Articles | Volume 29, issue 11
https://doi.org/10.5194/hess-29-2339-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2339-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Changes in the flowing drainage network and stream chemistry during rainfall events for two pre-Alpine catchments
Izabela Bujak-Ozga
CORRESPONDING AUTHOR
School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland
Mountain Hydrology and Mass Movements research unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Jana von Freyberg
School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland
Mountain Hydrology and Mass Movements research unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Margaret Zimmer
Department of Soil and Environmental Sciences, University of Wisconsin, Madison, Madison, Wisconsin, USA
Andrea Rinaldo
School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland
Department of Civil, Environmental and Architectural Engineering (DICEA), Università di Padova, Padua, Italy
Paolo Benettin
School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland
Department of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
Ilja van Meerveld
Department of Geography, University of Zurich, Zurich, Switzerland
Related authors
No articles found.
Victor Aloyse Gauthier, Anna Leuteritz, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 29, 3889–3905, https://doi.org/10.5194/hess-29-3889-2025, https://doi.org/10.5194/hess-29-3889-2025, 2025
Short summary
Short summary
This study explored the occurrence of flow on and just below the soil surface for 14 small vegetated plots across a pre-Alpine catchment. Overland flow and lateral flow through the topsoil occurred frequently. The spatial variation in the occurrence and amount of flow depended on site characteristics, particularly the topographic wetness index. The amount of flow also depended on the antecedent-wetness conditions and total precipitation.
Quentin Duchemin, Maria Grazia Zanoni, Marius G. Floriancic, Hansjörg Seybold, Guillaume Obozinski, James W. Kirchner, and Paolo Benettin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1591, https://doi.org/10.5194/egusphere-2025-1591, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce GAMCR, a data-driven model that estimates how catchments respond to individual precipitation events. We validate GAMCR on synthetic data and demonstrate its ability to investigate the characteristic runoff responses from real-world hydrologic series. GAMCR provides new data-driven opportunities to understand and compare hydrological behavior across different catchments worldwide.
Anna Leuteritz, Victor Aloyse Gauthier, and Ilja van Meerveld
EGUsphere, https://doi.org/10.5194/egusphere-2025-1677, https://doi.org/10.5194/egusphere-2025-1677, 2025
Short summary
Short summary
To better understand runoff generation processes in pre-Alpine catchments with low permeability gleysols, we did sprinkling and tracer experiments on two 8 m wide runoff plots. The results highlight the high velocity and celerity, the frequent occurrence of infiltration and exfiltration of overland flow, the importance of preferential flow, and the interaction between flow on the surface and through the topsoil, and help to understand why streams in this region respond very quickly to rainfall.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, and Kerri Johnson
Earth Surf. Dynam., 12, 1415–1446, https://doi.org/10.5194/esurf-12-1415-2024, https://doi.org/10.5194/esurf-12-1415-2024, 2024
Short summary
Short summary
Loose grains travel farther after a fire because no vegetation is left to stop them. This matters since loose grains at the base of a slope can turn into a debris flow if it rains. To find if grass growing back after a fire had different impacts on grains of different sizes on slopes of different steepness, we dropped thousands of natural grains and measured how far they went. Large grains went farther 7 months after the fire than 11 months after, and small grain movement didn’t change much.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Christina Franziska Radtke, Xiaoqiang Yang, Christin Müller, Jarno Rouhiainen, Ralf Merz, Stefanie R. Lutz, Paolo Benettin, Hong Wei, and Kay Knöller
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-109, https://doi.org/10.5194/hess-2024-109, 2024
Revised manuscript not accepted
Short summary
Short summary
Most studies assume no difference between transit times of water and nitrate, because nitrate is transported by water. With an 8-year high-frequency dataset of isotopic signatures of both, water and nitrate, and a transit time model, we show the temporal varying difference of nitrate and water transit times. This finding is highly relevant for applied future research related to nutrient dynamics in landscapes under anthropogenic forcing and for managing impacts of nitrate on aquatic ecosystems.
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024, https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary
Short summary
Can we leverage high-resolution and low-cost EC measurements and biweekly δ18O data to estimate the young water fraction at higher temporal resolution? Here, we present the EXPECT method that combines two widespread techniques: EC-based hydrograph separation and sine-wave models of the seasonal isotope cycles. The method is not without its limitations, but its application in three small Swiss catchments is promising for future applications in catchments with different characteristics.
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024, https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Short summary
We study the seasonal and spatial patterns of soil moisture in 0–500 cm soil using 89 monitoring sites in a loess catchment with monsoonal climate. Soil moisture is highest during the months of least precipitation and vice versa. Soil moisture patterns at the hillslope scale are dominated by the aspect-controlled evapotranspiration variations (a local control), not by the hillslope convergence-controlled downslope flow (a nonlocal control), under both dry and wet conditions.
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 27, 4609–4635, https://doi.org/10.5194/hess-27-4609-2023, https://doi.org/10.5194/hess-27-4609-2023, 2023
Short summary
Short summary
We used a fluorescent sand tracer with afterglow in combination with sprinkling experiments to visualize and determine the movement of sediments on natural hillslopes. We compared the observed transport patterns with the characteristics of the hillslopes. Results show that the fluorescent sand can be used to monitor sediment redistribution on the soil surface and that infiltration on older hillslopes decreased sediment transport due to more developed vegetation cover and root systems.
Jana Erdbrügger, Ilja van Meerveld, Jan Seibert, and Kevin Bishop
Earth Syst. Sci. Data, 15, 1779–1800, https://doi.org/10.5194/essd-15-1779-2023, https://doi.org/10.5194/essd-15-1779-2023, 2023
Short summary
Short summary
Groundwater can respond quickly to precipitation and is the main source of streamflow in most catchments in humid, temperate climates. To better understand shallow groundwater dynamics, we installed a network of groundwater wells in two boreal headwater catchments in Sweden. We recorded groundwater levels in 75 wells for 2 years and sampled the water and analyzed its chemical composition in one summer. This paper describes these datasets.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022, https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
Short summary
Our catchment-scale transit time modeling study shows that including stable isotope data on evapotranspiration in addition to the commonly used stream water isotopes helps constrain the model parametrization and reveals that the water taken up by plants has resided longer in the catchment storage than the water leaving the catchment as stream discharge. This finding is important for our understanding of how water is stored and released, which impacts the water availability for plants and humans.
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
EGUsphere, https://doi.org/10.5194/egusphere-2022-165, https://doi.org/10.5194/egusphere-2022-165, 2022
Preprint archived
Short summary
Short summary
Knowledge on overland flow generation and sediment transport is limited due to a lack of observational methods. Thus, we used sprinkling experiments on two natural hillslopes and tested a novel method using fluorescent sand to visualize the movement of soil particles. The results show, that the applied method is suitable to track the movement of individual sediment particles and the particle transport distance depends on the surface characteristics of the hillslopes.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Galen Gorski and Margaret A. Zimmer
Hydrol. Earth Syst. Sci., 25, 1333–1345, https://doi.org/10.5194/hess-25-1333-2021, https://doi.org/10.5194/hess-25-1333-2021, 2021
Short summary
Short summary
Understanding when, where, and how nitrate is exported from watersheds is the key to addressing the challenges that excess nutrients pose. We analyzed daily nitrate and streamflow data for five nested, agricultural watersheds that export high levels of nitrate over a 4-year time period. Nutrient export patterns varied seasonally during baseflow but were stationary during stormflow. Additionally, anthropogenic and geologic factors drove nutrient export during both baseflow and stormflow.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020, https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
Short summary
Automated water samplers are often used to collect precipitation and streamwater samples for subsequent isotope analysis, but the isotopic signal of these samples may be altered due to evaporative fractionation occurring during the storage inside the autosamplers in the field. In this article we present and evaluate a cost-efficient modification to the Teledyne ISCO automated water sampler that prevents isotopic enrichment through evaporative fractionation of the water samples.
Cited articles
Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C. N., Ginebreda, A., McGregor, G., Sabater, S., Tockner, K., and Palmer, M. A.: Why should we care about temporary waterways?, Science, 343, 1080–1081, https://doi.org/10.1126/science.1246666, 2014.
Addy, K., Gold, A. J., Welsh, M. K., August, P. V., Stolt, M. H., Arango, C. P., and Groffman, P. M.: Connectivity and nitrate uptake potential of intermittent streams in the Northeast USA, Front. Ecol. Evol., 7, 225, https://doi.org/10.3389/fevo.2019.00225, 2019.
Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., and Moore, R. B.: The role of headwater streams in downstream water quality, JAWRA J. Am. Water Resour. Assoc., 43, 41–59, https://doi.org/10.1111/j.1752-1688.2007.00005.x, 2007.
Arce, M. I., von Schiller, D., Bengtsson, M. M., Hinze, C., Jung, H., Alves, R. J. E., Urich, T., and Singer, G.: Drying and rainfall shape the structure and functioning of nitrifying microbial communities in riverbed sediments, Front. Microbiol., 9, 2794, https://doi.org/10.3389/fmicb.2018.02794, 2018.
Arce, M. I., Mendoza-Lera, C., Almagro, M., Catalán, N., Romaní, A. M., Martí, E., Rosa Gómez, Bernal, S., Foulquier, A., Mutz, M., Marcé, R., Zoppini, A., Gionchetta, G., Weigelhofer, G., Del Campo, R., Robinson, C. T., Gilmer, A., Rulik, M., Obrador, B., Shumilova, O., Zlatanović, S., Arnon, S., Baldrian, P., Singer, G., Datry, T., Skoulikidis, N., Tietjen, B., and von Schiller, D.: A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science, Earth Sci. Rev., 188, 441–453, https://doi.org/10.1016/j.earscirev.2018.12.001, 2019.
Assendelft, R. S. and van Meerveld, H. I.: A low-cost, multi-sensor system to monitor temporary stream dynamics in mountainous head- water catchments, Sensors, 19, 4645, https://doi.org/10.3390/s19214645, 2019.
Baldwin, D. S., Rees, G. N., Mitchell, A. M., and Watson, G.: Spatial and temporal variability of nitrogen dynamics in an upland stream before and after a drought, Mar. Freshw. Res., 56, 457–464, https://doi.org/10.1071/MF04189, 2005.
Berthrong, S. T., Finzi, A. C., and Bernhardt, E. S.: Nitrogen cycling in tropical and temperate forests: A meta-analysis of nitrogen addition experiments, Ecol. Appl., 19, 1207–1224, https://doi.org/10.1890/08-0141.1, 2009.
Botter, G. and Durighetto, N.: The stream length duration curve: A tool for characterizing the time variability of the flowing stream length, Water Resour. Res., 56, e2020WR027282, https://doi.org/10.1029/2020WR027282, 2020.
Botter, M., Li, L., Hartmann, J., Burlando, P., and Fatichi, S.: Depth of solute generation is a dominant control on concentration-discharge relations, Water Resour. Res., 56, 2019WR026695, https://doi.org/10.1029/2019WR026695, 2020.
Botter, G., Vingiani, F., Senatore, A., Jensen, C., Weiler, M., McGuire, K., Mendicino, G., and Durighetto, N.: Hierarchical climate-driven dynamics of the active channel length in temporary streams, Sci. Rep., 11, 21503, https://doi.org/10.1038/s41598-021-00922-2, 2021.
Brinkerhoff, C. B., Gleason, C. J., Kotchen, M. J., Kysar, D. A., and Raymond, P. A.: Ephemeral stream water contributions to United States drainage networks, Science, 384, 1476–1482, https://doi.org/10.1126/science.adg9430, 2024.
Bruppacher, A.: Spatial and temporal changes in soil water and groundwater chemistry in the Studibach catchment, Master's Thesis, University of Zurich, 2022.
Bujak-Ozga, I.: TempAqua App iOS for Intermittent Streams Mapping (v2.3.1), Zenodo [code], https://doi.org/10.5281/zenodo.10035289, 2023.
Bujak-Ozga, I., van Meerveld, H. J., Rinaldo, A., and von Freyberg, J.: Short-term dynamics of drainage density based on a combination of channel flow state surveys and water level measurements, Hydrol. Process., 37, e15041, https://doi.org/10.1002/hyp.15041, 2023a.
Bujak-Ozga, I., van Meerveld, I., Rinaldo, A., and von Freyberg, J.: Short-term drainage density dynamics dataset for the Erlenbach catchment, EnviDat [data set], https://doi.org/10.16904/envidat.450, 2023b.
Bujak-Ozga, I., von Freyberg, J., Rinaldo, A., and van Meerveld, I.: Hydrochemical data collected during spring-fall 2021 in the Erlenbach catchment, EnviDat [data set], https://doi.org/10.16904/envidat.554, 2024.
Burrows, R. M., Rutlidge, H., Bond, N. R., Eberhard, S. M., Auhl, A., Andersen, M. S., and Kennard, M. J.: High rates of organic carbon processing in the hyporheic zone of intermittent streams, Sci. Rep., 7, 13198, https://doi.org/10.1038/s41598-017-12957-5, 2017.
Christophersen, N. and Hooper, R. P.: Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem, Water Resour. Res., 28, 99–107, https://doi.org/10.1029/91WR02518, 1992.
Covino, T.: Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks, Geomorphology, 277, 133–144, https://doi.org/10.1016/j.geomorph.2016.09.030, 2017.
Datry, T., Boulton, A. J., Fritz, K., Stubbington, R., Cid, N., Crabot, J., and Tockner, K.: Non-perennial segments in river networks, Nat. Rev. Earth Environ., 4, 815–830, https://doi.org/10.1038/s43017-023-00495-w, 2023.
Dodds, W. K., Gido, K., Whiles, M. R., Fritz, K. M., and Matthews, W. J.: Life on the edge: The ecology of Great Plains prairie streams, Bioscience, 54, 205–216, https://doi.org/10.1641/0006-3568(2004)054[0205:LOTETE]2.0.CO;2, 2004.
Durighetto, N. and Botter, G.: Time-lapse visualization of spatial and temporal patterns of stream network dynamics, Hydrol. Process., 35, e14053, https://doi.org/10.1002/hyp.14053, 2021.
Durighetto, N. and Botter, G.: On the relation between active network length and catchment discharge, Geophys. Res. Lett., 49, e2022GL099500, https://doi.org/10.1029/2022GL099500, 2022.
Durighetto, N., Vingiani, F., Bertassello, L. E., Camporese, M., and Botter, G.: Intraseasonal drainage network dynamics in a headwater catchment of the Italian Alps, Water Resour. Res., 56, e2019WR025563, https://doi.org/10.1029/2019WR025563, 2020.
Durighetto, N., Mariotto, V., Zanetti, F., McGuire, K. J., Mendicino, G., Senatore, A., and Botter, G.: Probabilistic description of streamflow and active length regimes in rivers, Water Resour. Res., 58, e2021WR031344, https://doi.org/10.1029/2021WR031344, 2022.
Fischer, B. M. C., Rinderer, M., Schneider, P., Ewen, T., and Seibert, J.: Contributing sources to baseflow in pre-alpine headwaters using spatial snapshot sampling, Hydrol. Process., 29, 5321–5336, https://doi.org/10.1002/hyp.10529, 2015.
Fovet, O., Belemtougri, A., Boithias, L., Braud, I., Charlier, J. B., Cottet, M., Daudin, K., Dramais, G., Ducharne, A., Folton, N., Grippa, M., Hector, B., Kuppel, S., Le Coz, J., Legl, L., Martin, P., Moatar, F., Molénat, J., Probst, A., Riotte, J., Vidal, J., Fabrice, V., and Datry, T.: Intermittent rivers and ephemeral streams: Perspectives for critical zone science and research on socio-ecosystems, Wiley Interdisciplinary Reviews: Water, 8, e1523, https://doi.org/10.1002/wat2.1523, 2021.
Gal, J. Y., Bollinger, J. C., Tolosa, H., and Gache, N.: Calcium carbonate solubility: a reappraisal of scale formation and inhibition, Talanta, 43, 1497–1509, https://doi.org/10.1016/0039-9140(96)01925-X, 1996.
Genereux, D.: Quantifying uncertainty in tracer-based hydrograph separations, Water Resour. Res., 34, 915–919, https://doi.org/10.1029/98WR00010, 1998.
Giezendanner, J., Benettin, P., Durighetto, N., Botter, G., and Rinaldo, A.: A note on the role of seasonal expansions and contractions of the flowing fluvial network on metapopulation persistence, Water Resour. Res., 57, e2021WR029813, https://doi.org/10.1029/2021WR029813, 2021.
Godsey, S. E. and Kirchner, J. W.: Dynamic, discontinuous stream networks: Hydrologically driven variations in active drainage density, flowing channels and stream order, Hydrol. Process., 28, 5791–5803, https://doi.org/10.1002/hyp.10310, 2014.
Gregory, K. J. and Walling, D. E.: The variation of drainage density within a catchment, Hydrol. Sci. J., 13, 61–68, https://doi.org/10.1080/02626666809493583, 1968.
Hagedorn, F., Bucher, J. B., and Schleppi, P.: Contrasting dynamics of dissolved inorganic and organic nitrogen in soil and surface waters of forested catchments with Gleysols, Geoderma, 100, 173–192, https://doi.org/10.1016/S0016-7061(00)00085-9, 2001.
Hale, R. L. and Godsey, S. E.: Dynamic stream network intermittence explains emergent dissolved organic carbon chemostasis in headwaters, Hydrol. Process., 33, 1926–1936, https://doi.org/10.1002/hyp.13455, 2019.
Hantke, R., Trümpy, R., Baumeler, A., Bollinger, D., Felber, P., Letsch, D., and Grünig, A.: Blatt 1152 Ibergeregg – Geologischer Atlas der Schweiz 1:25 000, Karte 175, Swisstopo, ISBN 978-3-302-40111-9, 2022.
Hewitt, A. E., Balks, M. R., and Lowe, D. J.: Gley Soils, in The Soils of Aotearoa New Zealand, World Soils Book Series, Springer, Cham, https://doi.org/10.1007/978-3-030-64763-6_5, 2021.
Huang, X., Cui, C., Hou, E., Li, F., Liu, W., Jiang, L., Luo, Y., and Xu, X.: Acidification of soil due to forestation at the global scale, For. Ecol. Manag., 505, 119951, https://doi.org/10.1016/j.foreco.2021.119951, 2022.
Jaeger, K. L. and Olden, J. D.: Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers, River Res. Appl., 28, 1843–1852, https://doi.org/10.1002/rra.1554, 2012.
Jaeger, K. L., Olden, J. D., and Pelland, N. A.: Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams, P. Natl. Acad. Sci. USA, 111, 13894–13899, https://doi.org/10.1073/pnas.1320890111, 2014.
Jensen, C. K., McGuire, K. J., McLaughlin, D. L., and Scott, D. T.: Quantifying spatiotemporal variation in headwater stream length using flow intermittency sensors, Env. Monit. Assess., 191, 226, https://doi.org/10.1007/s10661-019-7373-8, 2019.
Kaplan, N. H., Sohrt, E., Blume, T., and Weiler, M.: Monitoring ephemeral, intermittent and perennial streamflow: a dataset from 182 sites in the Attert catchment, Luxembourg, Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019, 2019.
Keller, P. S., Catalan, N., von Schiller, D., Grossart, H. P., Koschorreck, M., Obrador, B., Frassl, M. A., Karakaya, N., Barros, N., Howitt, J. A., Mendoza-Lera, C., Pastor, A., Flaim, G., Aben, R., Riis, T., Arce, M. I., Onandia, G., Paranaíba, J. R., Linkhorst, A., del Campo, R., Amado, A. M., Cauvy-Fraunié, S., Brothers, S., Condon, J., Mendonça, R. F., Reverey, F., Rõõm, E.-I., Datry, T., Roland, F., Laas, A., Obertegger, U., Park, J.-H., Wang, H., Kosten, S., Gómez, R., Feijoó, C., Elosegi, A., Sánchez-Montoya, M. M., Finlayson, C. M., Melita, M., Oliveira Junior, E. S., Muniz, C. C., Gómez-Gener, L., Leigh, C., Zhang, Q., and Marcé, R.: Global CO2 emissions from dry inland waters share common drivers across ecosystems, Nat. Commun., 11, 2126, https://doi.org/10.1038/s41467-020-15929-y, 2020.
Kiewiet, L., von Freyberg, J., and van Meerveld, H. J.: Spatiotemporal variability in hydrochemistry of shallow groundwater in a small pre-alpine catchment: The importance of landscape elements, Hydrol. Process., 33, 2502–2522, https://doi.org/10.1002/hyp.13517, 2019.
Kiewiet, L., van Meerveld, I., Stähli, M., and Seibert, J.: Do stream water solute concentrations reflect when connectivity occurs in a small, pre-Alpine headwater catchment?, Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, 2020.
Knapp, J. L. A., von Freyberg, J., Studer, B., Kiewiet, L., and Kirchner, J. W.: Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics, Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020, 2020.
Knapp, J. L., Li, L., and Musolff, A.: Hydrologic connectivity and source heterogeneity control concentration–discharge relationships, Hydrol. Process., 36, e14683, https://doi.org/10.1002/hyp.14683, 2022.
Kulin, G. and Compton, P. R.: A guide to methods and standards for the measurement of water flow (Vol. 13), US Department of Commerce, National Bureau of Standards, https://doi.org/10.6028/NBS.SP.421, 1975.
Lamberti, G. A., Entrekin, S. A., Griffiths, N. A., and Tiegs, S. D.: Coarse particulate organic matter: storage, transport, and retention, in: Methods in stream ecology, edited by: Lamberti, G. A. and Hauer, F. R., Academic Press, 55–69, https://doi.org/10.1016/B978-0-12-813047-6.000, 2017.
Mari, L., Casagrandi, R., Bertuzzo, E., Rinaldo, A., and Gatto, M.: Metapopulation persistence and species spread in river networks, Ecol. Lett., 17, 426–434, https://doi.org/10.1111/ele.12242, 2014.
Merbt, S. N., Proia, L., Prosser, J. I., Martí, E., Casamayor, E. O., and von Schiller, D.: Stream drying drives microbial ammonia oxidation and first-flush nitrate export, Ecology, 97, 2192–2198, https://doi.org/10.1002/ecy.1486, 2016.
Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C., and Datry, T.: Global prevalence of non-perennial rivers and streams, Nature, 594, 391–397, https://doi.org/10.1038/s41586-021-03565-5, 2021.
Meyer, J. L., Strayer, D. L., Wallace, J. B., Eggert, S. L., Helfman, G. S., and Leonard, N. E.: The contribution of headwater streams to biodiversity in river networks, JAWRA J. Am. Water Resour. Assoc., 43, 86–103, https://doi.org/10.1111/j.1752-1688.2007.00008.x, 2007.
Mimeau, L., Künne, A., Branger, F., Kralisch, S., Devers, A., and Vidal, J.-P.: Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model, Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, 2024.
Neal, C. and Kirchner, J. W.: Sodium and chloride levels in rainfall, mist, streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls, Hydrol. Earth Syst. Sci., 4, 295–310, https://doi.org/10.5194/hess-4-295-2000, 2000.
Peck, A. J. and Hurle, D.: Chloride balance of some farmed and forested catchments in southwestern Australia, Water Resour. Res., 9, 648–657, https://doi.org/10.1029/WR009i003p00648, 1973.
Price, A. N., Jones, C. N., Hammond, J. C., Zimmer, M. A., and Zipper, S. C.: The drying regimes of non-perennial rivers and streams, Geophys. Res. Lett., 48, e2021GL093298, https://doi.org/10.1029/2021GL093298, 2021.
Rinaldo, A., Gatto, M., and Rodriguez-Iturbe, I.: River networks as ecological corridors: A coherent ecohydrological perspective, Adv. Water Resour., 112, 27–58, https://doi.org/10.1016/j.advwatres.2017.10.005, 2018.
Rinderer, M., van Meerveld, H. J., and Seibert, J.: Topographic controls on shallow groundwater levels in a steep, prealpine catchment: When are the TWI assumptions valid?, Water Resour. Res., 50, 6067–6080, https://doi.org/10.1002/2013WR015009, 2014.
Rinderer, M., van Meerveld, H. J., and McGlynn, B. L.: From points to patterns: using groundwater time series clustering to investigate subsurface hydrological connectivity and runoff source area dynamics, Water Resour. Res., 55, 5784–5806, https://doi.org/10.1029/2018WR023886, 2019.
Schleppi, P., Muller, N., Feyen, H., Papritz, A., Bucher, J. B., and Fluehler, H.: Nitrogen budgets of two small experimental forested catchments at Alptal, Switzerland, For. Ecol. Manag., 101, 177–185, https://doi.org/10.1016/S0378-1127(97)00134-5, 1998.
Seibert, J., Grabs, T., Köhler, S., Laudon, H., Winterdahl, M., and Bishop, K.: Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model, Hydrol. Earth Syst. Sci., 13, 2287–2297, https://doi.org/10.5194/hess-13-2287-2009, 2009.
Shumilova, O., Zak, D., Datry, T., von Schiller, D., Corti, R., Foulquier, A., Obrador, B., Tockner, K., Allan, D. C., Altermatt, F., Arce, M. I., Arnon, S., Banas, D., Banegas-Medina, A., Beller, E., Blanchette, M. L., Blanco-Libreros, J. F., Blessing, J., Boëchat, I.G., Boersma, K., Bogan, M.T., Bonada, N., Bond, N. R., Brintrup, K., Bruder, A., Burrows, R., Cancellario, T., Carlson, S. M., Cauvy-Fraunié, S., Cid, N., Danger, M., de Freitas Terra, B., De Girolamo, A. M., del Campo, R., Dyer, F., Elosegi, A., Faye, E., Febria, C., Figueroa, R., Four, B., Gessner, M. O., Gnohossou, P., Cerezo, R. G., Gomez-Gener, L., Graça, M. A. S., Guareschi, S., Gücker, B., Hwan, J. L., Kubheka, S., Langhans, S. D., Leigh, C., Little, C. J., Lorenz, S., Marshall, J., McIntosh, A., Mendoza-Lera, C., Meyer, E. I., Miliša, M., Mlambo, M. C., Moleón, M., Negus, P., Niyogi, D., Papatheodoulou, A., Pardo, I., Paril, P., Pešić, V., Rodriguez-Lozano, P., Rolls, R. J., Sanchez-Montoya, M. M., Savić, A., Steward, A., Stubbington, R., Taleb, A., Vorste, R. V., Waltham, N., Zoppini, A., and Zarfl, C.: Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter, Glob. Change Biol., 25, 1591–1611, https://doi.org/10.1111/gcb.14537, 2019.
Stähli, M.: Longterm hydrological observatory Alptal (central Switzerland), EnviDat [data set], https://doi.org/10.16904/envidat.380, 2018.
Stähli, M., Seibert, J., Kirchner, J. W., von Freyberg, J., and van Meerveld, I.: Hydrological trends and the evolution of catchment research in the Alptal valley, central Switzerland, Hydrol. Process., 35, e14113, https://doi.org/10.1002/hyp.14113, 2021.
Stubbington, R., England, J., Wood, P. J., and Sefton, C. E.: Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems, Wiley Interdisciplinary Reviews: Water, 4, e1223, https://doi.org/10.1002/wat2.1223, 2017.
Thoms, M. C.: Floodplain–river ecosystems: lateral connections and the implications of human interference, Geomorphology, 56, 335–349, https://doi.org/10.1016/S0169-555X(03)00160-0, 2003.
Thoms, M. C., Southwell, M., and McGinness, H. M.: Floodplain–river ecosystems: Fragmentation and water resources development, Geomorphology, 71, 126–138, https://doi.org/10.1016/j.geomorph.2004.10.011, 2005.
Tittel, J., Büttner, O., Friese, K., Lechtenfeld, O. J., Schuth, S., von Tümpling, W., and Musolff, A.: Iron exports from catchments are constrained by redox status and topography, Glob. Biogeochem. Cycles, 36, e2021GB007056, https://doi.org/10.1029/2021GB007056, 2022.
van Meerveld, H. J., Fischer, B. M. C., Rinderer, M., Stähli, M., and Seibert, J.: Runoff generation in a pre-alpine catchment: A discussion between a tracer and a shallow groundwater hydrologist, Cuad. Investig. Geogr., 44, 429–452, 2018.
van Meerveld, H. J. I., Kirchner, J. W., Vis, M. J. P., Assendelft, R. S., and Seibert, J.: Expansion and contraction of the flowing stream network alter hillslope flowpath lengths and the shape of the travel time distribution, Hydrol. Earth Syst. Sci., 23, 4825–4834, https://doi.org/10.5194/hess-23-4825-2019, 2019.
von Freyberg, J., Studer, B., Rinderer, M., and Kirchner, J. W.: Studying catchment storm response using event- and pre-event-water volumes as fractions of precipitation rather than discharge, Hydrol. Earth Syst. Sci., 22, 5847–5865, https://doi.org/10.5194/hess-22-5847-2018, 2018.
von Freyberg, J., Rücker, A., Zappa, M., Schlumpf, A., Studer, B., and Kirchner, J. W.: Four years of daily stable water isotope data in stream water and precipitation from three swiss catchments, Sci. Data, 9, 46, https://doi.org/10.1038/s41597-022-01148-1, 2022.
von Schiller, D., Acuña, V., Graeber, D., Martí, E., Ribot, M., Sabater, S., Timoner, X., and Tockner, K.: Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream, Aquat. Sci., 73, 485–497, https://doi.org/10.1007/s00027-011-0195-6, 2011.
von Schiller, D. V., Marcé, R., Obrador, B., Gómez-Gener, L., Casas-Ruiz, J. P., Acuña, V., and Koschorreck, M.: Carbon dioxide emissions from dry watercourses, Inland Waters, 4, 377–382, https://doi.org/10.5268/IW-4.4.746, 2014.
von Schiller, D., Bernal, S., Dahm, C. N., and Martí, E.: Nutrient and organic matter dynamics in intermittent rivers and ephemeral streams, in: Intermittent rivers and ephemeral streams, edited by: Datry, T., Bonada, N., and Boulton, A., Academic Press, 135–160, https://doi.org/10.1016/B978-0-12-803835-2.00006-1, 2017, 2017.
Wadman, M.: Spatial variability of infiltration in a pre-alpine catchment, Master's Thesis, Wageningen University, 2023.
Walker, J. F., Hunt, R. J., Bullen, T. D., Krabbenhoft, D. P., and Kendall, C.: Variability of isotope and major ion chemistry in the Allequash Basin, Wisconsin, Groundwater, 41, 883–894, https://doi.org/10.1111/j.1745-6584.2003.tb02431.x, 2003.
Ward, A. S., Schmadel, N. M., and Wondzell, S. M.: Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network, Adv. Water Resour., 114, 64–82, https://doi.org/10.1016/j.advwatres.2018.01.018, 2018.
Ward, A. S., Wondzell, S. M., Schmadel, N. M., and Herzog, S. P.: Climate change causes river network contraction and disconnection in the HJ Andrews Experimental Forest, Oregon, USA, Front. in Water, 2, 7, https://doi.org/10.3389/frwa.2020.00007, 2020.
Warix, S. R., Godsey, S. E., Lohse, K. A., and Hale, R. L.: Influence of groundwater and topography on stream drying in semi-arid headwater streams, Hydrol. Process., 35, e14185, https://doi.org/10.1002/hyp.14185, 2021.
Warix, S. R., Navarre-Sitchler, A., Manning, A. H., and Singha, K.: Local topography and streambed hydraulic conductivity influence riparian groundwater age and groundwater-surface water connection, Water Resour. Res., 59, e2023WR035044, https://doi.org/10.1029/2023WR035044, 2023.
Woodward, K. B., Fellows, C. S., Mitrovic, S. M., and Sheldon, F.: Patterns and bioavailability of soil nutrients and carbon across a gradient of inundation frequencies in a lowland river channel, Murray–Darling Basin, Australia, Agric. Ecosyst. Environ., 205, 1–8, https://doi.org/10.1016/j.agee.2015.02.019, 2015.
Zanetti, F., Durighetto, N., Vingiani, F., and Botter, G.: Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors, Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022, 2022.
Zimmer, M. A. and McGlynn, B. L.: Lateral, Vertical, and Longitudinal Source Area Connectivity Drive Runoff and Carbon Export Across Watershed Scales, Water Resour. Res., 54, 1576–1598, https://doi.org/10.1002/2017WR021718, 2018.
Zimmer, M. A., Burgin, A. J., Kaiser, K., and Hosen, J.: The unknown biogeochemical impacts of drying rivers and streams, Nat. Commun., 13, 7213, https://doi.org/10.1038/s41467-022-34903-4, 2022.
Short summary
Stream networks expand and contract, affecting the amount and quality of water in perennial streams. This study presents measurements of changes in water chemistry and the flowing portion of the drainage network during rainfall events in two neighboring catchments. Despite the proximity and similar size, soil, and bedrock, water chemistry and stream network dynamics differed substantially in the two catchments. These differences are attributed to the differences in the slope and channel network.
Stream networks expand and contract, affecting the amount and quality of water in perennial...