, J. P., and Galleguillos, M.: On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes, Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, 2024.
Barichivich, J., Osborn, T. J., Harris, I., van der Schrier, G., and Jones, P. D.: Monitoring global drought using the self-calibrating palmer drought severity index [in “state of the climate in 2023”], B. Am. Meteorol. Soc., 105, S70–S71, https://doi.org/10.1175/BAMS-D-24-0116.1, 2024 (data available at: https://crudata.uea.ac.uk/cru/data/drought/, last access: 6 January 2025).
Beguería, S., Vicente Serrano, S. M., Reig-Gracia, F., and Latorre Garcés, B.: SPEIbase v.2.10 [dataset]: A comprehensive tool for global drought analysis, Consejo Superior de Investigaciones Científicas [data set], https://doi.org/10.20350/digitalCSIC/16497, 2024.
Chen, H. and Zhao, T.: Modeling power loss during blackouts in China using non-stationary generalized extreme value distribution, Energy, 195, 117044, https://doi.org/10.1016/j.energy.2020.117044, 2020.
Chen, M., Ma, J., Hu, Y., Zhou, F., Li, J., and Yan, L.: Is the S-shaped curve a general law? An application to evaluate the damage resulting from water-induced disasters, Nat. Hazards, 78, 497–515, https://doi.org/10.1007/s11069-015-1723-9, 2015.
Cheng, L., AghaKouchak, A., Gilleland, E., and Katz, R. W.: Non-stationary extreme value analysis in a changing climate, Climatic Change, 127, 353–369, https://doi.org/10.1007/s10584-014-1254-5, 2014.
Chiang, F., Mazdiyasni, O., and AghaKouchak, A.: Evidence of anthropogenic impacts on global drought frequency, duration, and intensity, Nat. Commun., 12, 2754, https://doi.org/10.1038/s41467-021-22314-w, 2021.
Dai, A.: Drought under global warming: a review, WIREs Clim. Change, 2, 45–65, https://doi.org/10.1002/wcc.81, 2011.
Entekhabi, D.: Propagation in the Drought Cascade: Observational Analysis Over the Continental US, Water Resour. Res., 59, e2022WR032608, https://doi.org/10.1029/2022WR032608, 2023.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes, Scientific Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015 (data available at: https://www.chc.ucsb.edu/data/chirps, last access: 6 January 2025).
Gao, H., Hrachowitz, M., Wang-Erlandsson, L., Fenicia, F., Xi, Q., Xia, J., Shao, W., Sun, G., and Savenije, H. H. G.: Root zone in the Earth system, Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024, 2024a.
Gao, Y., Zhao, T., Tu, T., Tian, Y., Zhang, Y., Liu, Z., Zheng, Y., Chen, X., and Wang, H.: Spatiotemporal links between meteorological and agricultural droughts impacted by tropical cyclones in China, Sci. Total Environ., 912, 169119, https://doi.org/10.1016/j.scitotenv.2023.169119, 2024b.
Gao, Y., Zhao, T., Tu, T., Tian, Y., Zhang, Y., Liu, Z., Zheng, Y., Chen, X., and Wang, H.: Spatiotemporal links between meteorological and agricultural droughts impacted by tropical cyclones in China, Sci. Total Environ., 912, 169119, https://doi.org/10.1016/j.scitotenv.2023.169119, 2024c.
Garrido-Perez, J. M., Vicente-Serrano, S. M., Barriopedro, D., García-Herrera, R., Trigo, R., and Beguería, S.: Examining the outstanding Euro-Mediterranean drought of 2021–2022 and its historical context, J. Hydrol., 630, 130653, https://doi.org/10.1016/j.jhydrol.2024.130653, 2024.
Haile, G. G., Tang, Q., Li, W., Liu, X., and Zhang, X.: Drought: Progress in broadening its understanding, WIREs Water, 7, e1407, https://doi.org/10.1002/wat2.1407, 2020.
Hao, Z. and Singh, V. P.: Drought characterization from a multivariate perspective: A review, J. Hydrol., 527, 668–678, https://doi.org/10.1016/j.jhydrol.2015.05.031, 2015.
Hao, Z., Yuan, X., Xia, Y., Hao, F., and Singh, V. P.: An Overview of Drought Monitoring and Prediction Systems at Regional and Global Scales, B. Am. Meteorol. Soc., 98, 1879–1896, https://doi.org/10.1175/BAMS-D-15-00149.1, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hoerling, M., Eischeid, J., Kumar, A., Leung, R., Mariotti, A., Mo, K., Schubert, S., and Seager, R.: Causes and Predictability of the 2012 Great Plains Drought, B. Am. Meteorol. Soc., 95, 269–282, https://doi.org/10.1175/BAMS-D-13-00055.1, 2014.
Hou, W., Chen, Z.-Q., Zuo, D.-D., and Feng, G.: Drought loss assessment model for southwest China based on a hyperbolic tangent function, Int. J. Disast. Risk Re., 33, 477–484, https://doi.org/10.1016/j.ijdrr.2018.01.017, 2019.
Jonkman, S. N., Vrijling, J. K., and Vrouwenvelder, A. C. W. M.: Methods for the estimation of loss of life due to floods: a literature review and a proposal for a new method, Nat. Hazards, 46, 353–389, https://doi.org/10.1007/s11069-008-9227-5, 2008.
Kucharavy, D. and De Guio, R.: Application of S-shaped curves, Procedia Engineer., 9, 559–572, https://doi.org/10.1016/j.proeng.2011.03.142, 2011.
Liu, R., Yin, J., Slater, L., Kang, S., Yang, Y., Liu, P., Guo, J., Gu, X., Zhang, X., and Volchak, A.: Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China, Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, 2024.
Long, D., Yang, W., Scanlon, B. R., Zhao, J., Liu, D., Burek, P., Pan, Y., You, L., and Wada, Y.: South-to-North Water Diversion stabilizing Beijing's groundwater levels, Nat. Commun., 11, 3665, https://doi.org/10.1038/s41467-020-17428-6, 2020.
Lü, J., Ju, J., Ren, J., and Gan, W.: The influence of the Madden-Julian Oscillation activity anomalies on Yunnan's extreme drought of 2009–2010, Sci. China Earth Sci., 55, 98–112, https://doi.org/10.1007/s11430-011-4348-1, 2012.
Ma, M., Qu, Y., Lyu, J., Zhang, X., Su, Z., Gao, H., Yang, X., Chen, X., Jiang, T., Zhang, J., Shen, M., and Wang, Z.: The 2022 extreme drought in the Yangtze River Basin: Characteristics, causes and response strategies, River, 1, 162–171, https://doi.org/10.1002/rvr2.23, 2022.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol., 391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.
Montanari, A., Nguyen, H., Rubinetti, S., Ceola, S., Galelli, S., Rubino, A., and Zanchettin, D.: Why the 2022 Po River drought is the worst in the past two centuries, Sci. Adv., 9, eadg8304, https://doi.org/10.1126/sciadv.adg8304, 2023.
Neath, A. A. and Cavanaugh, J. E.: The Bayesian information criterion: background, derivation, and applications, WIREs Computational Stats, 4, 199–203, https://doi.org/10.1002/wics.199, 2012.
Pradhan, R. K., Markonis, Y., Vargas Godoy, M. R., Villalba-Pradas, A., Andreadis, K. M., Nikolopoulos, E. I., Papalexiou, S. M., Rahim, A., Tapiador, F. J., and Hanel, M.: Review of GPM IMERG performance: A global perspective, Remote Sens. Environ., 268, 112754, https://doi.org/10.1016/j.rse.2021.112754, 2022.
Qiu, M., Ratledge, N., Azevedo, I. M. L., Diffenbaugh, N. S., and Burke, M.: Drought impacts on the electricity system, emissions, and air quality in the western United States, P. Natl. Acad. Sci. USA, 120, e2300395120, https://doi.org/10.1073/pnas.2300395120, 2023.
Shao, Q., Liu, X., and Zhao, W.: An alternative method for analyzing dimensional interactions of urban carrying capacity: Case study of Guangdong-Hong Kong-Macao Greater Bay Area, J. Environ. Manage., 273, 111064, https://doi.org/10.1016/j.jenvman.2020.111064, 2020.
Shi, W., Huang, S., Liu, D., Huang, Q., Han, Z., Leng, G., Wang, H., Liang, H., Li, P., and Wei, X.: Drought-flood abrupt alternation dynamics and their potential driving forces in a changing environment, J. Hydrol., 597, 126179, https://doi.org/10.1016/j.jhydrol.2021.126179, 2021.
Su, B., Huang, J., Fischer, T., Wang, Y., Kundzewicz, Z. W., Zhai, J., Sun, H., Wang, A., Zeng, X., Wang, G., Tao, H., Gemmer, M., Li, X., and Jiang, T.: Drought losses in China might double between the 1.5 °C and 2.0 °C warming, P. Natl. Acad. Sci. USA, 115, 10600–10605, https://doi.org/10.1073/pnas.1802129115, 2018.
Sun, S., Zhou, X., Liu, H., Jiang, Y., Zhou, H., Zhang, C., and Fu, G.: Unraveling the effect of inter-basin water transfer on reducing water scarcity and its inequality in China, Water Res., 194, 116931, https://doi.org/10.1016/j.watres.2021.116931, 2021.
Todisco, F., Mannocchi, F., and Vergni, L.: Severity–duration–frequency curves in the mitigation of drought impact: an agricultural case study, Nat. Hazards, 65, 1863–1881, https://doi.org/10.1007/s11069-012-0446-4, 2013.
Tsoularis, A. and Wallace, J.: Analysis of logistic growth models, Math. Biosci., 179, 21–55, https://doi.org/10.1016/S0025-5564(02)00096-2, 2002.
Van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., De Jeu, R. A. M., Liu, Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society, Water Resour. Res., 49, 1040–1057, https://doi.org/10.1002/wrcr.20123, 2013.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Van Der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., Van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Wan, L., Zhou, J., Guo, H., Cui, M., and Liu, Y.: Trend of water resource amount, drought frequency, and agricultural exposure to water stresses in the karst regions of South China, Nat. Hazards, 80, 23–42, https://doi.org/10.1007/s11069-015-1954-9, 2016.
Wang, F., Lai, H., Li, Y., Feng, K., Tian, Q., Zhang, Z., Di, D., and Yang, H.: Terrestrial ecological drought dynamics and its response to atmospheric circulation factors in the North China Plain, Atmos. Res., 294, 106944, https://doi.org/10.1016/j.atmosres.2023.106944, 2023a.
Wang, Y., Wang, S., Chen, Y., Wang, F., Liu, Y., and Zhao, W.: Anthropogenic drought in the Yellow River basin: Multifaceted and weakening connections between meteorological and hydrological droughts, J. Hydrol., 619, 129273, https://doi.org/10.1016/j.jhydrol.2023.129273, 2023b.
Wells, N., Goddard, S., and Hayes, M. J.: A self-calibrating palmer drought severity index, J. Climate, 17, 2335–2351, https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2, 2004.
Weng, P., Tian, Y., Zhou, H., Zheng, Y., and Jiang, Y.: Saltwater intrusion early warning in Pearl river Delta based on the temporal clustering method, J. Environ. Manage., 349, 119443, https://doi.org/10.1016/j.jenvman.2023.119443, 2024.
West, H., Quinn, N., and Horswell, M.: Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities, Remote Sens. Environ., 232, 111291, https://doi.org/10.1016/j.rse.2019.111291, 2019.
Wu, Z., Li, J., He, J., and Jiang, Z.: Occurrence of droughts and floods during the normal summer monsoons in the mid- and lower reaches of the Yangtze River, Geophys. Res. Lett., 33, L05813, https://doi.org/10.1029/2005GL024487, 2006.
Xiong, L., Du, T., Xu, C.-Y., Guo, S., Jiang, C., and Gippel, C. J.: Non-Stationary Annual Maximum Flood Frequency Analysis Using the Norming Constants Method to Consider Non-Stationarity in the Annual Daily Flow Series, Water Resour. Manage., 29, 3615–3633, https://doi.org/10.1007/s11269-015-1019-6, 2015.
Yang, X., Wu, F., Yuan, S., Ren, L., Sheffield, J., Fang, X., Jiang, S., and Liu, Y.: Quantifying the Impact of Human Activities on Hydrological Drought and Drought Propagation in China Using the PCR-GLOBWB v2.0 Model, Water Resour. Res., 60, e2023WR035443, https://doi.org/10.1029/2023WR035443, 2024.
Ye, L., Hanson, L. S., Ding, P., Wang, D., and Vogel, R. M.: The probability distribution of daily precipitation at the point and catchment scales in the United States, Hydrol. Earth Syst. Sci., 22, 6519–6531, https://doi.org/10.5194/hess-22-6519-2018, 2018.
Yin, J., Slater, L., Gu, L., Liao, Z., Guo, S., and Gentine, P.: Global Increases in Lethal Compound Heat Stress: Hydrological Drought Hazards Under Climate Change, Geophys. Res. Lett., 49, e2022GL100880, https://doi.org/10.1029/2022GL100880, 2022a.
Yin, J., Guo, S., Yang, Y., Chen, J., Gu, L., Wang, J., He, S., Wu, B., and Xiong, J.: Projection of droughts and their socioeconomic exposures based on terrestrial water storage anomaly over China, Sci. China Earth Sci., 65, 1772–1787, https://doi.org/10.1007/s11430-021-9927-x, 2022b.
Yuan, X., Wang, Y., Ji, P., Wu, P., Sheffield, J., and Otkin, J. A.: A global transition to flash droughts under climate change, Science, 380, 187–191, https://doi.org/10.1126/science.abn6301, 2023.
Zhang, L., Yuan, F., and He, X.: Probabilistic Assessment of Global Drought Recovery and Its Response to Precipitation Changes, Geophys. Res. Lett., 51, e2023GL106067, https://doi.org/10.1029/2023GL106067, 2024.
Zhang, X., Hao, Z., Singh, V. P., Zhang, Y., Feng, S., Xu, Y., and Hao, F.: Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors, Sci. Total Environ., 838, 156021, https://doi.org/10.1016/j.scitotenv.2022.156021, 2022.
Zhang, Y., Keenan, T. F., and Zhou, S.: Exacerbated drought impacts on global ecosystems due to structural overshoot, Nat. Ecol. Evol., 5, 1490–1498, https://doi.org/10.1038/s41559-021-01551-8, 2021.
Zhao, T., Chen, Z., Tian, Y., Zhang, B., Li, Y., and Chen, X.: A decomposition approach to evaluating the local performance of global streamflow reanalysis, Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024, 2024a.
Zhao, T., Li, X., Li, Y., Zhang, B., and Zhang, Y.: Concurrent droughts across Major River Basins of the World modulated by El Niño–Southern Oscillation, J. Hydrol., 644, 132112, https://doi.org/10.1016/j.jhydrol.2024.132112, 2024b.
Short summary
The classic logistic function characterizes the stationary relationship between drought loss and intensity. This paper accounts for time in the magnitude, shape and location parameters of the logistic function and derives nonstationary intensity loss functions. A case study is designed to test the functions for drought-affected populations by province in mainland China from 2006 to 2023. Overall, the nonstationary intensity loss functions are shown to be a useful tool for drought management.
The classic logistic function characterizes the stationary relationship between drought loss and...