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Abstract. This paper presents a method to solve the reser-
voir equation, a special type of scalar ordinary differential
equation controlling the dynamic of conceptual reservoirs
found in most hydrological models. The method, called the
“Quadratic Solution of the Approximate Reservoir Equation”
(QuaSoARe), applies to any reservoir equation regardless of
its non-linearity or the number of fluxes entering and leaving
the reservoir. The method is based on a piecewise quadratic
interpolation of the flux functions, which leads to an analyti-
cal and mass-conservative solution. It is applied to two rout-
ing models and two rainfall–runoff stores that are represen-
tative of hydrological model components, and it is evaluated
based on six catchments in eastern Australia that experienced
one of the most extreme floods in recent Australian history.
A comparison of the method against two standard numerical
schemes, the fifth-order Radau implicit Runge–Kutta scheme
and the explicit Runge–Kutta scheme of order 5(4), suggests
that it can reach similar accuracy while reducing runtime by a
factor of 10 to 50 depending on the model considered. At the
same time, the method is simple enough to be presented as
a short pseudo-code, which is included in this paper. Beyond
solving a given reservoir equation, the method constitutes a
promising avenue to define flexible models where flux func-
tions are defined as piecewise quadratic functions, which can
be solved exactly with QuaSoARe.

1 Introduction

1.1 Reservoirs as ubiquitous components of
environmental models

Environmental models, including hydrological models, often
rely on components that can be modelled conceptually as a
reservoir receiving inputs and generating outputs that are sole
functions of the volume stored in the reservoir. Such reser-
voirs are extensively used in rainfall–runoff models such as
GR4J (Perrin et al., 2003), HBV (Bergstrom and Forsman,
1973), IHACRES (Croke and Jakeman, 2004), and SAC-
SMA (Burnash and Ferral, 1981), where the reservoir dy-
namic is described by a differential equation relating the
change in storage to input and output fluxes. If the model is
applied to a time step long enough for storage to change sig-
nificantly, this equation must be integrated to obtain the stor-
age level at the end of the time step and the total of each flux.
However, apart from a few simple cases, there is no analyti-
cal solution to this mathematical problem, and one has to re-
vert to numerical approximations (Clark and Kavetski, 2010;
Kavetski and Clark, 2010). Furthermore, flux functions in hy-
drological models are often highly non-linear, which mag-
nifies numerical errors when using inappropriate numerical
schemes (Kavetski and Clark, 2011). This, in turn, degrades
model simulation and calibration due to the extra parame-
terisation needed to compensate for these errors (Kavetski
et al., 2006). In this context, this paper presents an approxi-
mate analytical method called the “Quadratic Solution of the
Approximate Reservoir Equation” (QuaSoARe) to solve the
scalar ordinary differential equation (ODE) underlying most
conceptual reservoirs used in hydrology.

The integration of ODEs represents an entire field in ap-
plied mathematics, with a history as old as differential cal-
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culus. The reader might wonder why a paper is needed for
such a well-beaten scientific track. Despite the voluminous
literature written on the topic, the large number of software
packages available, and the importance of proper ODE in-
tegration flagged by Kavetski and Clark (2010), the use of
proven ODE numerical schemes remains rare in hydrologi-
cal modelling. We suggest that this troubling fact may come
about because the methods described in reference textbooks
(Hairer et al., 2009; Shampine, 2020) aim to solve very gen-
eral ODEs and hence require complex algorithms to handle
every extreme scenario in the equation set-up. However, this
complexity might be superfluous if one wants to solve a sim-
ple scalar equation such as a conceptual reservoir used in hy-
drological modelling. This paper aims to bridge this gap by
proposing a simple yet effective and mass-conservative ap-
proximate solution designed specifically for the scalar reser-
voir equation ODE.

More precisely, let us denote the volume stored in the
reservoir by S and assume that the reservoir is submitted
to forcing variables Ṽ that remain constant over the time
step. This assumption corresponds to most practical hydro-
logical modelling scenarios where the time distribution of the
forcings during the time step is unknown (e.g. time average
of rainfall or potential evapotranspiration). In this case, the
reservoir equation ODE is formulated as follows:

dS
dt
=

∑n

i=1
fi

(
S, Ṽ

)
, (1)

where fi denotes arbitrary continuous functions representing
input or output fluxes from the reservoir. Here, it is assumed
that the fi functions are Lipschitz continuous, which ensures
that Eq. (1) has a unique solution (Hairer et al., 2009). We
also assume that Eq. (1) is input-to-state stable, which guar-
antees that its solution is bounded if the inputs Ṽ are bounded
(Mironchenko, 2023). Note that demonstrating the global
stability of an ODE is a complex problem much beyond the
scope of this paper. LaSalle (1960) presented a method using
Lyapunov functions, which were later generalised by Son-
tag (1989) for systems such as Eq. (1). The mathematical
assumptions made here and the theoretical limitations they
introduce are further discussed in Sect. 4.

Solving Eq. (1) is an initial value problem over a time in-
terval [0, δ], where δ is the time step. S0 is defined as the
initial condition at t = 0. To obtain a simulation from the
reservoir, Eq. (1) is solved repeatedly for each time step with
varying forcing variables (e.g. a daily series of rainfall val-
ues). It is highlighted that the presence of several functions
fi in Eq. (1) is common in hydrological models, for example,
to account for multiple runoff generation processes such as
infiltration and overland flow or fluxes between surface wa-
ter and groundwater stores (Clark et al., 2008). Other model
components often require these fluxes (e.g. infiltration ex-
cess runoff being used as input into a routing model), which
means that, in addition to solving for variable S, one must

compute the total of each flux over the time step given by

Oi =

δ∫
0

fi

(
S, Ṽ

)
dt. (2)

It is important to note that the computation of Oi does not
affect the solution S(t). To follow the terminology of at-
mospheric modelling, Oi is a diagnostic variable (Ameri-
can Meteorological Society, 2024), whereas S is a prognostic
variable.

Equation (1) has a broad range of applications beyond
hydrological modelling, for example, to estimate storage in
an artificial reservoir (Fiorentini and Orlandini, 2013) or to
solve the gradually varied flow equation in hydraulics (Gill,
1976). Unfortunately, there are very few cases where both
Eqs. (1) and (2) have an analytical solution, a problem that is
considerably more difficult than solving Eq. (1) alone. Con-
sequently, most reservoir equations are solved using numeri-
cal approximation methods.

1.2 Numerical methods to solve the reservoir equation

The most common approach relies on discrete methods that
estimate S from t = 0 to δ at incremental steps using Runge–
Kutta methods (Kavetski and Clark, 2010; Knoben et al.,
2019; La Follette et al., 2021). These schemes are the topic
of a voluminous literature, including several reference text-
books (Butcher, 2003; Hairer et al., 2009; Press et al., 2007;
Shampine, 2020, to name but a few). Nonetheless, apply-
ing them requires significant expertise to (1) select the most
appropriate scheme among the multiple variants available
(e.g. Euler, Runge–Kutta, or Huen schemes), (2) decide if
the scheme is explicit (where the solution depends on S0
only) or implicit (where it depends on both S0 and S(δ),
which requires iterative optimisation), and (3) choose be-
tween fixed or variable step lengths to automatically slow
down computation when facing numerical difficulties. These
choices are not trivial and far from harmless, as warned by
Michel et al. (2003) and Kavetski and Clark (2011), who
show the disastrous consequences of solving the exponential
store with an explicit Euler scheme. As a result, these tech-
niques are not simple to code, and a modeller unfamiliar with
them will often require a third-party software package. This
adds a dependency to the model code, complicates mainte-
nance, and increases runtime, sometimes significantly when
using implicit methods compared to an analytical solution.
At the same time, despite the exponential growth of comput-
ing power, runtime is still a limiting factor in hydrology when
a large number of runs is required, for example, in a Monte
Carlo uncertainty analysis or for the calibration of distributed
models.

In addition, besides applying the right ODE integrator to
Eq. (1), solving the reservoir equation requires a numerical
integration of Eq. (2) using a potentially different algorithm.
For example, a simple quadrature method can be used to es-
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timate the integral on the right-hand side of Eq. (2) based on
the two values S0 and S(δ). However, this approach can be
highly inaccurate if the solution s(t) does not vary linearly
with time, as demonstrated in the Supplement. A more accu-
rate method is to expand Eq. (1) into a system of differential
equations by adding one differential equation for each flux:

dOi
dt
= fi

(
S, Ṽ

)
i = 1, . . .n. (3)

The solution can then be obtained by applying the selected
integrator to the system of ODEs combining Eqs. (1) and
(3). However, because of the wide range of magnitudes ob-
served in hydrological fluxes, this may lead to a system that
could be characterised as “stiff” and for which many numer-
ical schemes become unstable (Kavetski and Clark, 2011;
Shampine, 2020).

Another angle of attack for solving an ODE is to replace
the original equation with one for which an analytical solu-
tion exists. With the simplest ODEs being linear, it is not sur-
prising that linearisation of Eq. (1) around a specific regime
(e.g. steady-state) has constituted the first approach proposed
by mathematicians (Hartman, 2002). Linearisation has often
been used to solve complex differential equations in hydrol-
ogy and hydraulics, for example, the Saint-Venant 1D hydro-
dynamic equation by Hayami (1951) or, more recently, those
by Fan and Li (2006) or Munier et al. (2008). This approach
is efficient if the true solution does not depart significantly
from the linearisation regime. Unfortunately, hydrological
systems often exhibit variations of several orders of mag-
nitude that violate this assumption. A logical extension of
the linearisation approach is to define several linear approxi-
mation regimes between which the solution can switch. This
idea has been explored extensively in the control literature
(Johansson, 2003), starting with the early work by Kalman
(1955). More recently, this approach has been formalised
in the field of electrical engineering under the name trajec-
tory piecewise-linear approximation (TPLA), a method in-
troduced by Rewienski and White (2003) to solve large non-
linear differential equation systems. The theory presented by
Rewienski and White (2003), along with its subsequent re-
finements (Bond and Daniel, 2009; Kalra and Nabi, 2020),
aims to solve equation systems far more complex than the
reservoir equation studied here. Adapting this theory for the
scalar reservoir equation, along with a clear algorithmic de-
scription, would be a valuable contribution from this study.
In addition, the TPLA theory relies on a transition between
linearised states which is not necessarily continuous. Finally,
the choice of the transition function is arbitrary, which adds
subjectivity to the process and does not guarantee that the
derivative of the solution remains continuous. This can be an
issue if the model shows strong non-linearity. This problem
was raised by Litrico et al. (2010), who proposed a contin-
uous linearisation method to approximate the Saint-Venant
hydrodynamic equations. Overall, the TPLA method is use-
ful for representing complex non-linear dynamics. Still, a

simpler approach restricted to a scalar system such as the
reservoir equation would likely make its adoption easier. Ex-
tending the linearisation idea, Pope (1963) introduced the
concept of an exponential integrator, where the linearisation
of an ODE is combined with a discrete method such as a
Runge–Kutta scheme applied to the residual between the lin-
earised part and the original function. Hochbruck and Oster-
mann (2006) demonstrated this method’s efficacy in solving
large systems of stiff equations. However, its reliance on a
discrete method to correct the linearised solution faces the
same issues raised earlier for an application to hydrological
models.

Overall, the review of the literature above highlighted the
following research gaps:

– The reservoir equation is a standard tool in hydrology
that requires fast and robust numerical solutions in the
absence of general analytical approaches.

– Classical ODE numerical solvers such as Runge–Kutta
methods are not straightforward, especially if the equa-
tions are stiff and lead to potentially unstable solutions.

– Existing theoretical developments from control the-
ory based on multiple linearisation points are complex
and require care when switching between linearised
regimes.

1.3 Objectives of the paper

This paper aims to

– present an approximate analytical solution for the reser-
voir equation, with the solution solving Eq. (1) and
computing all input and output fluxes from Eq. (2);

– demonstrate the application of the method to four
reservoir equations of increasing complexity and non-
linearity and to compare the results with classical im-
plicit and explicit discrete methods.

The method, including its pseudo-code, is presented in
Sect. 2.2 and 2.3, while an accompanying Python package
is released as supporting material. Section 4 details some
limitations of the method and recommendations to remediate
them. The protocol used to compare the method with exist-
ing discrete methods is detailed in Sect. 5, with results being
presented in Sect. 6 and discussed in Sect. 7. The paper is
concluded in Sect. 8.

2 Approximate analytical solution of the reservoir
equation using piecewise quadratic functions

The method presented in this section is inspired by the TPLA
and exponential-integrator methods, where the functions fi
in Eq. (1) are approximated by functions for which an ana-
lytical solution of the reservoir equation exists.
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Figure 1. QuaSoARe method applied to the example reservoir equation. The left plots (a, c) present the reservoir equation (i.e. the right-hand
side of Eq. 4) as a dashed grey line and its QuaSoARe approximation as a blue line. The right plots (b, d) show this equation’s analytical and
QuaSoARe solutions using the same colours. A QuaSoARe configuration with three interpolation nodes is used in the two top plots (a, b),
while four nodes are used in the two bottom plots (c, d).

2.1 Illustrative example

Before presenting the method, an illustrative example using
the following reservoir equation is introduced:

dS
dt
=−

S3

2
. (4)

This equation is a special case of the cubic flow-routing
model, further discussed in Sect. 5.1. Assuming an initial
condition S0 at t = 0, the analytical solution of Eq. (4) is as
follows:

s(t)=
S0√

1+ t S2
0

. (5)

The reservoir equation function from the right-hand side of
Eq. (4) is plotted in Fig. 1a as a dashed grey line. The cor-
responding solution from Eq. (5) is shown in Fig. 1b as a
dashed grey line using a value of S0 equal to 0.9. Other ele-
ments in this figure are related to the QuaSoARe method and
are described in the following sections.

2.2 Reservoir equation approximation by quadratic
functions

Before presenting the approximate solution, it needs to be
established that the solution s(t) of Eq. (1) is monotonic,
a result that is used repeatedly across this paper. This can
be proved by contradiction: let us assume that s(t) is not
monotonic. Consequently, s being derivable as a solution of
Eq. (1), there exists a time t0 > 0 where the derivative of s
changes sign, and ds/dt 6= 0 for t > t0. Let us now introduce
the function s2, which is identical to s for t < t0 and which
remains constant and equal to s(t0) for t ≥ t0. This function
is a solution of Eq. (1) for all t > 0 and is distinct from s for
t > t0 because its derivative is zero, while the derivative of s
is not. This is a contradiction, with the uniqueness of the so-
lution of Eq. (1) being imposed by the fact that f is Lipschitz
continuous, as stated in the previous section. Consequently,
s is monotonic for t ≥ 0.

Back to solving Eq. (1), let us assume that each function
fi can be approximated by a function f ∗i written as follows:

f ∗i (S, Ṽ )=
∑m−1

j=1

[
ai,j S

2
+ bi,jS+ ci,j

]
Ij (S), (6)
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where the series α1 < α2 < .. . < αm defines a partitioning of
the interval [α1,αm] into m− 1 intervals referred to as “in-
terpolation bands”. In addition, the interval [α1, αm] is as-
sumed to contain the bounds of s(t) (the solution to Eq. 1 is
assumed to be bounded in Sect. 1.1). Ij (x) is the indicator
function equal to 1 if x ∈ [αj ,αj+1[ and equal to zero else-
where. The αj values are referred to as “interpolation nodes”
in this paper. The coefficients ai,j , bi,j , and ci,j are indepen-
dent of S. The process to obtain ai,j , bi,j , and ci,j is detailed
in Appendix A so that the approximated function f ∗i matches
the original function fi at the nodes αj and at the midpoint
between αj .

The approximation described above is applied to the ex-
ample equation given in Eq. (4): two approximations are pre-
sented in Fig. 1a and c using three and four nodes, respec-
tively. Both lead to a highly accurate interpolation where
true and approximated functions are visually indistinguish-
able. The interpolation error, that is, the difference between
the true function and its approximated counterpart, is shown
as an inset in both plots. This error is reduced by a factor of
approximately 5 when the number of nodes increases from
three to four.

The form of Eq. (6) was chosen for several reasons. First,
a piecewise quadratic function is Lipschitz continuous on
a bounded interval. As a result, the solution to the corre-
sponding reservoir equation, referred to as the approximated
reservoir equation, is unique like the one of Eq. (1). Sec-
ond, this equation can be solved analytically, as is shown
in Sect. 2.3. Third, a quadratic function can approximate a
wide range of reservoir functions used in hydrology. For ex-
ample, if ai,j = 0, the equation becomes a linear function of
S, which is the most common reservoir equation used in hy-
drology. Finally, the steady-state solution of the approximate
reservoir equation (i.e. when the derivative of S is zero) can
be determined analytically, which greatly facilitates the anal-
ysis of the behaviour of the reservoir and the selection of
αj as discussed in Sect. 3. However, despite these appeal-
ing attributes, there are also downsides to this approximation,
which are presented in Sect. 4, along with potential remedia-
tion.

Replacing the original functions fi by their approximated
counterpart f ∗i , the approximate reservoir equation is

dS
dt
=

∑n

i=1
f ∗i (S, Ṽ )

=

∑m

j=1

[
Aj S

2
+BjS+Cj

]
Ij (S), (7)

where Aj , Bj , and Cj are the sums of the flux coefficients
for the interpolation band j . For example, Aj is given by

Aj =
∑n

i=1
ai,j . (8)

Importantly, Eq. (7) maintains an equality between the
change in storage and the sum of the fluxes, meaning it con-
serves mass. This statement is trivial, but it ensures that the

QuaSoARe algorithm generates mass-conservative simula-
tions, which is a key requirement in hydrological modelling
and is not always guaranteed by ODE numerical schemes, as
pointed out by Clark and Kavetski (2010).

2.3 Analytical solution of the approximated reservoir
equation

The solution to Eq. (7) can be obtained analytically as fol-
lows. Let us assume that the initial condition S0 falls in the
interpolation band [αj0 ,αj0+1[ where j0 ∈ [1,m−1]. For ex-
ample, j0 = 2 (second band) when S0 = 0.9 in the illustrative
example shown in Fig. 1a. When S0 falls into the j0th inter-
polation band at t = 0, Eq. (7) can be simplified as follows:

dS
dt
= Aj0S

2
+Bj0S+Cj0 . (9)

The solution of this equation has an analytical expression,
referred to as s(t). In addition, all fluxes from Eq. (2) can
also be computed analytically. The process to obtain these
expressions is not complex but tedious, and so its presenta-
tion is deferred to Appendix B. Using solution s(t), one can
compute the value s(δ) at the end of the time step, leading to
three cases:

– Case 1. s (δ) lies in the interval [αj0 ,αj0+1[. Because
it is monotonic (see beginning of Sect. 2.2), s (t) re-
mains bounded by αj0 and αj0+1 for all t in [0,δ].
Consequently, Eq. (7) remains identical to Eq. (9) for
t ∈ [0, δ], which means that s(t) is the solution of equa-
tion Eq. (7) over the interval [0, δ].

– Case 2. s (δ) < αj0 . Here, s (t) is a continuous func-
tion, with s (0)= S0 ≥ αj0 and s (δ) < αj0 . Hence, by
the intermediate-value theorem, there exists a time tl <
δ such that s (tl)= αj0 . Moreover, s(t) is decreasing,
which means that s(t) remains in the interval [αj0 , S0]

for all t < tl . In other words, s(t) is the solution of
Eq. (7) for t in [0, tl]. The expression for tl has an an-
alytical expression equal to ν

(
αj0

)
− ν (S0), where the

function ν is given in Table B1 in the Appendix.

When t > tl , Eq. (7) is no longer equivalent to Eq. (9)
because s (t) becomes lower than αj0 . As a result, s(t)
is no longer the solution of Eq. (7). However, Eq. (7)
becomes equivalent to an equation similar to Eq. (9),
where Aj0 and Bj0 are replaced by Aj0−1 and Bj0−1,
respectively.

– Case 3. s (δ) > αj0+1. Following a similar reasoning to
that above, s (t) is a strictly increasing function until it
reaches the value αj0+1 at time tu < δ, where tu is equal
to ν

(
αj0+1

)
−ν(S0). This means that s is the solution of

Eq. (7) for t ∈ [0, tu].

For t > tu, s becomes greater than αj0+1 and is no
longer the solution of Eq. (7). However, Eq. (7) then
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becomes equivalent to an equation similar to Eq. (9),
where Aj0 and Bj0 are replaced by Aj0+1 and Bj0+1,
respectively.

Overall, the first case above leads to an immediate resolu-
tion of Eq. (7) over the interval [0, δ], while the other cases
provide a solution over two shorter intervals of [0, tl] and
[0, tu], corresponding to cases 2 and 3, respectively. For
these last two cases, if t is greater than tu or tl then Eq. (7) be-
comes equivalent to an equation similar to Eq. (9), where the
index j0 is replaced by either j0−1 or j0+1, which suggests
that the whole process can be repeated iteratively towards the
end of the interval t = δ.

It is worth mentioning that the value s(δ) in the above al-
gorithm may not be defined. Specific values of the coeffi-
cients Aj , Bj , and Cj can lead to a solution s(t) becoming
infinite before reaching t = δ. The last column of Table B1
in Appendix B indicates the time interval during which s(t)
remains bounded depending on these coefficients. This situ-
ation obviously excludes case 1 above but can be captured
under case 2 or 3 if the invalid value s(δ) is replaced by +∞
or−∞ if s is increasing or decreasing, respectively. Note that
this adjustment of the algorithm ensures that it can cope with
an invalidity of s (δ) but does not guarantee its systematic
convergence. This question is discussed further in Sect. 4.

It is important to highlight that each step in the algorithm
described above is explicit because the calculation of s(δ)
depends on past values of S only. In addition, the underly-
ing analytical solution (see Appendix B) is computed using a
limited set of standard mathematical functions (exponential,
logarithm, hyperbolic tangent, and tangent). Both elements
suggest that the QuaSoARe method is simple and fast to im-
plement in any programming language. Finally, each Qua-
SoARe iteration is repeated, at most, m+ 1 times if the en-
tire range [α1,αm] is traversed by the solution. Consequently,
the runtime required to compute the approximate solution
is bounded by the number of interpolation nodes. It cannot
reach high values, as can happen with algorithms relying on
variable time step sizes, like certain Runge–Kutta methods.

QuaSoARe is applied to the illustrative example with the
approximated solution shown in Fig. 1b (interpolation using
three nodes) and c (four nodes) as blue lines. QuaSoARe so-
lutions closely match the analytical solution (dashed grey
line) for both interpolation configurations. However, the
match degrades towards the end of the simulation in Fig. 1b,
with QuaSoARe underestimating the true solution. This is
due to the negative interpolation error when S is lower than
0.5, as seen in the inset of Fig. 1a, which leads to a more rapid
decrease in the approximated solution and, hence, progres-
sive underestimation. This example highlights the potential
of QuaSoARe in generating accurate simulations, as well as
the need for high accuracy in the interpolation of flux func-
tions.

In summary, the solution presented in this section pro-
vides a way to solve an approximate reservoir equation where

Figure 2. QuaSoARe pseudo-code.

piecewise quadratic interpolations replace the original reser-
voir functions. The solution is fully analytical, including
the computation of all reservoir fluxes. It can be imple-
mented using the pseudo-code presented in Fig. 2. Alterna-
tively, Lerat (2024) released an open-source software pack-
age where QuaSoARe is coded in both Python and C lan-
guages.
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3 Selecting interpolation nodes from the range of
steady-state solutions

The QuaSoARe method presented in Sect. 2 relies on an
interpolation of functions fi using nodes αj }j=1,...,m. The
choice of these nodes is crucial because it conditions the
quality of the interpolation and, hence, the accuracy of the
approximate solution. Let us now assume that the reservoir
equation is solved for a fixed time step δ and a time series
of p forcing values

{
Ṽk

}
k=1,...p

. In most reservoirs used in

hydrology, the reservoir equation has at least one steady-state
solution for each time step k, denoted by Sk , that is a solution
of∑n

i=1
fi

(
Sk, Ṽk

)
= 0. (10)

If the set of all solutions Sk is not empty, a simple ap-
proach is to set α1 to min({Sk}) and αm to max({Sk}). Subse-
quently, the αi values are obtained by partitioning the interval
[α1, αm] into m−1 equal sub-intervals. This approach relies
on the fact that extreme values of s(t) are reached during time
steps where the forcings Ṽk are likely to be extremes. At the
same time, steady-state solutions are storage values that are
reached when the integration time step δ tends towards infin-
ity. Consequently, when an extreme forcing value is used, a
simulation run for an infinite time step is likely to result in
storage values that are more extreme than any other values of
s(t) seen when using a finite time step, hence constituting a
conservative estimate for their bounds.

In addition, the steady-state solutions – and, hence, their
range – are straightforward to compute with QuaSoARe be-
cause, if they exist, they are the roots of a quadratic poly-
nomial (right-hand side of Eq. 9), which can be computed
analytically from the coefficients Aj , Bj , and Cj . The cor-
responding functionality is included in the QuaSoARe soft-
ware package (Lerat, 2024).

Unfortunately, the existence of steady-state solutions is not
guaranteed for all reservoir equations. For example, the expo-
nential reservoir with zero inflows does not have one (Michel
et al., 2003). In cases like that, it is recommended that one
use a trial-and-error approach to obtain a set of αj values that
cover the entire range of s(t) observed during the simulation.

4 Limitations of the method and recommendations

The QuaSoARe method is designed to solve a scalar ordi-
nary differential equation. Hence, it cannot be used to solve a
coupled system of equations. This is an important limitation
of QuaSoARe as most hydrological models contain multiple
stores that could benefit from a joint solution using a Runge–
Kutta method, as presented by Clark and Kavetski (2010).
Extension of QuaSoARe to higher dimensions is not straight-
forward because the analytical solutions underpinning the
method do not have a vector equivalent. However, in the case

where the model reservoirs operate in sequence with no feed-
back, a simple solution is to apply QuaSoARe to each reser-
voir in turn at a finer time interval than the desired time step.
The fluxes generated at this finer time step can subsequently
be used to feed the next reservoir in the model structure. This
is arguably less efficient from a runtime perspective than ap-
plying QuaSoARe over the whole time step but is probably
not dissimilar to discrete methods that often shorten the time
step to very short sub-steps to control the error.

The second limitation of QuaSoARe is the quality of the
piecewise quadratic interpolation. Figure 1 clearly shows that
minor discrepancies between the true and interpolated flux
functions can lead to noticeable simulation errors. The solu-
tion to this problem is to increase the number of interpolation
nodes, as was shown in the illustrative example in Fig. 1,
where the interpolation errors are reduced by a factor of 5
when switching from three to four nodes. This is straightfor-
ward to implement if a modeller starts with a high number
of nodes, leading to an interpolation error smaller than their
machine precision, as is done in Sect. 5. Such a small error
level is theoretically achievable as the reservoir functions are
assumed to be continuous and, hence, can be approximated
up to any error level by a piecewise polynomial. If this con-
figuration exceeds the modellers’ runtime requirements then
the number of nodes is progressively reduced to match this
constraint.

Particular care should be taken with the interpolation of
the reservoir function close to steady-state values discussed
in the previous section. Functions with sharp transitions
(e.g. rational fractions) cannot be interpolated accurately by
a quadratic polynomial over large intervals. Consequently, if
applied without constraint, the piecewise interpolation can
overshoot and create erroneous steady-state values that do
not exist in the original equation (i.e. values of S where
f ∗i

(
S, Ṽ

)
is null but not fi

(
S, Ṽ

)
). To avoid this problem, a

constraint is imposed in the computation of the interpolation
coefficients presented in Appendix A to restrict the quadratic
functions to be monotonic and to prevent them from crossing
the 0 line if the original flux function did not.

Another limitation of QuaSoARe comes from the mathe-
matical assumptions introduced in Sect. 1. More specifically,
there is a need for flux functions to be Lipschitz continuous,
which is equivalent to having bounded derivatives if the func-
tion is absolutely continuous. This assumption is required
to ensure the unicity of the solutions of Eq. (1) and, hence,
their monotonous nature, as demonstrated at the beginning of
Sect. 2.2, but it eliminates many common flux functions en-
countered in hydrological systems (e.g. power functions of S
with an exponent lower than 1). A first solution to this prob-
lem is to alter the flux functions to obtain smoother functions
with bounded derivatives following Kavetski et al. (2006; see
Sect. 5 of their paper) and, hence, to revert to the domain
of applicability of QuaSoARe. If this is not an option, Qua-
SoARe may still generate reasonable simulations if the solu-
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tion of Eq. (1) does not come close to any discontinuity in
the flux function derivatives. This is, of course, case specific.
An example of such a case is presented in the Supplement.

The discussion above highlights that QuaSoARe, like all
numerical ODE solvers, is not guaranteed to converge for
all reservoir equations and initial conditions. Reservoir equa-
tions often define stability regions where solutions starting
from similar initial conditions remain close for all t > 0. If
the interpolation accuracy is low, it is possible that the ap-
proximate and original stability regions do not coincide. As
a result, certain values of the initial conditions may lead to
a stable solution for the original equation but not for Qua-
SoARe. Fortunately, this problem is related to interpolation
accuracy and can be diagnosed before running QuaSoARe.
Similarly to what is mentioned above, it is recommended that
QuaSoARe is first run using a high number of interpolation
nodes to ensure that stability regions are approximated accu-
rately. Ultimately, the validity interval of the analytical solu-
tions can be verified during QuaSoARe execution using the
expressions given in Table B1. Consequently, it is possible to
catch this type of problem before attempting a QuaSoARe it-
eration. Note that this case was never encountered in practice
while running the tests presented in the following section,
where QuaSoARe is applied to a range of non-linear reser-
voir models using challenging hydro-climate data.

5 Comparison of the method with alternative
numerical schemes

5.1 Reservoir equations tested

The QuaSoARe method is applied to four reservoir equations
detailed in Table 1, representing common hydrological mod-
els of increasing complexity and non-linearity. All equations
in this table depend on a storage scaling factor θ , which is ex-
pressed in the same unit as S. This factor acts like a storage
capacity and controls the dynamic of the reservoir response.
A total of 10 values of θ are evaluated for each equation us-
ing bounds for θ as indicated in the last column of Table 1.

The first two equations simulate the routing of an inflow
time series from the upstream to downstream end of a river
reach. This type of routing model is used in semi-distributed
hydrological or flood forecasting models to approximate the
solution of hydrodynamic equations (Hapuarachchi et al.,
2022). The reach receives an inflow, denoted by Qinflow(t),
which is assumed to be fixed over the time step t . Out-
flow from the reach is computed as a power function of the
reach storage following Yevdjevich (1959), where β is the
power exponent multiplied by a reference flow, denoted by
Qref, which is introduced to simplify dimensional analysis
(see Table 1). The routing model is run at an hourly time
step. The case where β = 1 corresponds to the linear rout-
ing model (Meyer, 1941), while β = 2 is the quadratic rout-
ing store solved analytically by Bentura and Michel (1997).

Both cases can be treated as quadratic functions of the stor-
age and, hence, can be solved exactly with QuaSoARe. To
provide a more meaningful challenge for the method, the two
cases where β = 3 (cubic reservoir, denoted CR) and β = 6
(bi-cubic reservoir, denoted BCR) are selected.

The third equation corresponds to the production store
of the GR4J model (Perrin et al., 2003). This model is a
well-established daily conceptual rainfall–runoff model used
worldwide. Its production store, referred to as GR, receives
rainfall (P ) and potential evapotranspiration (E) and gen-
erates three fluxes: infiltrated rainfall into the store, actual
evapotranspiration from the store, and percolation leaked
from the store. The first two fluxes are quadratic functions
of the store level, which could be solved exactly with Qua-
SoARe. However, the percolation flux introduces a strong
non-linearity with a fifth-order polynomial. Note that the
version of GR used in this paper computes the three fluxes
simultaneously in a single equation, similarly to Santos et
al. (2018), whereas they are solved sequentially using the
operator-splitting method in the original GR4J model pre-
sented by Perrin et al. (2003).

The fourth equation, denoted GRM (GR modified), is in-
spired by the GR equation but increases the non-linearity of
the fluxes by converting the infiltrated rainfall and the actual
evapotranspiration to fifth-order polynomials. In addition, a
fourth flux is added to represent groundwater recharge in the
form of a rational fraction. Rational fractions are difficult
to interpolate with polynomials as they possess asymptotes,
which leads to a challenging case for QuaSoARe.

We highlight that the main objective of introducing these
four reservoir equations is to obtain challenging tests for
QuaSoARe that are representative of hydrological models in
use. The aim is not to improve existing models such as GR4J
or to reproduce accurately observed data from existing catch-
ments. Consequently, one should not be surprised by the un-
usual formulation of certain equations in Table 1.

5.2 Performance evaluation

The solution of the four reservoir equations is obtained with
QuaSoARe using 5, 50, and 500 interpolation nodes. These
three configurations lead to increasing accuracy of the inter-
polation of flux functions, which is expected to translate into
higher solution accuracy.

QuaSoARe is compared with two discrete numerical
schemes: the Radau IIA implicit Runge–Kutta method of or-
der 5 (Hairer and Wanner, 1996), referred to as “Radau”, and
the explicit Runge–Kutta method of order 5(4) (Dormand
and Prince, 1980), denoted “RK45”. The Radau method was
chosen because it is implicit (and, hence, is able to han-
dle stiff equations) and of high order, with both character-
istics leading us to qualify its outputs as the reference for
comparison with other methods. The RK45 method was se-
lected because it is the de facto explicit ODE solver that
is widely recognised for its combination of speed and ac-
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Table 1. Reservoir equations used for testing QuaSoARe.

Name Description Fluxes Range of scal-
ing factor θ

CR Cubic and bi-cubic routing models
Hourly time step

Inflow: f1 (S)=Qinflow
Outflow: f2 (S)=−Qref (S/θ)

3

[1, 800Qref
18, 000Qref]

BCR Bi-cubic routing models
Hourly time step

Inflow: f1 (S)=Qinflow
Outflow: f2 (S)=−Qref (S/θ)

6

[1, 800Qref
18, 000Qref]

GR GR4J production store
Daily time step

Infiltrated rainfall: f1 (S)= P [1− (S/θ)2]
Actual evapotranspiration:
f2 (S)=−E (S/θ)(2− S/θ)
Percolation: f3 (S)=−

2.254

4 θ (S/θ)5

[100, 1, 000]

GRM Modified GR4J production store in-
cluding groundwater recharge
Daily time step

Infiltrated rainfall:
f1 (S)= P

[
1− (S/θ)3

(
10− 15S/θ + 6(S/θ)2

)]
Actual evapotranspiration:

f2 (S)=−E

[
16
(
S/θ − 1

2

)5
+

1
2

]
Percolation: f3 (S)=−

2.254

4 θ (S/θ)7

Groundwater recharge:
f4 (S)=−0.1S/θ/(1+ 10S/θ)

[100, 1, 000]

curacy (Shampine, 2020). Both methods are run using the
SciPy package implementation, where these two algorithms
are coded in Python (Virtanen et al., 2020).

Three performance criteria are used to compare the perfor-
mance of these integration methods. The first criterion mea-
sures the maximum absolute error between the fluxes com-
puted from one of the methods above and the Radau method:

Em =max
{∣∣∣F̂mi (k)− F̂ radau

i (k)

∣∣∣ , k = 1, . . .,p, i = 1, . . .,n
}
, (11)

where F̂mi (k) is the ith flux computed with method m for
time step k.Em is measured in the unit of the reservoir fluxes:
m3 s−1 for CR and BCR and mm d−1 for the two remaining
equations.

The second criterion is the maximum mass balance error
between the fluxes computed with one of the methods and
Radau:

Bm =max

{∣∣∣∣∣
∑p

k=1F̂
m
i (k)− F̂

radau
i (k)∑p

k=1F̂
radau
i (k)

∣∣∣∣∣ , i = 1, . . .,n

}
× 100. (12)

Bm is dimensionless and reported in percent. Finally, the
third criterion compares the runtime of a method against the
Radau runtime:

Rm =
T m

T radau × 100. (13)

The runtime was measured on a laptop computer using a
quad-core processor with a clock speed of 3 GHz. Note that
the runtime of QuaSoARe is assessed using a version of

the code written in pure Python so that it can be compared
with the Radau and RK45 methods. A faster version of the
code written in C within the same package is recommended
for application purposes (Lerat, 2024). Measuring runtime
is dependent on the machine used and thus may lack gener-
ality. An alternative metric to measure computational speed
was tested (not reported here), where runtime is assessed by
the number of flux function evaluations following Clark and
Kavetski (2010). This metric provided similar results to Rm

but is more challenging to interpret because QuaSoARe and
the two discrete methods do not evaluate the same functions
(analytical solutions for QuaSoARe and original flux func-
tions for RK45 and Radau). Consequently, the simple run-
time metric Rm is preferred here.

5.3 Case study area

QuaSoARe performance is evaluated for six sites in the Rich-
mond River catchment in eastern Australia, close to the city
of Lismore. The catchments are presented in Table 1, and
their location is shown in Fig. 3. This area was chosen be-
cause it experienced a devastating flood in February 2022,
which prompted an in-depth analysis of the event (Lerat et
al., 2022). In addition, the maximum rainfall totals observed
during this flood exceeded 700 mm in 24 h. Such extreme val-
ues constitute a challenging test for ODE solvers, as pointed
out by La Follette et al. (2021). For each catchment, the
outlet station and one station located upstream of the out-
let, as shown in Fig. 3, are selected. The hourly stream-
flow data from 1 February 2022 to 10 April 2022 at the up-
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Table 2. Characteristic of the case study catchments.

Name Outlet station Upstream station Hydraulic distance 2022 rainfall 2022 PET* 2022 outlet peak
upstream–outlet [mm yr−1] [mm yr−1] [m3 s−1]

[km]

Casino Richmond River at Casino Eden Creek at Doubtful 32 1941 1455 2077
Site ID no. 203004, 1790 km2 Site ID no. 203034, 581 km2

Wiangaree Richmond River at Wiangaree Richmond River at Lavelles Road 16 1908 1430 1486
Site ID no. 203005, 702 km2 Site ID no. 203056, 337 km2

Eltham Wilsons River at Eltham Byron Creek at Binna Burra 20 3291 1472 573
Site ID no. 203014, 223 km2 Site ID no. 203012, 39 km2

Ewing Bridge Coopers Creek at Ewing Bridge Coopers Creek at Repentance 22 3401 1440 770
Site ID no. 203024, 148 km2 Site ID no. 203002, 62 km2

Fairmeadow Coopers Creek at Fairmeadow Coopers Creek at Repentance 26 3360 1441 365
Site ID no. 203060, 177 km2 Site ID no. 203002, 62 km2

Kyogle Richmond River at Kyogle Richmond River at Wiangaree 19 1992 1435 1358
Site ID no. 203900, 899 km2 Site ID no. 203005, 702 km2

* Potential evapotranspiration

stream station are used to run the two routing models (CR
and BCR). The daily catchment average climate data from
1 January 2010 to 31 December 2022 are used to run the two
hydrological models (GR and GRM).

As highlighted in Sect. 5.2, the aim of this paper is not
to simulate hydrological processes accurately in these catch-
ments but only to obtain realistic forcing data for the numer-
ical experiments presented here.

6 Results

6.1 Simulation of the GR4J production store

As an example of the application of QuaSoARe, this section
details the results obtained with the GR4J production store
(GR) presented in Table 1 for the Coopers Creek at Ewing
Bridge catchment. The GR simulation is run with a storage
scaling factor of 500 mm, a typical value for this parameter
in Australia. Figure 4 shows the interpolation performed by
QuaSoARe to approximate the three fluxes of the GR model
using 10 nodes. The plots show the storage level S divided
by the scaling factor θ on the x axis and the instantaneous
flux on the y axis. The values for P and E required to com-
pute the flux functions, as indicated in Table 1, are set to
4.2 and 3.1 mm d−1, corresponding to the mean daily rainfall
and potential evapotranspiration over the simulation period,
respectively. The interpolation error is shown as a thin black
line on the same plot using the a secondary y axis of a differ-
ent scale. In the three plots, the QuaSoARe flux appears to
be indistinguishable from the “true” flux, which is visually
satisfying but insufficient to guarantee an accurate solution,
as already seen in Fig. 1. The interpolation error for the first
two fluxes is smaller in magnitude than 2× 10−15 mm d−1,
which is comparable to the machine precision in most com-

puters. This is expected as the first two GR flux functions
are quadratic functions that can be interpolated exactly by
QuaSoARe. Note that using 10 nodes is superfluous in this
case as 2 nodes would suffice. The third flux is a power func-
tion with an exponent of 5, which cannot be interpolated ex-
actly. Consequently, the interpolation error is larger, reaching
a magnitude of up to 2.5× 10−3 mm d−1. This error remains
small and shows an oscillating behaviour that is character-
istic of polynomial interpolation using nodes with constant
spacing. A potential improvement on this point is discussed
in Sect. 7.

Figure 5 shows the daily storage levels and fluxes from the
GR reservoir for the year 2022 using the Radau method (or-
ange lines), considered to be the “truth”, and the QuaSoARe
method (blue lines) configured with 10 interpolation nodes.
In this figure, the Radau and QuaSoARe simulations are visu-
ally indistinguishable, which suggests that the interpolation
errors shown in Fig. 4 remain small enough to have no lasting
impact. The simulation errors are shown as thin black lines
using a secondary y axis. These errors are lower in magni-
tude than 5× 10−3 mm d−1, which is negligible compared
to typical errors of climate input data. Observation errors
are rarely below 10−2 mm d−1 in a research catchment and
are probably much higher in the study catchment considered
here (e.g. Chubb et al., 2016, report root mean squared er-
rors of gridded daily rainfall data above 4.5 mm d−1). This
result confirms that, despite the low number of nodes used,
QuaSoARe can simulate the dynamic of the GR store and
all its fluxes accurately. All flux errors exhibit oscillating
patterns already noted in the interpolation error shown in
Fig. 4c, which are likely to be due to a combination of os-
cillating interpolation errors and the alternation of wet and
dry days leading to the sudden variations in actual evapo-
transpiration visible in Fig. 5c. This suggests that quantifying
simulation errors in a highly non-linear reservoir equation is
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Figure 3. Location of the test catchments.

not straightforward and depends on both the quality of the
numerical solution and the statistical characteristics of input
forcings. More generally, the GR flux functions constitute a
challenging case study because they combine the slow dy-
namic of the storage visible in Fig. 5a and the rapid changes
in actual ET seen in Fig. 5c. QuaSoARe appears to resolve
both with high accuracy.

6.2 Performance assessment

Expanding the analysis of the previous section, Fig. 6
presents statistics of the three performance metrics intro-
duced in Sect. 5.2. The metrics are computed for the four
models (CR, BCR, GR, and GRM; see Table 1); the six study
catchments (see Table 2); 10 values of the storage capac-

ity parameter θ for each model (see Table 1); and five ODE
solvers, including the Radau and RK45 methods and three
configurations of QuaSoARe using 10, 50, and 500 nodes.
Overall, 60 simulations are produced for each model and
ODE solver combination. The Radau method is considered
to be the reference against which the error of other methods
is computed. The numbers shown in each plot of Fig. 6 re-
port the median value of the metrics over the 60 correspond-
ing simulations, while the blue boxes show their minimum–
maximum range.

All the plots in Fig. 6 reveal that QuaSoARe simulations
are extremely close to the Radau outputs if QuaSoARe is
configured with a high number of nodes (500). The me-
dian absolute simulation error of QuaSoARe (Em) varies
between 4.4× 10−6 mm d−1 for the GR model (Fig. 6g) to
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Figure 4. True and approximated flux functions of the GR reservoir
equation with a scaling factor θ set to 500 mm. P and E variables
are set to 4.2 and 3.1 mm, respectively, and QuaSoARe interpolation
uses 10 nodes.

9.4× 10−5 m3 s−1 for the BCR model. Both values are sev-
eral orders of magnitude lower than the observation errors,
which means that simulations from QuaSoARe and Radau
can be considered to be interchangeable from a modeller’s
perspective. Importantly, these results also hold for the mass
balance metricBm, where the average difference between the
flux totals from QuaSoARe and Radau remains lower than
2× 10−6 % (Fig. 6k). At the same time, the QuaSoARe run-
time is only a fraction of the Radau runtime, with median val-
ues varying from 3.8 % for the CR and BCR models (Fig. 6c
and f) to 11.8 % for GRM (Fig. 6l). Finally, QuaSoARe per-
formance is better than RK45 for most models and perfor-
mance metrics. For example, the maximum absolute error of
QuaSoARe is several orders of magnitude lower than that
of RK45, except for the CR model, where the error of both
methods is close to 1.5× 10−5 m3 s−1 (Fig. 6a).

When fewer nodes are used, the errors of QuaSoARe in-
crease and worsen the performance metrics. For example, the
median maximum error for the GR model, shown in Fig. 6g,
increases from 4.1× 10−6 m3 s−1 when using 500 nodes to
3.1× 10−3 m3 s−1 when using 10 nodes. This degradation
is expected as the interpolation of the reservoir functions
worsens with fewer nodes. Nonetheless, the errors remain
insignificant compared to observation errors, which suggests
that a low number of nodes remains an attractive configura-
tion when applying QuaSoARe to hydrological models. The
runtime efficacy of QuaSoARe when using 10 nodes is no-
ticeable, with values remaining lower than 3 % of the Radau
runtime for the four models.

We highlight that the results presented here correspond
to challenging test cases with highly non-linear flux func-
tions. For example, the GRM reservoir includes functions
with polynomials of up to order 7. In addition, the selected
catchments exhibit a particularly challenging hydro-climate
regime to simulate, with maximum rainfall intensity exceed-
ing several hundred millimetres per day.

7 Discussion

The QuaSoARe method presented in this paper is a valu-
able alternative to existing numerical schemes for solving the
scalar reservoir equation for three reasons. First, the algo-
rithm is simple to understand and code, relying, essentially,
on the interpolation of the reservoir functions by piecewise
quadratic polynomials. Consequently, it is believed to be
straightforward to integrate into an existing modelling plat-
form, and it helps strengthen the numerical solution of hydro-
logical models without adding a significant burden in terms
of code maintenance. Second, the method is much faster than
standard alternatives such as the RK45 (explicit) and Radau
(implicit) schemes tested in this paper. QuaSoARe reduces
the runtime by a factor of 20 to 50 compared to Radau, de-
pending on the model. This point further reinforces the value
of the method for hydrological modelling tasks requiring re-
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Figure 5. Radau and QuaSoARe storage level (a) and three fluxes (b–c) for the GR reservoir with a scaling factor θ set to 500 mm and using
data from the Coopers Creek at Ewing Bridge catchment. QuaSoARe is configured with 10 interpolation nodes.

peated model evaluation, such as automated calibration or
data assimilation. Finally, the configuration of QuaSoARe
can be modified simply by changing the number of interpo-
lation nodes to vary between highly accuracy but slow sim-
ulation times (say, with 500 nodes) to lower accuracy and
fast runtime (say, with 10 nodes). As a result, the modeller

remains in control of the algorithm via a single and easily
interpretable configuration parameter.

The QuaSoARe performance reported in this paper is sat-
isfactory, but one may wonder if there could be ways to im-
prove it further without changing the algorithm’s core. The
first point that could be improved is the quality of the inter-
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Figure 6. Comparison of performance metrics between the RK45 method and QuaSoARe using 10, 50, and 500 interpolation nodes. The
Radau method is used as a reference simulation against which performance metrics are computed. Numbers in black denote the median value
of the performance metric, while the blue boxes show their minimum–maximum range.

polation. Our method relies on piecewise quadratic polyno-
mials, which could be replaced by more flexible functions.
However, the requirements of QuaSoARe in terms of inter-
polation functions are stringent because they should, at the
same time, be stable by linear combination (to compute all
fluxes) and should lead to an analytical solution of the ap-
proximate reservoir equation. A powerful alternative to the
quadratic polynomials explored in early versions of this work
is a combination of exponential functions. This choice was
later abandoned because it was prone to numerical overflow
and did not provide significant performance improvements.
Nonetheless, it is believed that other functions could meet the
QuaSoARe requirements and help improve its performance
in difficult situations, such as when the flux functions are ra-

tional fractions, which are notoriously tough to interpolate
with polynomials (Berrut and Trefethen, 2004).

Related to this point, one may wonder about the perfor-
mance of a linear interpolation in comparison to its quadratic
counterpart as presented in this paper. Tests not shown here
revealed that the linear interpolation worsens the maximum
absolute error by an approximate factor of 10 with a simi-
lar runtime. Interestingly, the difference between the two ap-
proaches seems to persist even when using a large number of
nodes and, hence, when the interpolation of both the linear
and quadratic is expected to be close. Overall, the quadratic
interpolation is recommended, but the linear approach as a
degraded functionality is kept in the code (Lerat, 2024).

Several ideas could be explored to improve QuaSoARe
further. In this paper, the interpolation nodes are placed at
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equal intervals between the two extremes α1 and αm. This
could easily be modified to find the nodes providing the
lowest interpolation errors. This might reduce the oscilla-
tions of the interpolation errors visible in Fig. 4c. However,
this would also increase the algorithm’s complexity, whereas
simplicity was favoured in this first version of QuaSoARe.
Finally, it is flagged that this method could be combined
with a discrete method in a way similar to the exponential-
integrator approach of Pope (1963). This will likely improve
performance further but will also require using a discrete
method, which was discarded in this paper’s Introduction.
However, this could be an interesting avenue for a modeller
familiar with discrete methods.

Beyond potential improvements in QuaSoARe, we high-
light that the flux functions defined in an empirical mod-
elling context, like most rainfall–runoff models, remain arbi-
trary and are not derived from physically based equations. In
this case, one could argue that piecewise quadratic functions
could themselves constitute valid flux functions. This ap-
proach would have two merits: first, the instantaneous model
equations could be characterised by a small set of coeffi-
cients (the interpolation coefficients), hence becoming fully
parametric and amenable to optimisation or data assimila-
tion, and, second, the model could be solved exactly with
QuaSoARe. As a result, models formulated in this way could
become powerful components of flexible modelling environ-
ments. This avenue is currently being explored to extend the
work of Lerat et al. (2024), in which improvement of the
model structure is obtained by updating state equations via
data assimilation methods.

8 Conclusion

This paper presents a simple numerical algorithm called Qua-
SoARe to solve the instantaneous reservoir equation, provide
a basis for building hydrological models based on this equa-
tion, and generate fast and accurate simulations. The method
was tested on a range of highly non-linear models that are
representative of hydrological models in use. Its performance
suggests that the method matches the accuracy of a high-
order implicit discrete method while requiring a fraction of
its runtime. Yet, the method algorithm is simple and can be
described with a short pseudo-code, which is included in this
paper.

The method is limited by its applicability to scalar equa-
tions and by the quality of the quadratic interpolation under-
lying its analytical solution. To model a series of reservoirs,
the implementation of sub-time-step integration is suggested.
Higher accuracy in the interpolation of reservoir functions
can always be achieved by increasing the number of inter-
polation nodes. The results of this study showed that using
10 to 50 nodes leads to an accuracy level that is an order
of magnitude smaller than the typical error in hydro-climate
observation data.

Appendix A: Interpolation coefficients

For each function fi and each interval [αj , αj+1], the inter-
polation process requires values of the coefficients ai,j , bi,j ,
and ci,j so that the approximated function f ∗i matches fi
as best as possible. This is achieved by matching fi at the
two points αj and αj+1 and at their midpoint. Assuming that
αj < αj+1, the quadratic interpolation leads to

ai,j =
2f0+ 2f1− 4fm(
αj+1−αj

)2 , (A1)

bi,j =−2αj ai,j +
4fm− 3f0− f1

αj+1−αj
, (A2)

ci,j = α
2
j ai,j −αj

4fm− 3f0− f1

αj+1−αj
+ f0, (A3)

where

f0 = fi
(
αj
)
, f1 = fi

(
αj+1

)
, fm = fi

(
αj +αj+1

2

)
.

(A4)

This solution is straightforward but can lead to a function
f ∗i that is non-monotonous, for example, when interpolating
a function fi that presents sharp transitions or asymptotes.
This situation can create an issue related to the steady-state
solution of Eq. (1), as discussed in Sect. 4. To avoid this un-
desirable effect, the value of fm used in Eqs. (A1) to (A3) is
replaced by a value f ∗m defined as follows:

f ∗m =max(f−m ,min
(
f+m , fm

)
), (A5)

where the two bounds f−m and f+m are given by

f−m =min
(

3f0+ f1

4
,
f0+ 3f1

4

)
, (A6)

f+m =max
(

3f0+ f1

4
,
f0+ 3f1

4

)
. (A7)

It can be verified that using f ∗m instead of fm in Eqs. (A1) to
(A3) leads to a monotonous quadratic function f ∗i .

Appendix B: Analytical solution of the approximated
reservoir equation

In this Appendix, the approximate reservoir equation (Eq. 9)
is solved over an interval [t0, t1] such that ∀t, S (t) ∈
[αjαj+1], starting from the initial condition S (t0)= S0. This
solution is obtained by separating the variables leading to the
following integral equation:

S1∫
S0

dS
Aj S2+BjS+Cj

= t, (B1)
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Table B1. Solutions of approximate reservoir equation.

Case Primitive ν(A,B,C,s) Solution S(A,B,C,S0 t) Domain of validity of solution
S(A,B,C,S0t) denoted as
[0, Tm[

A= 0
B 6= 0

1
B

log |B s+C| −
C
B
+

(
S0+

C
B

)
exp(B t) Tm =+∞

A 6= 0
1= 0

−
1

A(s−S)
S+

S0−S

1−At
(
S0−S

) Tm =+∞ if A
(
S0− S

)
≤ 0

Otherwise,
Tm =

1
A
(
S0−S

)
A 6= 0
1 6= 0

1
q1
η1

(
A s−Sq1

)
S+

S0−S−σ1
q1
A
ω1(q1t)

1−A S0−S
q1

ω1(q1t)
If 1< 0
Tm =

1
q1

[
π
2 − η1

(
A
S0−S
q1

)]
Otherwise,
Tm ={
+∞ if A

(
S0− S

)
< q1

−
1
q1
η1

(
A
S0−S
q1

)
otherwise

where S1 = S(t1). Here, it is assumed that either Aj 6= 0 or
Bj 6= 0. If this is not the case, the interpolation function f ∗i
is simply the constant Cj , leading to

S (t1)= S0+Cj τ, (B2)

where τ = t1− t0. If Aj 6= 0 or Bj 6= 0, the solutions of
Eq. (B1) can be obtained from any calculus textbook. They
are presented succinctly in Table B1. In this table, the sub-
script j is dropped to simplify notations. The function ν men-
tioned in the second column of Table B1 is defined as the
following primitive:

ν
(
Aj ,Bj ,Cj , s

)
=

∫
dS

Aj S2+BjS+Cj
. (B3)

This function is used to compute the times tl and tu men-
tioned in cases 2 and 3 in Sect. 2.3.

In Table B1, the following expressions are used to simplify
notations further:

S =−
Bj

2Aj
, (B4)

1= B2
j − 4AjCj , σ1 = sgn(1), q1 =

√
|1|

2
, (B5)

ω1 (x)=

{
tan(x) if 1< 0
tanh(x) if 1> 0 , (B6)

η1 (x)=

 atan(x) if 1< 0
−atanh(x) if 1> 0 and |x|< 1
−atanh(1/x) if 1> 0 and |x|> 1

,

(B7)

where sgn(1) is equal to +1 if 1≥ 0 and to −1 otherwise.
Focus is now given to finding an expression for the total

of the ith flux introduced in Eq. (2). Combining the solution

of Eq. (B1) given in the third column of Table B1, denoted
S(t), with Eq. (2) gives

O∗i (t0, t1)=

t1∫
t0

f ∗i (S(t))dt

= ai,j

t1∫
t0

S(t)2 dt + bi,j

t1∫
t0

S(t)dt + ci,j τ , (B8)

where τ = t1− t0. Note that, in the above equations, the in-
tegral boundaries used in Eq. (2) ([0,δ]) are generalised to
[t0, t1] because fluxes are often computed on an smaller inter-
val than [0, δ] in the algorithm described in Sect. 2.3. Solving
Eq. (B8) is equivalent to integrating S(t) and S(t)2 between
t0 and t1. To compute these two integrals, different cases for
Aj and Bj are considered, starting with Aj = Bj = 0. In this
case, the following is obtained from Eq. (B2):

t1∫
t0

S(t)dt = S0τ +Cj
τ 2

2
, (B9)

t1∫
t0

S(t)2 dt = S2
0τ + S0Cj τ

2
+C2

j

τ 3

3
. (B10)

It is now assumed that Aj = 0 and Bj 6= 0. The two integrals
can be obtained by manipulating and integrating Eq. (9) as
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follows:
t1∫
t0

dS
dt

dt = Bj

t1∫
t0

S(t)dt +Cj τ

⇒

t1∫
t0

S(t)dt =
1
Bj
(S1− S0−Cj τ), (B11)

t2∫
t1

S (t)
dS
dt

dt = Bj

t2∫
t1

S(t)2 dt +Cj

t2∫
t1

S (t)dt

⇒

t1∫
t0

S(t)2 dt =
1
Bj

S2
1 − S

2
0

2
−Cj

t1∫
t0

S(t)dt

 . (B12)

With these two equations, integrating S is done first using
Eq. (B11). This integral is then used in Eq. (B13) to compute
the integral of S2.

Finally, the general case where Aj 6= 0 is addressed. Fol-
lowing a similar approach than above, Eq. (9) is rearranged
and integrated as follows:

t1∫
t0

dS
dt

dt = Aj

t1∫
t0

S(t)2 dt +Bj

t1∫
t0

S(t)dt +Cj τ

⇒

t1∫
t0

S(t)2 dt =
1
Aj

S1− S0−Bj

t1∫
t0

S(t)dt −Cj τ

 .
(B13)

Consequently, the integration of S2 can be deduced from the
one of S. For the integration of S, the expression of S(t)
given in the third column of Table B1 is used. If 1= 0 (see
row before last in Table B1), the following is obtained:
t1∫
t0

S(t)dt = S τ −
1
a

log
[
1− aτ

(
S0− S

)]
. (B14)

A value 1 6= 0 leads to (see last row in Table B1)
t1∫
t0

S(t)dt = Sτ +
1

2a
log

(
1− σ1ω2

1 (q1τ)
)

−
1
a

log

(
1− a

S0− S

q1
ω1 (q1τ)

)
. (B15)

Code and data availability. The QuaSoARe method is re-
leased as part of a Python package written by Lerat (2024)
(https://doi.org/10.5281/zenodo.13928253). The package contains
two implementations of the method written in the Python and C
languages. The C version is recommended due to its significantly
faster runtime. All scripts and hydro-climate data used to generate
the results in this paper are included in the code repository.
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