Articles | Volume 29, issue 8
https://doi.org/10.5194/hess-29-2003-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2003-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Quadratic Solution of the Approximate Reservoir Equation (QuaSoARe)
Julien Lerat
CORRESPONDING AUTHOR
CSIRO Environment, Canberra, ACT, 2601, Australia
Related authors
Vazken Andréassian, Guilherme Mendoza Guimarães, Alban de Lavenne, and Julien Lerat
EGUsphere, https://doi.org/10.5194/egusphere-2025-414, https://doi.org/10.5194/egusphere-2025-414, 2025
Short summary
Short summary
Using 4122 catchments from four continents, we investigate how annual streamflow depends on climate variables (rainfall and potential evaporation) and on the season when precipitation occurs, using and index representing the synchronicity between precipitation and potential evaporation. In all countries and under the main climates represented, synchronicity is, after precipitation, the second most important factor to explain annual streamflow variations.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Vazken Andréassian, Guilherme Mendoza Guimarães, Alban de Lavenne, and Julien Lerat
EGUsphere, https://doi.org/10.5194/egusphere-2025-414, https://doi.org/10.5194/egusphere-2025-414, 2025
Short summary
Short summary
Using 4122 catchments from four continents, we investigate how annual streamflow depends on climate variables (rainfall and potential evaporation) and on the season when precipitation occurs, using and index representing the synchronicity between precipitation and potential evaporation. In all countries and under the main climates represented, synchronicity is, after precipitation, the second most important factor to explain annual streamflow variations.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Cited articles
American Meteorological Society: Diagnostic Equation, Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Diagnostic_equation (last access: 16 April 2025), 2024.
Bentura, P. L. F. and Michel, C.: Flood routing in a wide channel with a quadratic lag-and-route method, Hydrol. Sci. J., 42, 169–189, https://doi.org/10.1080/02626669709492018, 1997.
Bergstrom, S. and Forsman, A.: Development of a conceptual deterministic rainfall-runoff model, Hydrol. Res., 4, 147–170, https://doi.org/10.2166/nh.1973.0012, 1973.
Berrut, J.-P. and Trefethen, L. N.: Barycentric Lagrange Interpolation, SIAM Rev., 46, 501–517, https://doi.org/10.1137/S0036144502417715, 2004.
Bond, B. N. and Daniel, L.: Stable Reduced Models for Nonlinear Descriptor Systems Through Piecewise-Linear Approximation and Projection, IEEE T. Comput. Aid. D., 28, 1467–1480, https://doi.org/10.1109/TCAD.2009.2030596, 2009.
Burnash, R. J. C. and Ferral, R. L.: A systems approach to real-time runoff analysis with a deterministic rainfall-runoff model, NOAA technical memorandum NWS WR, United States National Weather Service, Salt Lake City, 23 pages, https://repository.library.noaa.gov/view/noaa/14378 (last access: 16 April 2025), 1981.
Butcher, J. C.: Numerical methods for ordinary differential equations, Wiley, Chichester, https://doi.org/10.1002/9781119121534, 2003.
Chubb, T. H., Manton, M. J., Siems, S. T., and Peace, A. D.: Evaluation of the AWAP daily precipitation spatial analysis with an independent gauge network in the Snowy Mountains, Journal of Southern Hemisphere Earth Systems Science, 66, 55–67, https://doi.org/10.1071/es16006, 2016.
Clark, M. P. and Kavetski, D.: Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes, Water Resour. Res., 46, W10510, https://doi.org/10.1029/2009WR008894, 2010.
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resour. Res., 44, W00B02, https://doi.org/10.1029/2007WR006735, 2008.
Croke, B. F. W. and Jakeman, A. J.: A catchment moisture deficit module for the IHACRES rainfall-runoff model, Environ. Model. Softw., 19, 1–5, https://doi.org/10.1016/j.envsoft.2003.09.001, 2004.
Dormand, J. R. and Prince, P. J.: A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 19–26, https://doi.org/10.1016/0771-050X(80)90013-3, 1980.
Fan, P. and Li, J. C.: Diffusive wave solutions for open channel flows with uniform and concentrated lateral inflow, Adv. Water Resour., 29, 1000–1019, https://doi.org/10.1016/j.advwatres.2005.08.008, 2006.
Fiorentini, M. and Orlandini, S.: Robust numerical solution of the reservoir routing equation, Adv. Water Resour., 59, 123–132, https://doi.org/10.1016/j.advwatres.2013.05.013, 2013.
Gill, M. A.: Exact Solution of Gradually Varied Flow, J. Hydraul. Eng., 102, 1353–1364, https://doi.org/10.1061/JYCEAJ.0004617, 1976.
Hairer, E. and Wanner, G.: Solving Ordinary Differential Equations II, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-05221-7, 1996.
Hairer, E., Nørsett, S. P., and Wanner, G.: Solving ordinary differential equations I: nonstiff problems, 2nd rev. edn., Springer, Heidelberg, London, 528 pp., ISBN 978-3-540-56670-0, 2009.
Hapuarachchi, H. A. P., Bari, M. A., Kabir, A., Hasan, M. M., Woldemeskel, F. M., Gamage, N., Sunter, P. D., Zhang, X. S., Robertson, D. E., Bennett, J. C., and Feikema, P. M.: Development of a national 7-day ensemble streamflow forecasting service for Australia, Hydrol. Earth Syst. Sci., 26, 4801–4821, https://doi.org/10.5194/hess-26-4801-2022, 2022.
Hartman, P.: Ordinary Differential Equations, Second, Society for Industrial and Applied Mathematics, https://doi.org/10.1137/1.9780898719222, 2002.
Hayami, S.: On the propagation of flood waves, Bulletins-Disaster Prevention Research Institute, Kyoto University, 1, 1–16, 1951.
Hochbruck, M. and Ostermann, A.: Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems, SIAM J. Numer. Anal., 43, 1069–1090, 2006.
Johansson, M.: Piecewise Linear Control Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/3-540-36801-9, 2003.
Kalman, E. R.: Phase-plane analysis of automatic control systems with nonlinear gain elements, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 73, 383–390, https://doi.org/10.1109/TAI.1955.6367086, 1955.
Kalra, S. and Nabi, M.: Automated scheme for linearisation points selection in TPWL method applied to non-linear circuits, J. Eng., 2020, 41–49, https://doi.org/10.1049/joe.2019.0876, 2020.
Kavetski, D. and Clark, M. P.: Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction, Water Resour. Res., 46, W10511, https://doi.org/10.1029/2009WR008896, 2010.
Kavetski, D. and Clark, M. P.: Numerical troubles in conceptual hydrology: Approximations, absurdities and impact on hypothesis testing, Hydrol. Process., 25, 661–670, https://doi.org/10.1002/hyp.7899, 2011.
Kavetski, D., Kuczera, G., and Franks, S. W.: Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts, J. Hydrol., 320, 173–186, https://doi.org/10.1016/j.jhydrol.2005.07.012, 2006.
Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C., and Woods, R. A.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations, Geosci. Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-2463-2019, 2019.
La Follette, P. T., Teuling, A. J., Addor, N., Clark, M., Jansen, K., and Melsen, L. A.: Numerical daemons of hydrological models are summoned by extreme precipitation, Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, 2021.
LaSalle, J.: Some Extensions of Liapunov's Second Method, IRE Transactions on Circuit Theory, 7, 520–527, https://doi.org/10.1109/TCT.1960.1086720, 1960.
Lerat, J.: pyquasoare (v1.5), Zenodo [code], https://doi.org/10.5281/zenodo.13928253, 2024.
Lerat, J., Vaze, J., Marvanek, S., Ticehurst, C., and Wang, B.: Characterisation of the 2022 floods in the Northern Rivers region, CSIRO csiro:EP2022-5538, https://doi.org/10.25919/1bcs-e398, 2022.
Lerat, J., Chiew, F., Robertson, D., Andréassian, V., and Zheng, H.: Data Assimilation Informed Model Structure Improvement (DAISI) for Robust Prediction Under Climate Change: Application to 201 Catchments in Southeastern Australia, Water Resour. Res., 60, e2023WR036595, https://doi.org/10.1029/2023WR036595, 2024.
Litrico, X., Pomet, J.-B., and Guinot, V.: Simplified nonlinear modeling of river flow routing, Adv. Water Resour., 33, 1015–1023, https://doi.org/10.1016/j.advwatres.2010.06.004, 2010.
Meyer, O. H.: Flood-routing on the Sacramento River, Eos, Transactions American Geophysical Union, 22, 118–124, https://doi.org/10.1029/TR022i001p00118, 1941.
Michel, C., Perrin, C., and Andreássian, V.: The exponential store: a correct formulation for rainfall–runoff modelling, Hydrol. Sci. J., 48, 109–124, https://doi.org/10.1623/hysj.48.1.109.43484, 2003.
Mironchenko, A.: Input-to-State Stability, in: Input-to-State Stability: Theory and Applications, edited by: Mironchenko, A., Springer International Publishing, Cham, 41–115, https://doi.org/10.1007/978-3-031-14674-9_2, 2023.
Munier, S., Litrico, X., Belaud, G., and Malaterre, P.-O.: Distributed approximation of open-channel flow routing accounting for backwater effects, Adv. Water Resour., 31, 1590–1602, https://doi.org/10.1016/j.advwatres.2008.07.007, 2008.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.
Pope, D. A.: An exponential method of numerical integration of ordinary differential equations, Commun. ACM, 6, 491–493, https://doi.org/10.1145/366707.367592, 1963.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edition., Cambridge University Press, Cambridge, UK, New York, 1256 pp., 2007.
Rewienski, M. and White, J.: A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE T. Comput. Aid. D., 22, 155–170, https://doi.org/10.1109/TCAD.2002.806601, 2003.
Santos, L., Thirel, G., and Perrin, C.: Continuous state-space representation of a bucket-type rainfall-runoff model: a case study with the GR4 model using state-space GR4 (version 1.0), Geosci. Model Dev., 11, 1591–1605, https://doi.org/10.5194/gmd-11-1591-2018, 2018.
Shampine, L. F.: Numerical Solution of Ordinary Differential Equations, Routledge, New York, 632 pp., https://doi.org/10.1201/9780203745328, 2020.
Sontag, E. D.: Smooth stabilization implies coprime factorization, IEEE T. Automat. Cont., 34, 435–443, https://doi.org/10.1109/9.28018, 1989.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, Ý., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Yevdjevich, V. M.: Analytical integration of the differential equation for water storage, J. Res. Nat. Bur. Stand. B, 63B, 43, https://doi.org/10.6028/jres.063B.007, 1959.
Short summary
This paper presents a method to solve a certain type of equation controlling the storage of water in hydrological models. This equation is often solved with complex numerical methods that may lead to slow runtimes. The method, called the Quadratic Solution of the Approximate Reservoir Equation (QuaSoARe), is both fast and applicable to any equation of this kind regardless of its complexity. The method reduces runtime by a factor of 10 to 50 depending on the model.
This paper presents a method to solve a certain type of equation controlling the storage of...