Articles | Volume 29, issue 11
https://doi.org/10.5194/hess-29-2429-2025
https://doi.org/10.5194/hess-29-2429-2025
Research article
 | 
11 Jun 2025
Research article |  | 11 Jun 2025

An extension of the logistic function to account for nonstationary drought losses

Tongtiegang Zhao, Zecong Chen, Yongyong Zhang, Bingyao Zhang, and Yu Li

Related authors

An extension of the WeatherBench 2 to binary hydroclimatic forecasts
Tongtiegang Zhao, Qiang Li, Tongbi Tu, and Xiaohong Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3,https://doi.org/10.5194/egusphere-2025-3, 2025
Short summary
A decomposition approach to evaluating the local performance of global streamflow reanalysis
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024,https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Robustness of the long short-term memory network in rainfall-runoff prediction improved by the water balance constraint
Qiang Li and Tongtiegang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1449,https://doi.org/10.5194/egusphere-2024-1449, 2024
Preprint withdrawn
Short summary
Role of the water balance constraint in the long short-term memory network: large-sample tests of rainfall-runoff prediction
Qiang Li and Tongtiegang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-2841,https://doi.org/10.5194/egusphere-2023-2841, 2024
Preprint archived
Short summary
Extension of the general unit hydrograph theory for the spread of salinity in estuaries
Huayang Cai, Bo Li, Junhao Gu, Tongtiegang Zhao, and Erwan Garel
Ocean Sci., 19, 603–614, https://doi.org/10.5194/os-19-603-2023,https://doi.org/10.5194/os-19-603-2023, 2023
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Modelling approaches
Probabilistic downscaling of EURO-CORDEX precipitation data for the assessment of future areal precipitation extremes for hourly to daily durations
Abbas El Hachem, Jochen Seidel, and András Bárdossy
Hydrol. Earth Syst. Sci., 29, 1335–1357, https://doi.org/10.5194/hess-29-1335-2025,https://doi.org/10.5194/hess-29-1335-2025, 2025
Short summary
Impact Webs: A novel conceptual modelling approach for characterising and assessing complex risks
Edward Sparkes, Davide Cotti, Angel Valdiviezo Ajila, Saskia E. Werners, and Michael Hagenlocher
EGUsphere, https://doi.org/10.5194/egusphere-2024-2844,https://doi.org/10.5194/egusphere-2024-2844, 2024
Short summary
Technical Note: Operational calibration and performance improvement for hydrodynamic models in data-scarce coastal areas
Francisco Rodrigues do Amaral, Benoît Camenen, Tin Nguyen Trung, Tran Anh Tu, Thierry Pellarin, and Nicolas Gratiot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1563,https://doi.org/10.5194/egusphere-2024-1563, 2024
Short summary
Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024,https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
A systematic review of climate change science relevant to Australian design flood estimation
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024,https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary

Cited articles

Apurv, T. and Cai, X.: Regional Drought Risk in the Contiguous United States, Geophys. Res. Lett., 48, e2020GL092200, https://doi.org/10.1029/2020GL092200, 2021. 
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Miralles, D. G., Beck, H. E., Siegmund, J. F., Alvarez-Garreton, C., Verbist, K., Garreaud, R., Boisier, J. P., and Galleguillos, M.: On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes, Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, 2024. 
Barichivich, J., Osborn, T. J., Harris, I., van der Schrier, G., and Jones, P. D.: Monitoring global drought using the self-calibrating palmer drought severity index [in “state of the climate in 2023”], B. Am. Meteorol. Soc., 105, S70–S71, https://doi.org/10.1175/BAMS-D-24-0116.1, 2024 (data available at: https://crudata.uea.ac.uk/cru/data/drought/, last access: 6 January 2025). 
Beguería, S., Vicente Serrano, S. M., Reig-Gracia, F., and Latorre Garcés, B.: SPEIbase v.2.10 [dataset]: A comprehensive tool for global drought analysis, Consejo Superior de Investigaciones Científicas [data set], https://doi.org/10.20350/digitalCSIC/16497, 2024. 
Download
Short summary
The classic logistic function characterizes the stationary relationship between drought loss and intensity. This paper accounts for time in the magnitude, shape and location parameters of the logistic function and derives nonstationary intensity loss functions. A case study is designed to test the functions for drought-affected populations by province in mainland China from 2006 to 2023. Overall, the nonstationary intensity loss functions are shown to be a useful tool for drought management.
Share