Articles | Volume 29, issue 7
https://doi.org/10.5194/hess-29-1939-2025
https://doi.org/10.5194/hess-29-1939-2025
Research article
 | 
17 Apr 2025
Research article |  | 17 Apr 2025

Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model

Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Extended-range forecasting of stream water temperature with deep-learning models
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025,https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025,https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary

Cited articles

Addor, N., Jaun, S., Fundel, F., and Zappa, M.: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios, Hydrol. Earth Syst. Sci., 15, 2327–2347, https://doi.org/10.5194/hess-15-2327-2011, 2011. a
Bergmeir, C. and Benítez, J.: On the use of cross-validation for time series predictor evaluation, Inform. Sciences, 191, 192–213, https://doi.org/10.1016/j.ins.2011.12.028, 2012. a
Borsch, S., Simonov, Y., Khristoforov, A., Semenova, N., Koliy, V., Ryseva, E., Krovotyntsev, V., and Derugina, V.: Russian rivers streamflow forecasting using hydrograph extrapolation method, Hydrology, 9, 1, https://doi.org/10.3390/hydrology9010001, 2021. a
Box, G. and Cox, D.: An Analysis of Transformations, J. R. Stat. Soc. B, 26, 211–252, https://doi.org/10.1111/j.2517-6161.1964.tb00553.x, 1964. a
Download
Short summary
Accurate early-warning systems are crucial for reducing the damage caused by flooding events. In this study, we explored the potential of long short-term memory networks for enhancing the forecast accuracy of hydrologic models employed in operational flood forecasting. The presented approach elevated the investigated hydrologic model’s forecast accuracy for further ahead predictions and at flood event runoff.
Share