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Abstract. While the stationary intensity loss function is fun-
damental to drought impact assessment, the relationship be-
tween drought loss and intensity can change as time pro-
gresses owing to socio-economic developments. This pa-
per addresses this critical gap by modelling nonstationary
drought losses. Specifically, time is explicitly formulated by
linear and quadratic functions and then incorporated into
the magnitude, shape and location parameters of the logis-
tic function to derive six nonstationary intensity loss func-
tions in total. To examine the effectiveness of this approach,
a case study is designed for drought-affected populations by
province in mainland China during the period from 2006 to
2023. The results highlight the existence of nonstationarity in
that the drought-affected population exhibits significant cor-
relation not only with the standard precipitation index but
also with time. The proposed nonstationary intensity loss
functions are shown to outperform not only the classic lo-
gistic function but also the linear regression. They present
effective characterizations of observed drought loss in dif-
ferent ways: (1) the nonstationary function with the flexible
magnitude parameter fits the data by adjusting the maximum
drought loss by year; (2) the nonstationary function with the
flexible shape parameter works by modifying the growth rate
of drought loss with intensity; and (3) the nonstationary func-
tion with the flexible location parameter acts by shifting the
response curves along the axis by year. Among the nonsta-
tionary logistic functions, the function incorporating the lin-
ear function of time into the magnitude parameter generally
outperforms the others in terms of having a high coefficient

of determination, a low Bayesian information criterion and
an explicit physical meaning. Taken together, the nonstation-
ary intensity loss functions developed in this paper can serve
as an effective tool for drought management.

1 Introduction

Droughts are one of the most destructive natural hazards
(Baez-Villanueva et al., 2024; Van Dijk et al., 2013; Zhang
et al., 2022). In general, there exist meteorological, hydro-
logical, agricultural and socio-economic droughts (Mishra
and Singh, 2010). Originating from precipitation deficits and
high atmospheric evaporative demands, droughts propagate
through hydrological processes and eventually impair hu-
man beings and natural ecosystems (Gao et al., 2024a; Liu
et al., 2024; Zhao et al., 2024a). From 2001 to 2009, the Mil-
lennium Drought in southeastern Australia amplified median
rainfall reduction by up to 4 times in streamflow and reduced
irrigated rice and cotton production by 99 % and 84 % re-
spectively (Van Dijk et al., 2013). The 2012 summertime
drought struck the Central Great Plains in North America
without early warning and caused more than USD 30 bil-
lion in economic losses (Hoerling et al., 2014; Yuan et
al., 2023). The 2021/2022 drought event placed 76.2 % of
the Euro-Mediterranean region under mild drought, 61.4 %
under moderate drought and 39.4 % under severe drought
(Garrido-Perez et al., 2024). Under climate change, droughts
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are expected to not only increase worldwide (Dai, 2011) but
also intensify more rapidly (Yuan et al., 2023).

Socio-economic losses are an integral part of droughts in
environmental management (AghaKouchak et al., 2021; Ho-
erling et al., 2014; Van Dijk et al., 2013). Although there ex-
ist extensive studies on hydroclimatic processes associated
with droughts (Entekhabi, 2023; Mishra and Singh, 2010;
Wang et al., 2023b; Yang et al., 2024; Zhang et al., 2021),
far less attention has been paid to the socio-economic im-
pacts of droughts (AghaKouchak et al., 2021; Apurv and
Cai, 2021; Su et al., 2018). One possible cause is the lack of
socio-economic data on droughts (Su et al., 2018; Yang et al.,
2024). On the one hand, in situ observations, satellite remote
sensing and Earth system models generate a vast amount of
hydroclimatic data (Hersbach et al., 2020; Pradhan et al.,
2022; Zhang et al., 2024, 2021; Zhao et al., 2024b). Plenty
of spatial–temporal data facilitates drought investigations at
catchment, regional, continental and global scales and on
pentad, monthly, seasonal and annual time steps (Gao et al.,
2024b; Ma et al., 2022; Wang et al., 2023a). On the other
hand, there are limited data on socio-economic losses due
to droughts (AghaKouchak et al., 2021). Usually, drought
losses have to be collected from statistical yearbooks issued
by local and central governments and from survey reports
provided by international organizations and commercial ser-
vices (Chen et al., 2015; Hou et al., 2019).

The intensity loss function, which is also described as the
exposure–response curve and dose–response relationship,
plays a critical part in disaster risk management (AghaK-
ouchak et al., 2021; Qiu et al., 2023; West et al., 2019).
The classic logistic function is effective in characterizing
the growth of socio-economic loss with drought intensity
(Chen et al., 2015; Hou et al., 2019; Todisco et al., 2013).
Moreover, the relationship between socio-economic loss and
drought intensity can be nonstationary, i.e. temporally chang-
ing, considering that economic growth can increase exposure
to droughts and that infrastructure developments can increase
resilience to droughts (Apurv and Cai, 2021; Haile et al.,
2020; Long et al., 2020). In this paper, we build three nonsta-
tionary functions upon the magnitude, shape and location pa-
rameters of the classic logistic function that represents a sta-
tionary intensity loss function. As is illustrated in the meth-
ods and results, the proposed functions tend to capture the
nonstationary characteristics of drought-affected populations
in mainland China. The effects of drought intensity and time
on populations in different provinces are effectively charac-
terized.

2 Methods

2.1 Intensity loss function

Drought indices are essential for drought impact assess-
ment (Montanari et al., 2023; Todisco et al., 2013; West

et al., 2019). Among the popular indices are the standard-
ized precipitation index (SPI), the Palmer drought severity
index (PDSI), the standardized precipitation evapotranspira-
tion index (SPEI) and the standardized runoff index (SRI)
(AghaKouchak et al., 2021; Apurv and Cai, 2021; Zhao et al.,
2024b). The intensity is derived from drought indices (Hao
et al., 2017; Mishra and Singh, 2010; Su et al., 2018). As 0
is both the mean and the median values of the standard nor-
mal distribution, the extent to which drought indices fall be-
low 0 indicates the degree of dryness. Thresholds can be em-
ployed to identify drought events (Wang et al., 2023b). For
example, (−0.99, 0] is near normal, (−1.49, −1.00] is mod-
erately dry, (−1.99,−1.50] is severely dry and (−∞,−2.00]
is extremely dry. Therefore, drought events can be defined
by a combination of multiple indices, e.g. by SPI≤−1.0,
PDSI≤−2.0 and SPEI≤−1.0 (Su et al., 2018).

Denoting the drought intensity as I , the intensity loss func-
tion is formulated as

L= f (I), (1)

in which L is the drought loss corresponding to the inten-
sity I . Empirically, there are four important characteristics
of f (I): (1) there is minimal loss when there is minimal I ;
(2) there is maximal loss when there is maximal I ; (3) f (I)

is a monotonically increasing function (i.e. drought loss in-
creases with drought intensity); and (4) drought loss grows
slowly with I initially, rises rapidly as I increases and then
slows down until maturity.

The above four characteristics can mathematically be for-
mulated by the renowned logistic function (Chen et al., 2015;
Jonkman et al., 2008; Kucharavy and De Guio, 2011):

L(I)=
A

1+ e−k(I−c)
, (2)

in which there are three parameters, namely (1) the magni-
tude parameter A representing the maximum drought loss,
(2) the shape parameter k controlling the growth rate of L

with I and (3) the location parameter c indicating the point
at which the saturation begins.

Drought indices that represent intensity can be derived
from the target hydroclimatic variable’s cumulative distribu-
tion function (CDF) and the inverse CDF of the standard
normal distribution (Hao et al., 2017; Mishra and Singh,
2010; Montanari et al., 2023; Zhang et al., 2024; Zhao et al.,
2024b). For example, SPI is calculated as

SPIt = CDF−1
N(0,1)(CDFp(pt )), (3)

in which SPIt in period t , which follows the standard nor-
mal distribution, is derived from precipitation amount pt in
period t . There are two steps: firstly, pt is converted into a
standard uniform variate between 0 and 1 by its CDF, i.e.
CDFp(·), and secondly, the standard uniform variate is con-
verted into the standard normal variate SPIt by the inverse
CDF of N (0,12), i.e. CDF−1

N(0,1)(·). Similarly, SPEI is derived
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from the difference between precipitation and potential evap-
otranspiration (Baez-Villanueva et al., 2024). Furthermore,
the self-calibrating PDSI (scPDSI) takes into account evapo-
transpiration, recharge, runoff and loss in order to report dry
conditions with frequencies that would be expected for rare
conditions (Wells et al., 2004).

2.2 Formulation of the logistic function

There is an inverse relationship between drought intensity
and drought indices such as SPI, SPEI and scPDSI. It is be-
cause the extent of dryness is generally characterized by how
negative drought indices are (Haile et al., 2020; Liu et al.,
2024; Zhang et al., 2021). That is, the more intense the dry-
ness, the more negative the drought indices. Taking SPI as an
indicator of drought intensity, the logistic function is modi-
fied by removing the negative sign in front of k:

L(SPI)=
A

1+ ek(SPI−c)
. (4)

The ranges of the three parameters can be predetermined
in accordance with the physical meanings of the parameters.

First of all,

A > 0, (5)

which means that drought loss is always above 0.
Second,

k > 0, (6)

which means that as the SPI increases from −∞ to +∞, the
denominator in Eq. (6) increases and leads to a reduction in
drought loss. Eventually, the increasing denominator causes
drought loss to approach 0 when SPI is large enough. On the
other hand, it is noted that the loss begins to increase with
SPI when k is negative.

Third,

−∞< c <+∞, (7)

which means that the value of c depends on the case under
investigation and can change freely.

An illustrative example of the logistic function in Eq. (4)
is presented in Fig. 1. The result under the basic parameter
set of (A= 1.0, k = 5.0, c = 0.0) is marked in black. There
are three one-factor-at-a-time experiments (Chen and Zhao,
2020). First, the value of A is increased to 1.5. As is shown by
the red line, the maximum drought loss evidently increases,
but the shape of the line stays the same. Second, the value of
k is reduced to 3.0. As is shown by the green line, the shape
of the line becomes flatter, but the maximum loss remains the
same. Third, the value of c is decreased to−1.0. As is shown
by the blue line, the curve is shifted to the left as a whole,
while both the maximum loss and the shape do not change.

2.3 Stationary and nonstationary formulations

There are socio-economic factors that contribute to tempo-
ral changes, i.e. nonstationarity, in the intensity loss function
(AghaKouchak et al., 2021; Chiang et al., 2021; Long et al.,
2020). First, exposure to drought can increase with time ow-
ing to population growth, wealth accumulation and infras-
tructure development. Second, vulnerability under a given
level of drought intensity may decrease with time consider-
ing engineering measures, such as the construction of water
storage reservoirs and inter-basin water diversion projects.
Third, resilience to drought can be improved by drought
management measures, such as sub-seasonal to seasonal hy-
droclimatic forecasting and forecast-informed reservoir oper-
ation. In general, the relationship between drought loss and
intensity tends to evolve as time progresses due to socio-
economic developments and deployment of engineering and
non-engineering drought-coping strategies (Hou et al., 2019;
Jonkman et al., 2008; Su et al., 2018).

Without considering temporal changes, there is a station-
ary logistic function LA0k0c0(·):

LA0k0c0(SPIt )=
A0

1+ ek0(SPIt−c0)
. (8)

To account for temporal change, the linear function that
takes time t as an explanatory variable (Cheng et al., 2014;
Xiong et al., 2015) can be formulated for the parameters A,
k and c: At = A0+A1× t

kt = k0+ k1× t

ct = c0+ c1× t

, (9)

in which A0, k0 and c0 are the intercepts, while A1, k1 and
c1 are the slopes. The incorporation of Eq. (9) into Eq. (8)
yields the following three equations:

LA1k0c0(SPIt )= A0+A1×t

1+ek0(SPIt−c0)

LA0k1c0(SPIt )= A0
1+e(k0+k1×t)×(SPIt−c0)

LA0k0c1(SPIt )= A0
1+ek0(SPIt−(c0+c1×t))

, (10)

in which the logistic functions LA1k0c0(SPIt ), LA0k1c0(SPIt )
and LA0k0c1(SPIt ) have nonstationary magnitude, shape and
location parameters respectively.

Furthermore, the quadratic function can be used to accom-
modate possibly nonlinear changes:

At = A0+A1× t +A2× t2

kt = k0+ k1× t + k2× t2

ct = c0+ c1× t + c2× t2
. (11)

The incorporation of Eq. (11) into Eq. (8) yields another
three equations:

LA2k0c0(SPIt )= A0+A1×t+A2×t2

1+ek0(SPIt−c0)

LA0k2c0(SPIt )= A0

1+e(k0+k1×t+k2×t2)×(SPIt−c0)

LA0k0c2(SPIt )= A0

1+ek0(SPIt−(c0+c1×t+c2×t2))

. (12)
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Figure 1. An illustrative example of the logistic function under four sets of parameters.

In Eqs. (8), (10) and (12), the subscripts “Ax”, “kx” and
“cx” denote the magnitude, shape and location parameters
respectively. For “x”, the values 0, 1 and 2 indicate the
non-involvement of time, the linear function of time and the
quadratic function of time respectively. As a result, the logis-
tic function is nonstationary when x is 1 or 2. For example,
LA1k0c0(SPIt ) represents the nonstationary logistic function
involving the linear function of time for the magnitude pa-
rameter.

Fitting the stationary and nonstationary functions is con-
sidered to be a nonlinear least-squares problem by search-
ing for the set of parameters that minimizes the sum of the
squares of residuals. It is performed using the curve_fit func-
tion in the SciPy optimization toolbox (Virtanen et al., 2020).

3 Case study

3.1 Data description

The drought loss data are sourced from the Ministry of Wa-
ter Resources (MWR) of China. The MWR has published
the Bulletin of Flood and Drought Disaster in China annu-
ally since 2006. The name of the bulletin was changed to
the China Flood and Drought Disaster Prevention Bulletin in
2019. By collating floods and droughts reported by provin-
cial governments and river basin commissions, the MWR has
presented major events of droughts and floods across the 31
provinces in mainland China in its bulletin. With respect to
droughts and floods in each province, the bulletin provides an
annual account of quantitative socio-economic losses, con-
tingency plans, and retrospective analyses of prevention and
control measures.

Attention is paid to drought-affected populations, which
represents the number of individuals suffering from the im-
pacts of droughts as recorded in official reports. Figure 2
shows the multi-annual mean drought-affected population,
maximum annual drought-affected population, mean annual

precipitation and total population. From Fig. 2a and b, it can
be observed that provinces in southwestern China, including
Yunnan, Guizhou and Sichuan, tend to have the largest pop-
ulation affected by droughts. In 2010 in particular, 9.65 mil-
lion people in Yunnan Province and 7.57 million people in
Guizhou Province were struck by a record-breaking drought
event induced by the persistently positive Madden–Julian
Oscillation (Lü et al., 2012). On the other hand, it can be
seen from Fig. 2c and d that there is neither low precipitation
nor a large population in southwestern China. In general, the
large drought-affected population in Yunnan and Sichuan is
attributed to the karst landscape, which is characterized by
low storage capacity, high infiltration rate and fast ground-
water flow (Wan et al., 2016).

The precipitation data used for the calculation of SPI are
obtained from the Climate Hazards Group InfraRed Pre-
cipitation with Station data (CHIRPS) (Funk et al., 2015).
The intersection operation is performed to use provincial
polygons to extract spatially averaged precipitation from the
CHIRPS raster precipitation field. To better characterize the
climatological distribution of precipitation, time series of an-
nual precipitation are extracted by province for the period
from 1981 to 2023. The 43-year annual precipitation is first
converted into CDF by Weibull’s plotting position (Ye et al.,
2018) and then converted into SPI by the inverse CDF of
N (0,12). Then, SPI in the years from 2006 to 2023 is used in
the fitting of the logistic functions.

Alongside the SPI data, the SPEI data are obtained from
SPEIbase (Beguería et al., 2024). Specifically, SPEI-12 in
December is selected to represent the annual drought con-
dition as the loss is at the annual timescale, and the inter-
section operation is performed to use provincial polygons to
extract the spatially averaged SPEI. Furthermore, scPDSI is
sourced from the Climate Research Unit (CRU) (Barichivich
et al., 2024). As scPDSI is monthly, the values across the
12 months within a year are averaged before taking the spa-
tial average of each province.
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Figure 2. Spatial plots of (a) mean annual drought-affected population, (b) maximum annual drought-affected population, (c) mean annual
precipitation and (d) population by province in mainland China. Publisher’s remark: please note that the above figure contains disputed
territories.

3.2 Model evaluation

The coefficient of determination, i.e. R2, is evaluated for the
stationary logistic function (Eq. 8) and the six types of non-
stationary logistic functions (Eqs. 10 and 12). That is, the
sum of squares of residuals for the estimations provided by
the functions is compared to the baseline sum of squares of
residuals for the mean value. As a result, R2 represents the
ratio of total variation in the drought loss that is explained as
follows:

R2
= 1−

∑
t (Lt − L̂t )

2∑
t (Lt −L)2

, (13)

in which Lt is the drought loss in year t , L̂t is the loss esti-
mated by the function under investigation and L is the mean
value of all Lt values.

The number of parameters plays a critical part in statistical
modelling. That is, more parameters facilitate more flexible
fitting of observed data but are also more prone to overfitting
(Neath and Cavanaugh, 2012). There are three parameters
for the stationary logistic function, four parameters for the
nonstationary logistic functions with the linear function and
five parameters for the nonstationary logistic functions with

the quadratic function:

nA0k0c0 = 3
nA1k0c0 = 4
nA0k1c1 = 4
nA0k0c1 = 4
nA2k0c0 = 5
nA0k2c0 = 5
nA0k0c2 = 5

. (14)

The Bayesian information criterion (BIC) takes into ac-
count both the sum of squares of residuals and the number of
parameters (Neath and Cavanaugh, 2012):

BIC= T × ln

(∑
t (Lt − L̂t )

2

T

)
+ n× ln(T ), (15)

in which ln(·) is the natural logarithmic function, T is the
number of observations and n is the number of parameters.
BIC is negatively oriented, meaning that a lower value indi-
cates a better fit. As a result, both a larger sum of squares of
residuals and more parameters are penalized by the BIC.
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4 Results

4.1 Correlation analysis

Pearson’s correlation coefficients between the drought-
affected population and time and between the drought-
affected population and SPI are illustrated by bar plots in
Fig. 3. There are a total of 31 provincial administrative re-
gions in mainland China. Beijing, Tianjin, Shanghai and
Xizang are not considered since they are excluded from the
drought-affected population in most years. This outcome is
mainly due to ample water availability and water supply fa-
cilities (Long et al., 2020; Sun et al., 2021). For the other
27 provincial administrative regions, it can be observed from
Fig. 3a that the correlation coefficient between the drought-
affected population and time is mostly significantly negative,
while it is slightly positive in Guangdong and Fujian, al-
though not significant. The implication is that the drought-
affected population mostly exhibits a decreasing trend as
time progresses and sometimes shows an increasing trend.
From Fig. 3b, it is seen that the correlation coefficient be-
tween the drought-affected population and SPI is generally
significantly negative. This result suggests that the drought-
affected population tends to decrease as the amount of pre-
cipitation increases. Overall, the correlation coefficients in
Fig. 3 point out that it is reasonable to use both time and SPI
as explanatory variables of the drought-affected population.

The drought-affected population is plotted against time
and SPI for Yunnan Province in Fig. 4 due to its remarkable
mean annual drought-affected population (Wan et al., 2016)
and for Guangdong Province in Fig. 5 due to its economic
importance (Shao et al., 2020). The scatter plots on the left-
hand side of the two figures imply the complexity of drought
impact assessment. That is, owing to socio-economic devel-
opments, the drought-affected population can decrease or in-
crease as time progresses (Apurv and Cai, 2021; Haile et al.,
2020; Long et al., 2020). The scatter plots on the right-hand
side suggest that the increase in precipitation effectively re-
duces the population affected by droughts (AghaKouchak et
al., 2021; Qiu et al., 2023; West et al., 2019).

4.2 Decreasing drought-affected population

The stationary logistic function directly relates the drought-
affected population to SPI (Fig. 6), while the nonstationary
logistic functions account for the dependency of the drought-
affected population on both SPI and time (Figs. 7 and 8).

In Fig. 6, it is shown that the mean drought-affected pop-
ulation is about 4 million, whereas the maximum reached
10 million in the year 2010. Furthermore, the data point
with the maximum drought-affected population corresponds
to SPI that is around 0, which is due to the fact that drought
conditions depend not only on precipitation, but also on evap-
otranspiration, water storage and other hydroclimatic factors
(Su et al., 2018; Yin et al., 2022a, b). In general, it is hard for

the stationary logistic function A0k0c0 to capture the data
points with a lower SPI but a higher drought-affected popu-
lation.

In Fig. 7, the nonstationary logistic functions A1k0c0,
A0k1c0 and A0k0c1 are visualized by the surface and wire-
frame plots. While the correlation between the drought-
affected population and time tends to be negative in Yun-
nan Province, it is observed that the nonstationary functions
tend to capture not only the decrease in the drought-affected
population with SPI, but also the decrease in the drought-
affected population with time. Since the year with the max-
imum drought-affected population is in the early part of the
study period, there is a remarkable increase in R2. The three
functions perform differently in capturing the observed data
points.

1. The flexible magnitude parameter in A1k0c0 tends to
fit the observed data by reducing the maximum drought
loss by year (Fig. 6a). As can be seen from the wire-
frame plot, the maximum drought loss evidently reduces
from 2006 to 2023, while the shape and location of the
curves remain the same.

2. The flexible shape parameter in A0k1c0 fits the ob-
served data by changing the response surface, as shown
in Fig. 6b. Although it exhibits the highest R2 and the
lowest BIC, the fitted drought-affected population is
shown to counterintuitively increase with SPI in 2021,
2022 and 2023. That is, more people could be subject to
drought as precipitation increases in these 3 years. This
wrong outcome is because of the flexibility of the shape
parameter. Specifically, the value of the shape parame-
ter can be forced by the trend term to turn from positive
to negative as time progresses. When the shape param-
eter is negative, the estimated drought impact increases
with the precipitation amount.

3. The flexible location parameter in A0k0c1 tends to fit
the observation data by shifting the response curves by
year, as shown in Fig. 6c. Due to the fact that the maxi-
mum drought-affected population is fixed from 2006 to
2023, it is observed that the maximum affected popula-
tion in 2010 is not effectively captured.

In Fig. 8, the nonstationary logistic functions A2k0c0,
A0k2c0 and A0k0c2 are also visualized by the surface and
wireframe plots. Although the quadratic function leads to
some improvements in R2, the improvements are at the cost
of the physical meaning of the results. From Fig. 8a, it is
observed that under a given SPI that is below 0, the drought-
affected population initially increases but then decreases with
time. From Fig. 8b, it is observed that the response surface
exhibits a complex shape that can be due to the fitting of
sample-specific noise. The implication is that the data points
are too limited to facilitate the fitting of a quadratic function
in A2k0c0, A0k2c0 and A0k0c2.
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Figure 3. Correlation coefficient between the drought-affected population and (a) time and between the drought-affected population and
(b) SPI by province. Alongside the bars are ∗, ∗∗ and ∗∗∗, indicating the significance at the levels of 0.10, 0.05 and 0.01 respectively. Bars
without ∗ imply non-significant correlation coefficients.

Figure 4. Scatter plots of the drought-affected population against
(a) time and (b) SPI in Yunnan Province.

4.3 Increasing drought-affected population

The stationary and nonstationary logistic functions are fur-
thermore applied to Guangdong Province (Shao et al., 2020).
Since the population of Guangdong is concentrated on the
Pearl River Delta, recent years have witnessed a serious wa-
ter scarcity due to upstream reservoir impoundments and es-
tuary saltwater intrusion (Weng et al., 2024).

From Fig. 9, it is observed that there can be a consider-
able drought-affected population when the precipitation is

Figure 5. As for Fig. 4 but for Guangdong Province.

above average. The stationary logistic function A0k0c0 tends
to capture the decrease in drought-affected population with
SPI. However, it is difficult for this function to capture data
points with large drought-affected populations.

From Fig. 10, it is seen that the three nonstationary logis-
tic functions, A1k0c0, A0k1c0 and A0k0c1, are more effec-
tive in characterizing the dependency of the drought-affected
population on SPI and time. The linear function plays differ-
ent parts in these three functions.
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Figure 6. Illustration of the stationary logistic function A0k0c0 fit-
ting the relationship between SPI and the drought-affected popula-
tion for Yunnan Province.

Figure 7. Surface plots (left) and wireframe plots (right) for
the nonstationary logistic functions (a) A1k0c0, (b) A0k1c0 and
(c) A0k0c1, relating the drought-affected population to SPI and
time for Yunnan Province.

1. The linear magnitude parameter in A1k0c0 tends to fit
the increase by enlarging the maximum drought loss
by year. As shown in Fig. 10a, it tends to capture the
maximum drought-affected population of 1.50 million
in 2020 and the second maximum drought-affected pop-
ulation of 1.24 million in 2021.

Figure 8. As for Fig. 7 but for the nonstationary logistic functions
(a) A2k0c0, (b) A0k2c0 and (c) A0k0c2.

Figure 9. Illustration of the stationary logistic function A0k0c0 fit-
ting the relationship between SPI and drought-affected populations
for Guangdong Province.

2. The linear shape parameter in A0k1c0 is observed to fit
the observation data by changing the shape of the re-
sponse surface by year. As shown in Fig. 10b, although
the affected population in 2020 and 2021 is character-
ized to some extent, the drought-affected population is
seen to increase unexpectedly with SPI in 2006. These
results highlight the role that the shape parameter plays
in determining the growth (reduction) rate.
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Figure 10. Surface plots (left) and wireframe plots (right) for
the nonstationary logistic functions (a) A1k0c0, (b) A0k1c0 and
(c) A0k0c1, relating the drought-affected population to SPI and
time for Guangdong Province.

3. The linear location parameter in A0k0c1 is shown to
fit the observation data by fixing the maximum drought
loss but shifting the response curves by year. As shown
in Fig. 10c, it tends to characterize the maximum and
second maximum drought-affected population in recent
years but does not seem to be as effective in character-
izing the drought-affected population in early years.

From Fig. 11, it is observed that the three nonstation-
ary logistic functions, A2k0c0, A0k2c0 and A0k0c2, also
tend to capture the drought-affected population. The result
in Fig. 11a is generally hard to interpret since the drought-
affected population tends to initially decrease but then in-
crease with time under a given SPI below 0. The results in
Fig. 11b and c are similar to those in Fig. 10b and c respec-
tively. The implication is that the linear function in A0k1c0
and A0k0c1 can be as effective as the quadratic function in
A0k2c0 and A0k0c2.

Figure 11. As for Fig. 10 but for the nonstationary logistic functions
(a) A2k0c0, (b) A0k2c0 and (c) A0k0c2.

4.4 Goodness of fit

The stationary and nonstationary logistic functions are set
up to account for the drought-affected population based on
the explanatory variables of time and SPI for 27 provincial
administrative regions other than Beijing, Tianjin, Shanghai
and Xizang. The R2 for the three nonstationary logistic func-
tions, A1k0c0, A0k1c0 and A0k0c1, are plotted against that
of linear regression based on time (Fig. 12a) and also against
that of the stationary logistic function (Fig. 12b). The three
scatter plots are generally above the 1 : 1 line. This result in-
dicates that the consideration of time t evidently enhances the
proportion of total variation explained by the nonstationary
logistic functions. It is noted that the mean R2 is 0.307 for
linear regression and 0.269 for the stationary logistic func-
tion A0k0c0. By contrast, the mean R2 is 0.512, 0.506 and
0.509 for A1k0c0, A0k1c0 and A0k0c1 respectively. Overall,
the nonstationary logistic function A1k0c0 has the highest
R2. This result highlights that the incorporation of time into
the magnitude parameter can effectively deal with the non-
stationary drought-affected population. Furthermore, the R2

of A2k0c0, A0k2c0 and A0k0c2 is investigated in Fig. S15
of the Supplement. The results highlight the improvements
in R2 for the nonstationary logistic functions.
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Figure 12. Scatter plots of the R2 for the three nonstationary logistic functions against the R2 for (a) the linear regression and (b) the
stationary logistic function A0k0c0.

Furthermore, the BIC of the three nonstationary logistic
functions, A1k0c0, A0k1c0 and A0k0c1, is plotted against
the BIC of the linear regression in Fig. 13a and against that of
the stationary logistic function in Fig. 13b. Since the higher
R2 of the nonstationary logistic functions in Fig. 12 is at
the cost of an additional parameter (Neath and Cavanaugh,
2012), the BIC takes into account not only the number of pa-
rameters but also the mean squared error. It can be observed
that the scatter plots in Fig. 13 are largely below the 1 : 1
line. Considering that the BIC is a negatively oriented met-
ric, this result suggests that there is a low risk of overfitting
and that the information hidden in the significant correlation
is deemed to be effectively exploited by the three nonsta-
tionary logistic functions. It is noted that the mean BIC is
−33.105 for linear regression and −29.365 for the station-
ary logistic function A0k0c0. By contrast, the mean BIC is
−34.980, −34.772 and −34.740 for A1k0c0, A0k1c0 and
A0k0c1 respectively. As the nonstationary logistic function
A1k0c0 has the lowest BIC, it is highlighted that the incor-
poration of time into the magnitude parameter of the logis-
tic function is effective in accounting for the nonstationarity
of drought losses. Furthermore, the BIC of A2k0c0, A0k2c0
and A0k0c2 is investigated in Fig. S16. Overall, the results
are similar to those in Fig. 13. The implication is that the in-
corporation of the linear function into the logistic function
suffices to deal with the dependency of the drought-affected
population on SPI and time.

5 Discussion

This paper has furthermore designed experiments to inves-
tigate the robustness of the nonstationary logistic functions
using the drought indices SPEI and scPDSI (AghaKouchak
et al., 2021; Apurv and Cai, 2021; Zhao et al., 2024b). The
additional results are presented in the supplementary mate-
rial. Specifically, as for SPEI, the correlation is presented in
Fig. S1, and the plots for Yunnan and Guangdong are pro-
vided in Figs. S2 to S7; as for scPDSI, the correlation is
presented in Fig. S8, and the plots for Yunnan and Guang-
dong are shown in Figs. S9 to S14. Overall, the results un-
der SPEI and scPDSI conform to those under SPI. While
the nonstationarity plays an important part in the relationship
between the drought-affected population and drought condi-
tions, it is highlighted that the nonstationary logistic func-
tions are effective in characterizing the dependency of the
drought-affected population on drought conditions and time.
It is also pointed out that different drought indices have vary-
ing efficiency in characterizing the drought conditions. For
example, the lower R2 in Fig. 6 is largely due to the corre-
spondence of the maximum drought-affected population with
average precipitation in the year 2010; R2 evidently increases
from 0.22 under SPI (Fig. 6) to 0.42 under SPEI (Fig. S2)
and, furthermore, to 0.58 under scPDSI (Fig. S9). This re-
sult highlights that drought conditions depend on precipita-
tion and also on other hydroclimatic variables, such as evap-
otranspiration, recharge and runoff (Wells et al., 2004; Yin et
al., 2022b).
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Figure 13. As for Fig. 12 but for the BIC.

The nonstationary intensity loss functions developed in
this paper complement existing studies on hydroclimatic pro-
cesses of droughts (Garrido-Perez et al., 2024; Haile et al.,
2020; Todisco et al., 2013). The frequency, duration and in-
tensity are three important characteristics of droughts (Baez-
Villanueva et al., 2024; Entekhabi, 2023; Liu et al., 2024;
Mishra and Singh, 2010; Yang et al., 2024). Given a thresh-
old for the identification of drought events, frequency is gen-
erally defined as the number of drought events in a certain
period (1 year for example), duration as the time span of
a drought event and intensity as the cumulative sum of the
drought index (AghaKouchak et al., 2021; Chiang et al.,
2021). Given that SPI is derived for annual precipitation in
this paper, the SPI values are expected to reflect the condi-
tions of drought frequency, duration and intensity across dif-
ferent years. It is noted that the use of annual precipitation
is mainly due to the fact that the drought-affected popula-
tion by province is available at the annual timescale. It is
possible that drought losses are available on an event scale.
In that case, event-based analysis becomes feasible. That is,
both drought loss and intensity can be quantified for each
drought event, and the effectiveness of the logistic function
can then be tested.

Focusing on drought indices such as SPI, PDSI, SPEI
and SRI, previous studies have presented in-depth investiga-
tions into past changes and future projections of meteorolog-
ical, hydrological, agricultural and socio-economic droughts
(Apurv and Cai, 2021; Hao and Singh, 2015; Mishra and
Singh, 2010). Under climate change, droughts are increas-
ingly found to be interconnected with other extreme events,

including heatwaves (Yin et al., 2022a), tropical cyclones
(Gao et al., 2024c), drought–flood abrupt alternation (Shi et
al., 2021) and summer drought–flood coexistence (Wu et al.,
2006). This paper proposes the inclusion of time as a co-
variate to capture the overall trend of nonstationary drought
losses. One remarkable feature of the proposed intensity loss
function is the explicit estimation of drought loss under dif-
ferent combinations of drought indices and times. As the fre-
quency and intensity of these compound disasters continue
to increase, socio-economic losses are expected to rise in the
future. The relationship between socio-economic losses and
other disaster indices can readily be investigated at local and
regional scales. Given that the logistic function is already an
established growth model in biosciences (Tsoularis and Wal-
lace, 2002), it is expected that the proposed functions can be
used to characterize the growth of drought loss with drought
conditions characterized by different drought indices.

6 Conclusions

This paper has presented nonstationary intensity loss func-
tions for drought impact assessment. On the one hand, the
classic logistic function that has three parameters, i.e. magni-
tude, shape and location, presents a stationary formulation of
the growth of drought losses with drought conditions. On the
other hand, the incorporations of time as linear and quadratic
functions into the magnitude, shape and location parameters
facilitate in total six nonstationary logistic functions. A case
study is presented for the drought-affected population by
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province in China during the period from 2006 to 2023. The
results highlight that despite the fact that drought-affected
populations can either decrease or increase with time, the
joint use of both SPI and time as explanatory variables leads
to effective characterization of drought-affected populations.
In comparison with the stationary logistic function, the effec-
tiveness of the nonstationary logistic functions is indicated
not only by higher R2, which indicates a reasonable pro-
portion of total explained variation, but also by lower BIC,
which suggests low risk of overfitting. Among the nonsta-
tionary logistic functions, the function incorporating the lin-
ear function of time into the magnitude parameter generally
outperforms the others in terms of higher R2, lower BIC and
clearer physical meanings. In conclusion, the nonstationary
intensity loss functions developed in this paper can improve
our understanding of and response to drought risks in an era
of rapid socio-economic and environmental change. Future
research could further enhance this framework by incorporat-
ing additional socio-economic variables to refine the model’s
predictive capabilities and support targeted mitigation strate-
gies.
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