Articles | Volume 29, issue 11
https://doi.org/10.5194/hess-29-2429-2025
https://doi.org/10.5194/hess-29-2429-2025
Research article
 | 
11 Jun 2025
Research article |  | 11 Jun 2025

An extension of the logistic function to account for nonstationary drought losses

Tongtiegang Zhao, Zecong Chen, Yongyong Zhang, Bingyao Zhang, and Yu Li

Related authors

An extension of WeatherBench 2 to binary hydroclimatic forecasts
Tongtiegang Zhao, Qiang Li, Tongbi Tu, and Xiaohong Chen
Geosci. Model Dev., 18, 5781–5799, https://doi.org/10.5194/gmd-18-5781-2025,https://doi.org/10.5194/gmd-18-5781-2025, 2025
Short summary
A decomposition approach to evaluating the local performance of global streamflow reanalysis
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024,https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Robustness of the long short-term memory network in rainfall-runoff prediction improved by the water balance constraint
Qiang Li and Tongtiegang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1449,https://doi.org/10.5194/egusphere-2024-1449, 2024
Preprint withdrawn
Short summary
Role of the water balance constraint in the long short-term memory network: large-sample tests of rainfall-runoff prediction
Qiang Li and Tongtiegang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-2841,https://doi.org/10.5194/egusphere-2023-2841, 2024
Preprint archived
Short summary
Extension of the general unit hydrograph theory for the spread of salinity in estuaries
Huayang Cai, Bo Li, Junhao Gu, Tongtiegang Zhao, and Erwan Garel
Ocean Sci., 19, 603–614, https://doi.org/10.5194/os-19-603-2023,https://doi.org/10.5194/os-19-603-2023, 2023
Short summary

Cited articles

Apurv, T. and Cai, X.: Regional Drought Risk in the Contiguous United States, Geophys. Res. Lett., 48, e2020GL092200, https://doi.org/10.1029/2020GL092200, 2021. 
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Miralles, D. G., Beck, H. E., Siegmund, J. F., Alvarez-Garreton, C., Verbist, K., Garreaud, R., Boisier, J. P., and Galleguillos, M.: On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes, Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, 2024. 
Barichivich, J., Osborn, T. J., Harris, I., van der Schrier, G., and Jones, P. D.: Monitoring global drought using the self-calibrating palmer drought severity index [in “state of the climate in 2023”], B. Am. Meteorol. Soc., 105, S70–S71, https://doi.org/10.1175/BAMS-D-24-0116.1, 2024 (data available at: https://crudata.uea.ac.uk/cru/data/drought/, last access: 6 January 2025). 
Beguería, S., Vicente Serrano, S. M., Reig-Gracia, F., and Latorre Garcés, B.: SPEIbase v.2.10 [dataset]: A comprehensive tool for global drought analysis, Consejo Superior de Investigaciones Científicas [data set], https://doi.org/10.20350/digitalCSIC/16497, 2024. 
Download
Short summary
The classic logistic function characterizes the stationary relationship between drought loss and intensity. This paper accounts for time in the magnitude, shape and location parameters of the logistic function and derives nonstationary intensity loss functions. A case study is designed to test the functions for drought-affected populations by province in mainland China from 2006 to 2023. Overall, the nonstationary intensity loss functions are shown to be a useful tool for drought management.
Share