
Hydrol. Earth Syst. Sci., 29, 1939–1962, 2025
https://doi.org/10.5194/hess-29-1939-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Long short-term memory networks for enhancing real-time flood
forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner1,2,�, Manuel Pirker1,�, Clemens Dorfmann2, Roman Kern3, and Josef Schneider1

1Institute of Hydraulic Engineering and Water Resources Management, Graz University of Technology,
Stremayrgasse 10/II, 8010 Graz, Austria
2flow engineering, Lessingstraße 30, 8010 Graz, Austria
3Institute of Interactive Systems and Data Science, Graz University of Technology, Sandgasse 36/III, 8010 Graz, Austria
�These authors contributed equally to this work.

Correspondence: Sebastian Gegenleithner (s.gegenleithner@gmail.com) and Manuel Pirker (manuel.pirker@tugraz.at)

Received: 8 April 2024 – Discussion started: 14 May 2024
Revised: 2 November 2024 – Accepted: 17 January 2025 – Published: 17 April 2025

Abstract. Flood forecasting systems play a key role in mit-
igating socioeconomic damage caused by flood events. The
majority of these systems rely on process-based hydrologic
models (PBHMs), which are used to predict future runoff.
Many operational flood forecasting systems additionally im-
plement models aimed at enhancing the predictions of the
PBHM, either by updating the PBHM’s state variables in
real time or by enhancing its forecasts in a post-processing
step. For the latter, autoregressive integrated moving aver-
age (ARIMA) models are frequently employed. Despite their
high popularity in flood forecasting, studies have pointed out
potential shortcomings of ARIMA-type models, such as a
decline in forecast accuracy with increasing lead time. In
this study, we investigate the potential of long short-term
memory (LSTM) networks for enhancing the forecast ac-
curacy of an underperforming PBHM and evaluate whether
they are able to overcome some of the challenges presented
by ARIMA models. To achieve this, we developed two
hindcast–forecast LSTM models and compared their forecast
accuracies to that of a more conventional ARIMA model.
To ensure comparability, one LSTM was restricted to use
the same data as ARIMA (eLSTM), namely observed and
simulated discharge, while the other additionally incorpo-
rated meteorologic forcings (PBHM-HLSTM). Considering
the PBHM’s poor performance, we further evaluated if the
PBHM-HLSTM was able to extract valuable information
from the PBHM’s results by analyzing the relative impor-
tance of each input feature. Contrary to ARIMA, the LSTM
networks were able to mostly sustain a high forecast accu-

racy for longer lead times. Furthermore, the PBHM-HLSTM
also achieved a high prediction accuracy for flood events,
which was not the case for ARIMA or the eLSTM. Our re-
sults also revealed that the PBHM-HLSTM relied, to some
degree, on the PBHM’s results, despite its mostly poor per-
formance. Our results suggest that LSTM models, especially
when provided with meteorologic forcings, offer a promising
alternative to frequently employed ARIMA models in opera-
tional flood forecasting systems.

1 Introduction

Floods are among the most common and most destructive
natural disasters around the world (Yaghmaei et al., 2020).
Alongside other mitigation measures, flood forecasting sys-
tems play a key role in increasing resilience to such events. In
principle, flood forecasting systems enable the prediction of
future river discharge, thereby empowering decision-makers
and emergency forces with respect to the implementation
of effective early countermeasures in the case of flooding
events. Examples of such flood forecasting systems are given
by Werner et al. (2009), Addor et al. (2011), Nester et al.
(2016), Borsch et al. (2021), or Nearing et al. (2024).

To date, most operational flood forecasting systems are
built around process-based hydrologic models (PBHMs).
These models predict future river discharge by utilizing con-
ceptual or more physically based approaches that depict the
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individual components of the hydrologic cycle in the catch-
ment. In recent years, many researchers have proposed solely
data-driven models as an alternative to PBHMs. Particularly,
models based on long short-term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) have gained recogni-
tion for their capability to accurately model river discharge.
For example, Kratzert et al. (2019b) demonstrated that their
LSTM model was able to outperform two PBHMs across not
only multiple gauged catchments but also in ungauged catch-
ments. Although data-driven models have proven to be a vi-
able alternative to PBHMs for modeling river discharge, they
are still rarely applied as the core component in operational
flood forecasting systems (Nevo et al., 2022).

The primary task of PBHMs employed in operational flood
forecasting systems is predicting a sequence of future dis-
charge values. The length of this sequence is chosen based on
the characteristics of the catchment and is referred to as the
forecast horizon. For the chosen forecast horizon, the PBHM
derives the discharge forecasts based on meteorologic quan-
tities as well as its current system state at the beginning of
the forecast horizon, e.g., the state of the snow cover, the soil
moisture, or the available water below and above the surface
(river discharge). A common practice in flood forecasting is
to use real-time observations of these state variables, evalu-
ate how the model was able to replicate them in the past, and
use this knowledge to enhance the model’s forecasts. Con-
sidering the available literature, the most relevant forecast-
enhancing strategies can be grouped as follows:

1. State updating. The basic idea behind this concept is to
use observational data to update parts of the hydrologic
model in real time, allowing it to more accurately reflect
the true state of the system. Commonly applied methods
for state updating in flood forecasting include variants
of the Kalman filter (Kalman, 1960) or particle filters
(as demonstrated by Weerts and El Serafy, 2006).

2. Error correction. These methods use observations of
one or multiple state variables, mostly river discharge,
to enhance the hydrologic model’s forecasts in a post-
processing step. Specifically, models belonging to the
autoregressive integrated moving average (ARIMA)
family are frequently employed for this purpose. How-
ever, despite their high popularity, numerous studies
have pointed out the potential limitations of these mod-
els in hydrologic modeling applications.

Firstly, ARIMA models often exhibit a decline in forecast
accuracy with increasing lead time. For instance, Brath et al.
(2002) demonstrated that the forecast accuracy of an adap-
tively updated ARIMA-type model degraded to match the
accuracy of the not-updated model after six time steps. A
less significant performance decrease was observed for an
ARIMA-type model that was calibrated with a split-sample
strategy. Similarly, Broersen and Weerts (2005) demon-
strated that their employed ARIMA-type models were able

to significantly increase the prediction accuracy within the
first day; however, for more temporally distant predictions,
only slight differences were found to forecasts corrected with
the mean discharge over the last 3 weeks. Secondly, ARIMA
models struggle to provide accurate forecasts for flood events
when the underlying hydrologic model fails to give an ade-
quate initial estimation, as shown by studies such as Liu et al.
(2015). In their study, Liu et al. (2015) assessed the predictive
skill of an ARIMA-corrected PBHM for a total of four sig-
nificant flood events. While their model demonstrated a high
forecast accuracy for events that were already captured well
by the hydrologic model, it failed in one instance where this
was not the case. Reasonable forecasts for this event could
only be obtained in the consecutive forecast step, followed
by a rapid decline in forecast accuracy.

Recently, researchers have explored the potential of neural
networks, particularly recurrent neural networks (RNNs), to
enhance the results obtained from PBHMs, and the outcomes
have been remarkably successful. Although the focus of their
study was on model diagnostics, Rozos et al. (2021) demon-
strated that RNNs and LSTM networks, trained on meteo-
rologic data and the PBHM’s output, have the potential to
enhance the model accuracy of underperforming PBHMs.
In a large-sample study, Konapala et al. (2020) tested vari-
ous LSTM variants to enhance the prediction accuracy of a
PBHM. They found that, overall, their hybrid LSTM models
that incorporated the results of the PBHM outperformed both
the PBHM and, in most instances, a standalone LSTM. They
also found that the highest improvements were achieved for
catchments where the PBHM was underperforming. A com-
parable study was also conducted by Frame et al. (2021).
In their study, the authors showed that discharge predictions
could be improved by LSTM models that incorporated the
results of the PBHM. However, they also demonstrated that
these models, in many instances, were outperformed by a
standalone LSTM that did not incorporate information ob-
tained by the PBHM.

Given the promising findings of the aforementioned stud-
ies, we recognize the substantial potential of neural networks
to enhance the forecast accuracy of underperforming PBHMs
employed in operational flood forecasting systems. Espe-
cially in aspects where ARIMA correction methods have
previously demonstrated shortcomings, such as maintain-
ing a high forecast accuracy for longer lead times or accu-
rately correcting poor flood event predictions, neural net-
works might yield more accurate forecasts. To test this hy-
pothesis, we developed two LSTM model variants, both im-
plemented with a hindcast–forecast architecture, similar to
that presented by Gauch et al. (2021) or Nevo et al. (2022),
and compared their forecast performance to that of a conven-
tional ARIMA model. To ensure comparability, one LSTM
variant, eLSTM, was restricted to use the same input data as
ARIMA, specifically observed discharge and that obtained
by the PBHM. The second variant, PBHM-HLSTM, was im-
plemented with the same architecture as the eLSTM but addi-
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Figure 1. (a) Location of the study catchment in Austria. (b) Outline of the study catchment (black line) including the gauging station
(black-and-white diamond) and the main river network (blue lines). This figure was created using the following datasets: Umweltbundesamt
GmbH (2022) and Land Kärnten (2019).

tionally incorporated meteorologic forcings. It has to be men-
tioned that our ARIMA model relied on forecasting residu-
als, whereas both LSTM variants directly predicted future
discharge. For the PBHM-HLSTM exclusively, we also eval-
uated the contribution, i.e., the relative importance, of each
input feature to assess the added value of the PBHM’s pre-
dictions on the final model forecasts. To summarize, the main
research questions addressed in this study are as follows:

1. How does the overall forecast accuracy of the LSTM
models compare to that of ARIMA, particularly for
longer lead times? In this regard, it will be interesting to
see whether the nonlinear LSTM outperforms the linear
ARIMA model when using the same input data, and to
what extent the LSTM can leverage additional meteoro-
logic inputs.

2. Can the LSTM models achieve a higher forecast accu-
racy than ARIMA for flood events? Notably, particu-
larly in these instances, a high forecast accuracy is cru-
cial in operational flood forecasting settings.

3. Is the PBHM-HLSTM able to extract valuable informa-
tion from the underperforming PBHM’s results?

2 Study area and data

In this study, we investigated one medium-sized catchment
located in the foothills of the Austrian Alps. The catchment
drains an area of about 78 km2 and features elevations from

approximately 600 to 1600 m above sea level. The catchment
features one gauging station operated by the Hydrographic
Service of Styria (Austria). The mean annual discharge at
the gauging station is approximately 1.0 m3 s−1. The largest
flood events in the catchment mostly occur during the sum-
mer months at a sub-daily timescale. Figure 1 provides an
overview of the catchment’s geographic location, its bound-
aries, the position of the gauging station, and the river net-
work.

The catchment presented here was part of a broader study
in which multiple catchments were modeled using a con-
ceptual rainfall–runoff model (Gegenleithner et al., 2024a).
Specifically, Gegenleithner et al. (2024a) employed the dis-
tributed wflow_hbv model (Schellekens et al., 2020). Due to
the characteristics of the catchments investigated, the model
was set up with a temporal resolution of 15 min. For most of
the catchments presented in Gegenleithner et al. (2024a), the
rainfall–runoff model displayed a high model accuracy, with
Nash–Sutcliffe efficiency (NSE) values of 0.77 or higher
and Kling–Gupta efficiency (KGE) values of 0.83 or higher.
However, for the catchment presented in this study, the model
demonstrated notably poorer performance. For the studied
period (2011–2017), it merely achieved an NSE of 0.43, a
KGE of 0.74, and a percent bias (PBIAS) of +16.0. For a
detailed explanation of these performance metrics, refer to
Appendix B. Additionally, the PBHM displayed significant
shortcomings in capturing the flood hydrograph characteris-
tics, i.e., the rising and falling limbs of the hydrographs as
well as the timing and magnitude of the peak discharge.
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To develop our forecast models, we utilized the results of
the PBHM at the gauge’s location (see Fig. 1), denoted as
Qsim. Additionally, we incorporated the observed discharge,
henceforth referred to as Qobs. For the PBHM-HLSTM ex-
clusively, we also included meteorologic forcings as an in-
put. Specifically, 1 km× 1 km rasters of total precipitation
and near-surface temperature, obtained from the Integrated
Nowcasting through Comprehensive Analysis (INCA) sys-
tem (Haiden et al., 2011) and provided by GeoSphere Aus-
tria, were utilized. From the raster data, we extracted the
catchment’s mean and maximum precipitation, designated as
pmean and pmax, respectively, along with its mean tempera-
ture, Tmean. All datasets were available at 15 min intervals. A
comprehensive overview of the used data and their key statis-
tics is provided in Table A1.

3 Methodology

3.1 Development of the forecast models

To conduct this study, we developed a total of three model
variants. The first model, ARIMA, relied on forecasting the
residuals between the simulated and observed discharge.
Subsequently, the forecasted residuals were used to cor-
rect the PBHM’s forecasts. The second model, eLSTM, was
based on a hindcast–forecast LSTM network, which (similar
to ARIMA) used simulated and observed discharge to ob-
tain the forecasts. However, contrary to ARIMA, the LSTM
model directly predicted the discharge in the forecast period.
The third model, PBHM-HLSTM, was developed with the
same architecture as the eLSTM, but it was supplied with ad-
ditional meteorologic input, namely the mean and maximum
catchment precipitation as well as its mean temperature.

Considering the nature of the catchment investigated, all
forecast models were developed with a temporal resolution
of 15 min and a 24 h forecast horizon, equivalent to 96 con-
secutive forecast steps.

3.1.1 Model optimization: time series cross-validation

To optimize the hyperparameters of our ARIMA and LSTM
models, we employed a blocked cross-validation strategy,
as recommended by Bergmeir and Benítez (2012). Further-
more, we chose an expanding-window setup, which allowed
us to evaluate the model performance on a multitude of previ-
ously unseen data by progressively expanding the data avail-
able for training, validation, and testing. Especially in hydro-
logic modeling applications, where the data exhibit consid-
erable variability (e.g., dry vs. wet years), this strategy can
boost the model’s performance on unseen data.

We implemented our cross-validation strategy by initially
dividing the available time series into equally sized folds, i.e.,
subsets of the data. Each fold consisted of a sample size of
N = 34903, approximately equivalent to 1 year’s worth of
data. This procedure resulted in seven folds, corresponding

to the years 2011 through 2017. Subsequently, we utilized
these folds to create a total of five cross-folds used for model
training, validation, and testing. Following the expanding-
window strategy, each cross-fold was extended by one fold
compared with the previous one. Within each cross-fold, the
last and second-to-last folds served as the testing and vali-
dation sets, while all preceding folds were used for model
training.

For optimizing the models, we employed two loops. In the
inner loop, the parameters of each model were optimized us-
ing the training and validation sets of each cross-fold. Fol-
lowing the recommendations of Tashman (2000), the mod-
els underwent retraining for each cross-fold. For the LSTM
models, the hyperparameters were tuned in the outer loop.
Thereby, the performance of multiple candidate models was
evaluated for the test sets, and the one that minimized the
tuner objective function was chosen for final deployment. For
the objective function, we selected a combination of the NSE
and KGE metrics. For a detailed description of the employed
objective function, refer to Appendix C. For ARIMA, the hy-
perparameters were defined by evaluating the PBHM’s resid-
uals, the overall model performance, and ARIMA’s model
residuals. However, similar to the LSTM models, ARIMA’s
model parameters were fitted on the training sets of the cross-
folds. A visual representation of the methodology presented
here is provided in Fig. 2.

3.1.2 Autoregressive integrated moving average
(ARIMA) model

ARIMA-type models are widely used for predicting hydrom-
eteorological time series, such as precipitation or discharge
(Brath et al., 2002; Broersen and Weerts, 2005; Liu et al.,
2015; Khazaeiathar et al., 2022). ARIMA models are com-
monly denoted as ARIMA(p,d,q), where p is the order of
the autoregressive part, d is the differentiation order, and
q represents the order of the moving average component.
In other words, the values of p and q indicate the number
of previous values considered for making the forecasts, and
d specifies the number of differentiation operations applied
to the original time series. The ARIMA model presented
here relies on forecasting the residuals of the PBHM’s simu-
lated discharge and that observed at the gauging station, i.e.,
e =Qsim−Qobs. The forecasted residuals, ê, are then used
to correct the PBHM’s forecasts. A visual representation of
this procedure is given in Fig. 3.

The ARIMA model presented in this study was devel-
oped using the Python “statsmodels” library (Seabold and
Perktold, 2010). We assumed the PBHM’s residuals to be
approximately Gaussian. Furthermore, we assumed that the
PBHM’s residuals are correlated, stationary (or can be made
stationary by ARIMA), and preferably close to homoscedas-
tic. On closer inspection, we found that the residuals exhib-
ited a high degree of heteroscedasticity, which could be stabi-
lized by applying a Box–Cox transformation (Box and Cox,
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Figure 2. Blocked cross-validation strategy with an expanding-window setup. The parameters of the models were fitted within the inner
loop, while the hyperparameters were tuned in the outer loop, utilizing the validation fold of each of the five cross-folds.

Figure 3. The ARIMA architecture. The optimized ARIMA(p,d,q) model utilized the residuals between the PBHM’s results (Qsim) and
the observed discharge (Qobs) in the past (e) to forecast the residuals in the forecast period (ê). Consecutively, the forecasted residuals were
used to correct Qsim in the forecast period. The terms h and f refer to the hindcast and forecast periods, respectively.

1964) to the PBHM’s results and the observed discharge prior
to computing the residuals, as shown by studies such as Li
et al. (2021). A fixed λ value of 0.2 was used for the Box–Cox
transformation, which has proven itself in hydrologic model
applications (e.g., Li et al., 2021; Engeland et al., 2010). The
Box–Cox transformation also improved Gaussianity. For a
detailed statistical evaluation of the residuals, refer to Ap-
pendix A2. Stationarity was checked by investigating the au-
tocorrelation function (ACF), which showed a slow decay
over many lags, typically indicating some degree of nonsta-
tionarity (see Fig. A2a). To make the time series stationary,
we added one differentiation operation to the ARIMA model
(d = 1), which was found to be sufficient for the data used
in this study. In addition to the ACF, we also computed the
partial autocorrelation function (PACF; see Fig. A2b). The
ACF and PACF were then used to get a first estimate of the q
and p orders of the ARIMA model. Considering the narrow

5 % significance bounds and the rather low correlations, we
iteratively determined the optimum model orders by eval-
uating ARIMA’s overall model performance in the testing
folds, whilst not overfitting the model. Additionally, we eval-
uated ARIMA’s model residuals, which ideally should be in-
dependent, homoscedastic, and normally distributed. First,
ARIMA’s model residuals displayed some remaining corre-
lation structures. Second, we also found that the residuals
displayed some degree of non-Gaussianity and to a lesser
degree heteroscedasticity, independent of the model config-
uration used. To summarize, the optimum model configu-
ration for the ARIMA model presented in this study was
ARIMA(5,1,6).

Contrary to other studies (e.g., Broersen and Weerts,
2005), our ARIMA model was not retrained adaptively, i.e.,
in each forecast step. Instead, ARIMA’s model coefficients
were determined by utilizing the entire training time series
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of each cross-fold (see Sect. 3.1.1), and the resulting coeffi-
cients were used for the forecasts in the validation and test
sets. Notably, a comparable approach was also employed by
Brath et al. (2002).

3.1.3 Hindcast–forecast long short-term memory
network (PBHM-HLSTM and eLSTM)

Long short-term memory networks (Hochreiter and Schmid-
huber, 1997) are a special form of recurrent neural networks
(RNNs). They are specifically designed to address the com-
mon issue of vanishing gradients that are often encountered
during the training process of RNNs. RNNs process sequen-
tial data by maintaining hidden states (H ) that retain infor-
mation from previous inputs, allowing them to capture tem-
poral dependencies. In addition, LSTM networks possess cell
states (C) and incorporate three gates – namely, the input gate
for controlling incoming information to the cell state, the out-
put gate for regulating the passage of information to the hid-
den state, and the forget gate for determining the retention or
clearance of stored information in the cell state.

The LSTM models presented in this study were devel-
oped using TensorFlow (Abadi et al., 2015) and the Keras
framework (Chollet, 2015). Both LSTM variants were imple-
mented with a hindcast–forecast architecture, similar to the
one presented by Gauch et al. (2021) and Nevo et al. (2022).
This architecture involved coupling two distinct LSTM lay-
ers, one for the hindcast period and one for the forecast pe-
riod. The sequence-to-one hindcast LSTM learned patterns
in the data of the past. Subsequently, the hindcast LSTM’s
last hidden H0 and cell states C0 were extracted and handed
to a fully connected layer. The output of this layer was then
used to initialize the first hidden H1 and cell states C1 of the
sequence-to-sequence forecast LSTM. Besides information
on the hindcast period, which was given by the states of the
hindcast LSTM, the forecast LSTM included additional fea-
tures available in the forecast period. The sequential output
of the forecast LSTM was then flattened and passed through
another fully connected layer to obtain the discharge fore-
casts for the next 24 h. For this layer, we used the rectified lin-
ear unit (ReLU) as the activation function, which prevented
negative discharge forecasts.

To prevent data leakage, the models’ input features were
normalized based on statistics calculated from the first avail-
able year (2011). For the normalization, we used min–max
scaling for the discharge and precipitation data, while z score
standardization was used for the temperature. The models
were trained using the mean-squared error (MSE) as a loss
function. The hyperparameter tuning was conducted by em-
ploying the Adam optimizer (Kingma and Ba, 2015), which
minimized a combined objective function consisting of the
KGE and NSE metrics (see Appendix C).

The architecture presented in Fig. 4 was used to develop
two model variants. The first variant, eLSTM, solely in-
cluded the observed discharge in the hindcast as well as the

simulated discharge in both the hindcast and forecast periods.
The second model variant, PBHM-HLSTM, additionally in-
cluded meteorologic forcings; specifically, the catchment’s
mean and maximum precipitation as well as its mean tem-
perature in both the hindcast and forecast periods were used.
Additionally, PBHM-HLSTM incorporated discharge obser-
vations in the hindcast period and the PBHM’s results in both
the hindcast and forecast periods, respectively.

To optimize the models’ hyperparameters, we employed a
random grid search tuner (O’Malley et al., 2019) as the outer
loop of the cross-validation strategy presented in Sect. 3.1.1.
Auxiliary information on the parameters subjected to opti-
mization as well as the models’ final hyperparameters can be
found in Appendix C.

3.1.4 Sensitivity analysis of neural networks –
integrated gradients

To assess the importance of each input feature processed
by the LSTM model, we used the integrated gradients (IG)
method (Sundararajan et al., 2017). This evaluation was ex-
clusively conducted for the PBHM-HLSTM, which included
all input features used in this study. The integrated gradients
were evaluated for the model’s output, which can be written
as follows:

IGapprox
i (x)=

(
xi − x

′

i

)
×

m∑
k=1

∂F
(
x′+ k

m
(x− x′)

)
∂xi

×
1
m
, (1)

where x is the input of interest; F is the model; x′ is the
baseline (in our case, a sequence of zeros, as suggested by
Kratzert et al., 2019a); xi is the input in the ith dimension,
i.e., at the ith input node; andm is the step size of the approx-
imation of the integral (here, 50, as suggested by Sundarara-
jan et al., 2017). In our case, the output of the model is a se-
quence of size 96, representing the forecast steps. The num-
ber of input dimensions, i.e., input nodes, accumulates from
five hindcast features (each with a sequence of size 48) and
four forecast features (each with a sequence of size 96), re-
sulting in 624 integrated gradients per output node and sam-
ple.

3.2 Model performance evaluation

We utilized the five cross-folds (2013 through 2017) pre-
sented in Sect. 3.1.1, specifically the test sets, to evaluate the
performance of our forecast models. In alignment with the
research questions addressed in this study, we conducted the
following evaluations:

– How does the overall forecast accuracy of the LSTM
models compare to that of ARIMA, particularly for
longer lead times? To answer this question, we first
evaluated each model’s (ARIMA, eLSTM, and PBHM-
HLSTM) annual performance, i.e., the overall perfor-
mance for each of the 5 previously unseen testing years.
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Figure 4. The LSTM architecture. The optimized LSTM models incorporated the PBHM’s simulations (Qsim) in both the hindcast and fore-
cast periods as well as the observed discharge at the gauging station (Qobs). The PBHM-HLSTM exclusively incorporated the meteorologic
quantities pmean, pmax, and Tmean in both the hindcast and forecast periods. The hidden and cell states of the hindcast LSTM (H0 and C0)
were used to initialize the hidden and cell states of the forecast LSTM (H1 and C1). The terms h and f refer to the hindcast and forecast
periods, respectively.

For this evaluation, we utilized well-established met-
rics in hydrology, namely the NSE, the KGE, and the
PBIAS. Additionally, we included the FHV high flow
bias, which evaluates the model bias for the highest 2 %
of the flow duration curve. The formulation of the FHV
can be found in Appendix B, alongside the other perfor-
mance metrics. For each metric, we computed the an-
nual average across the 24 h forecast horizon as well as
the individual values corresponding to the 96 forecast
steps. Moreover, we also monitored the propagation of
the mean absolute error (MAE) and the variability in the
absolute errors (AE) for each lead time step. The vari-
ability was assessed by computing the standard devia-
tion of the absolute errors for each forecast step. In gen-
eral, models with a high forecast accuracy are expected
to display an MAE close to zero and a low standard de-
viation.

– Can the LSTM models achieve a higher forecast accu-
racy than ARIMA for flood events? This question was
addressed by conducting a detailed investigation of each
model’s performance for the two largest flood events in
each year. Specifically, we evaluated how well the mod-
els were able to capture the maximum peak discharge
with respect to both the timing and magnitude. To mea-
sure this, we computed each model’s median timing er-
ror (e1t ) as well as the median peak magnitude error
(epeak) across all forecasts in a predefined evaluation
window. The timing error quantifies the median tem-
poral offset between the maximum observed and simu-
lated peak discharge in number of time steps. Similarly,
the magnitude error quantifies the median difference be-
tween the maximum observed and simulated peak dis-
charge in percent. To add to this, we also evaluated the
distribution of the MAE and the variability in the abso-
lute errors. This was done analogously to the method-

ology presented in the previous point, although for the
highest 2 % of the discharge values only.

– Is the PBHM-HLSTM able to extract valuable informa-
tion from the underperforming PBHM’s results? This
question was addressed by evaluating the importance
of each input feature by employing the IG method pre-
sented in Sect. 3.1.4. In accordance with the previous
research questions, we evaluated the PBHM-HLSTM’s
overall feature importance as well as the importance
specifically for flood events, again for the two largest
flood events per year. The overall importance was as-
sessed by calculating the integrated gradients from the
sum of all values at the output nodes and was evalu-
ated for all testing folds. On the other hand, the fea-
ture importance for the flood events was determined by
computing the IG from the maximum value at the out-
put nodes, which was evaluated for all samples when
the maximum peak was present in the forecast horizon.
This approach enabled us to assess the importance of
each feature at different distances from the maximum
discharge peak. For instance, how important is the ob-
served discharge when the maximum peak is three steps
away from the forecast origin, t0.

4 Results

4.1 Overall model performance

4.1.1 Annual average model performance

Evaluating the average annual model performance for the
NSE, KGE, PBIAS, and FHV metrics showed that all model
variants improved upon the underperforming PBHM’s re-
sults. Each model’s annual performance metrics, averaged
over the 24 h forecast horizon, are reported in Table 1.
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Table 1. Average annual model performance comparison. Shown are the KGE, NSE, PBIAS, and FHV efficiency metrics. All metrics are
averaged over the entire forecast horizon and are reported for each testing year. The best values per metric and year are highlighted in bold.

Year PBHM ARIMA eLSTM PBHM-HLSTM

KGE NSE PBIAS FHV KGE NSE PBIAS FHV KGE NSE PBIAS FHV KGE NSE PBIAS FHV

2013 0.63 0.19 +15.8 +32.4 0.90 0.79 +0.4 −0.7 0.89 0.85 −1.1 +2.3 0.87 0.92 −4.7 +1.5
2014 0.74 0.49 +15.6 +6.9 0.89 0.79 +0.7 +5.8 0.85 0.90 +2.1 −13.4 0.94 0.95 −3.1 −8.8
2015 0.51 0.24 +6.2 +35.5 0.82 0.70 +0.6 +22.4 0.88 0.90 +1.3 −5.4 0.87 0.88 +7.7 +4.7
2016 0.74 0.51 +10.5 −5.2 0.84 0.70 +0.3 −5.2 0.68 0.68 −8.6 −38.6 0.89 0.88 −2.6 −9.8
2017 0.19 −4.24 +60.0 +74.5 0.60 0.22 +0.5 +7.4 0.79 0.64 −0.7 −1.0 0.83 0.70 +12.2 +10.1

The results revealed that the LSTM-based models excelled
in terms of NSE and KGE, and this was found to be espe-
cially true for the PBHM-HLSTM. For instance, the PBHM-
HLSTM was able to achieve an average NSE value of 0.92
in 2013 compared with the 0.19 of the original PBHM. Even
in the worst-performing year, 2017, the PBHM-HLSTM was
able to elevate the average KGE and NSE values of the
PBHM from 0.19 and −4.24 to 0.83 and 0.70, respectively.
Overall, the PBHM-HLSTM was found to outperform both
ARIMA and the eLSTM in terms of the NSE and KGE in
most of the years evaluated, and in the years where this was
not the case, the differences in performance were marginal. A
different image is drawn when investigating the models’ bias
metrics (PBIAS and FHV). Particularly in terms of PBIAS,
ARIMA was able to outperform the other model variants.
We found that this was due to ARIMA’s high performance in
cases where the forecasts followed a clear pattern or trend,
which is often the case under baseflow conditions in hydro-
logic model applications. Although ARIMA also showed a
comparably high performance for the FHV bias, the perfor-
mance gap to the LSTM models was less distinct. In fact, the
PBHM-HLSTM showed the most consistent results in this
regard, producing no significant outliers.

The significant performance gap between the PBIAS and
the NSE and KGE metrics, however, suggested shortcom-
ings in the forecasts obtained by ARIMA. The most straight-
forward way to identify these shortcomings was by dissect-
ing the individual components of the KGE efficiency metric.
This metric consists of three components that measure the
linear correlation, the bias, and the variability between the
simulated and observed discharge. As expected, the KGE’s
bias term for the ARIMA forecasts was close to perfect. Fur-
thermore, the variability term did not signal systematic short-
comings compared to the results of the LSTM networks.
However, regarding the linear correlation term, we found
that the LSTM forecasts significantly outperformed those of
ARIMA. According to Gupta et al. (2009), this term is ma-
jorly influenced by the model’s ability to capture the peak
timing as well as the rising and falling limbs of the hydro-
graphs.

4.1.2 Average model performance over lead time

Each model’s performance was also assessed by monitoring
the development of the NSE, KGE, PBIAS, and FHV metrics
across the 24 h forecast horizon (96 consecutive time steps).
The results of each testing year and metric are presented in
Fig. 5.

As anticipated, both the ARIMA and the LSTM forecasts
surpassed the PBHM’s results across most evaluated metrics
and years. ARIMA, in particular, performed well in terms of
both bias metrics (PBIAS and FHV). The only exception was
found to be ARIMA’s high FHV in 2015. Moreover, in terms
of the NSE and KGE, ARIMA’s forecast accuracy was com-
parably high for the first couple of forecast steps. However,
this initial accuracy was shown to quickly decline with in-
creasing lead time. This became particularly evident in 2017,
when ARIMA’s initial KGE dropped from 0.98 in the first
prediction step to 0.60 in the last. An even more signifi-
cant performance decrease was observed for the NSE met-
ric, for which ARIMA achieved an initial value of 0.97 in the
first step but 0.29 in the last. Compared with ARIMA, the
LSTM models displayed a different forecast behavior. First,
the bias metrics of both LSTM models were mostly higher
when compared with those obtained by ARIMA, particularly
the PBIAS. Interestingly, when solely judged by their bias
metrics, both LSTM variants suggested more or less equal
model performance, outperforming each other in some of
the years used for evaluation. Arguably, the PBHM-HLSTM
achieved more consistent forecasts, considering that the eL-
STM produced a significant FHV bias in 2016. Second, the
LSTM networks consistently performed worse than ARIMA
in the first forecast steps, as suggested by both the KGE and
NSE metrics. However, contrary to ARIMA, they tended to
mostly sustain their initial accuracy across the forecast hori-
zon. This was found to be most pronounced for the NSE,
although it was also observed to a lesser degree for the KGE.
For instance, even in the worst-performing year, 2017, the
PBHM-HLSTM was able to uphold an NSE of 0.62 and a
KGE of 0.73 across the 24 h forecast horizon. Comparing
the eLSTM and PBHM-HLSTM model variants, the latter
clearly showed superior model performance when judged by
the NSE and KGE metrics. Besides a few exceptions where
both models performed on par, the PBHM-HLSTM outper-
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Figure 5. Development of the KGE, NSE, PBIAS, and FHV metrics over the 24 h (96 lead time steps) forecast horizon. Included are all of
the developed model variants and all testing years.

formed the eLSTM across all years used for evaluation in
this regard. This clearly highlights the additional benefit of
adding meteorologic forcings into model development.

In addition to the presented metrics used for model evalua-
tion, we also measured the forecast performance by means of
the mean absolute error (MAE) and the standard deviation of
the absolute errors (σ(AE)). Both measures were evaluated
across the forecast horizon and are shown in Fig. 6. Anal-
ogously to the results presented in Fig. 5, the trend in the
mean absolute error (Fig. 6, left column) displays ARIMA’s
high forecast accuracy in the first couple of prediction steps.

However, it also reaffirmed its gradual decline in accuracy.
In contrast, the LSTM model variants displayed larger er-
rors in the first steps, but their decline in forecast accuracy
was less pronounced. Interestingly, in some years (i.e., 2013,
2015, and 2017) the MAE of the LSTM-based models was
found to be higher throughout the entire forecast horizon. At
first glance, this contradicts the results presented in Fig. 5,
particularly when focusing on the NSE metric. This appar-
ent contradiction, however, can be explained by the vari-
ability in the errors shown in Fig. 6 (right column). Unlike
the LSTM-based models, the forecasts generated by ARIMA
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Figure 6. Development of the absolute errors for all flows. Shown
are the MAE and the standard deviation (σ ) of the AE per testing
year for the 24 h forecast horizon (96 time steps).

demonstrated significant variability in their errors. This in-
dicates that, while it produced highly accurate forecasts in
some cases, ARIMA often yielded predictions that deviated
substantially from the actual outcomes, especially for more
temporally distant forecasts. In contrast, both LSTM variants
achieved a considerably lower error variance. Quantitatively,
the LSTM-based models provided more reliable forecasts on
average after three forecast steps (i.e., 45 min).

4.2 Performance for elevated river discharge

4.2.1 Peak timing and magnitude errors

For assessing the performance of our forecast models for
flood events, we determined the models’ median peak magni-
tude and timing errors for the two largest flood events in each
year. Positive magnitude errors indicate model overestima-

tion, whereas negative values suggest an underestimation. As
for the timing errors, negative values indicate that the model
predicted the maximum peak discharge earlier than observed,
whereas positive values indicate the opposite. The results of
this evaluation are presented in Table 2.

Upon initial inspection, the evaluation of the peak mag-
nitude and timing errors reaffirmed the deficiencies of the
PBHM in capturing the flood runoff dynamics. Specifically,
the substantial timing errors suggest shortcomings of the
model with respect to adequately depicting the character-
istics of the flood event hydrographs. In terms of magni-
tude error, the PBHM achieved a median value of −49.9 %,
predominately underestimating the observed peak discharge.
Arguably, none of the investigated model variants were able
to precisely pinpoint the magnitude of the flood events. How-
ever, by far the best performance in this regard was shown
by PBHM-HLSTM, which achieved a median magnitude er-
ror of −27.5 %. Interestingly, the worst performance in this
regard was shown by the eLSTM model, while ARIMA’s
results fell between those of the eLSTM and the PBHM-
HLSTM. It has to be mentioned that ARIMA, in contrast to
eLSTM, generally exhibited a lower magnitude error in the
first steps, which improved the overall value reported.

In terms of timing error, the ARIMA-corrected forecasts
showed no improvement compared to the PBHM’s original
forecasts. In contrast, the eLSTM was able to majorly re-
duce the timing errors in the forecasts. Considering the fact
that both models were supplied with the same input data, this
clearly shows that the linear correction model (ARIMA) was
not able to adequately transform the shape of the poorly de-
picted hydrographs of the PBHM. Comparing the timing er-
rors of the eLSTM and PBHM-HLSTM reaffirmed the su-
periority of the PBHM-HLSTM. Specifically, the PBHM-
HLSTM displayed a median timing error of merely two time
steps across all events, which corresponds to 30 min in this
study. In contrast, the median timing error of the eLSTM
was found to be five time steps. Auxiliary information on the
models’ predictions for the largest flood events in each year
can be found in Appendix D.

4.2.2 Performance over lead time for elevated river
discharge

Analogously to the results presented in Fig. 6, we evaluated
the development of the mean absolute error (MAE) and the
standard deviation of the absolute errors (σ(AE)) across the
forecast horizon, although only for the largest 2 % of the dis-
charge values. The results of this investigation are shown in
Fig. 7.

While ARIMA often outperformed or matched the MAE
of the LSTM networks when considering all flows (see
Fig. 6, left column), the evaluation of the largest discharge
values clearly demonstrates the superiority of the LSTM-
based models (see Fig. 7, left column). Particularly the
PBHM-HLSTM, although to a lesser degree also the eLSTM,
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Table 2. Comparison of the median peak magnitude error (epeak, in percent) and timing error (e1t , in number of time steps) for the two
largest flood events in each year. The smallest errors and offsets per event are highlighted in bold.

Year Event Obs. peak discharge PBHM ARIMA eLSTM PBHM-HLSTM

(m3 s−1) epeak (%) e1t epeak (%) e1t epeak (%) e1t epeak (%) e1t

2013 First 15.00 −90.3 31 −71.7 47 −78.0 59 −38.4 2
Second 10.02 +13.3 20 −26.1 19 −40.0 −1 −27.5 −5

2014 First 7.27 +3.5 18 +4.5 19 −27.0 0 −27.8 −2
Second 6.23 +23.3 16 +19.1 16 −24.8 2 −26.5 4

2015 First 5.85 −62.5 36 −29.9 36 −66.7 10 −25.2 2
Second 3.33 +4.7 49 +17.4 44 −32.7 0 −13.4 3

2016 First 17.94 −73.6 26 −45.9 29 −77.1 5 −68.8 3
Second 9.99 −45.4 18 −56.7 20 −65.5 27 −43.9 68

2017 First 9.21 −49.9 25 −48.9 48 −54.5 3 −17.3 −1
Second 7.37 −63.1 28 −32.6 31 −59.9 6 +8.4 1

All folds First −62.5 26 −45.9 36 −66.7 5 −27.8 2
Second +4.7 20 −26.1 20 −40.0 2 −26.5 3
Both −49.9 26 −32.6 31 −59.9 5 −27.5 2

was able to achieve a considerably lower MAE compared
with ARIMA. A similar picture was drawn by the variance
(as reflected by the standard deviation) in the absolute errors
(see Fig. 7, right column), for which the PBHM-HLSTM dis-
played considerably lower values than both ARIMA and the
eLSTM.

4.3 Sensitivity analysis of the PBHM-HLSTM

4.3.1 Overall sensitivity

The average importance of each of the PBHM-HLSTM’s in-
put features for both the hindcast and forecast LSTM net-
works is shown in Fig. 8. As anticipated, the PBHM-HLSTM
heavily relied on past discharge observations (Oobs) for de-
riving its forecasts. Interestingly, the importance of the obser-
vations seemed to decay exponentially with increasing dis-
tance to the forecast origin (t0). As shown in Fig. 8, the in-
fluence of the observations almost dampened out after ap-
proximately 48 time steps. This means that the model gave
increasingly more weight to observations close to t0. Fur-
thermore, in the annual average, the model seemed to rely
very little on past and future precipitation, pmax and pmean,
most likely because both variables were zero or close to zero
throughout most of the year. In comparison, the mean tem-
perature (Tmean) in both the hindcast and forecast had some
influence on the predictions, most likely adding seasonality
context to the model. The PBHM’s simulated discharge was
found to have the second-highest impact on the forecasts,
right after the observations. Particularly in the forecast pe-
riod, the simulated discharge influenced the final predictions
considerably.

Table 3 summarizes the normalized feature importance
values for all evaluation years, averaged over the hindcast
and forecast periods, respectively. This evaluation reaffirmed
that the model highly valued the observed discharge, which
was found to be the most important feature for all years.
Moreover, the high importance of the PBHM’s simulated dis-
charge was consistent across all years, surpassed only by the
observations. Surprisingly, in 2017, the simulated discharge
had the highest relative importance of all years, although it
featured the worst performance of the PBHM.

4.3.2 Sensitivity for flood events

To investigate the importance of the individual features for
flood events, we exclusively evaluated the integrated gradi-
ents for the two largest flood events of each year. Figure 9
shows the importance of the hindcast (panel a) and forecast
(panel b) features for various distances of the predicted dis-
charge peak to the forecast origin (t0). In this regard, one
means that the predicted peak is located at t0+1 and analo-
gously at t0+96 for a value of 96.

The results show that the closer the peak was located to
the forecast origin, the more the forecast was influenced by
the observed discharge. This comes as no surprise, as the ob-
served discharge at t0 should be a reasonable predictor of the
discharge at t0+1. Interestingly, also in the case where the
peak was located at the end of the forecast horizon t0+96,
the observed discharge still had a rather high impact on the
forecast. As for the precipitation features (pmean and pmax),
the importance of the former was found to be considerably
higher. This means that the model gained more information
from the precipitation volume than from its intensity. Fur-

https://doi.org/10.5194/hess-29-1939-2025 Hydrol. Earth Syst. Sci., 29, 1939–1962, 2025



1950 S. Gegenleithner et al.: LSTM networks for enhancing real-time flood forecasts

Table 3. Normalized feature importance values per testing year. The values were normalized by the total sum of importance values per year.
The most important input feature per year is highlighted in bold. Values less than or equal to 0.01 are omitted to increase readability.

Year Hindcast features Forecast features

Qsim pmax Tmean pmean Qobs Qsim pmax Tmean pmean

2013 0.09 0.03 0.55 0.19 0.08 0.04
2014 0.08 0.04 0.02 0.55 0.18 0.08 0.04
2015 0.08 0.08 0.51 0.16 0.12 0.03
2016 0.07 0.07 0.02 0.49 0.18 0.10 0.04
2017 0.06 0.12 0.32 0.24 0.02 0.16 0.07

All folds 0.08 0.06 0.51 0.19 0.10 0.04

Figure 7. Development of the absolute errors for the largest 2 % of
the discharge values. Shown are the MAE and the standard devia-
tion (σ ) of the AE per year for the 24 h forecast horizon (96 time
steps).

ther investigating the mean precipitation feature revealed ad-
ditional insights. First, the hindcast pmean was shown to have
a high influence when the peak was close to t0, which then
decayed exponentially with increasing distance of the peak
discharge to the forecast origin. From a theoretical point
of view, this makes sense, as some of the precipitation at
this point has already passed the gauging station as surface
runoff. Second, the forecast pmean showed little importance
for forecasts that were close to the forecast origin, but its im-
portance was shown to grow rapidly with increasing distance
to t0. This occurs as the rainfall needs time to concentrate
and does not directly result in runoff. Moreover, for predic-
tions for flood events, it was shown that the PBHM-HLSTM
relied on the PBHM’s output. In the hindcast, it was found
to be the second-most important feature, while in the fore-
cast, its importance was found to be generally equal to that
of the maximum precipitation (pmax) and the mean tempera-
ture (Tmean).

Table 4 summarizes the normalized feature importance
values for the two largest flood events per year, averaged over
the hindcast and forecast periods, respectively. The results
clearly show that the mean precipitation in the forecast pe-
riod had the highest relative importance of all input features.
In fact, it showed that the model mostly relied on forecast
features for its predictions during flood events, with the only
exception being the observed discharge in the hindcast. As
for the Qsim, pmax, and Tmean features in the forecast, they
were all shown to have a more or less equal influence on the
final flood forecasts.

5 Discussion

In this study, we built upon the promising outcomes of prior
research (see Rozos et al., 2021; Konapala et al., 2020; Frame
et al., 2021) by exploring the potential of LSTM networks to
enhance the forecast accuracy of PBHMs employed in oper-
ational flood forecasting systems. Following the approaches
of Gauch et al. (2021) and Nevo et al. (2022), we devel-
oped our LSTM models using a hindcast–forecast architec-
ture. This architecture was chosen as it facilitates an effective
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Figure 8. Importance of all input features summed over all testing years. Shown are the feature importance values of the hindcast features (a)
and the forecast features (b).

Figure 9. Importance of input features for the peak prediction in the forecast window summed over the two largest flood events per year.
Shown are the feature importance values of the hindcast features (a) and the forecast features (b).

integration into operational forecasting systems. Specifically,
the hindcast–forecast architecture allows for a clear separa-
tion between hindcast and forecast data, which comes with
certain advantages. For example, this strategy would allow
the model to distinguish between meteorologic forecasts and
analyses, potentially enabling it to learn from their differ-
ences. Furthermore, the cross-validation strategy presented
here enables a seamless, continuous improvement of the
model as new data become available. To assess the benefits of
the LSTM-based forecasts, we developed two LSTM model
variants and compared their forecast skill to that of a conven-
tional ARIMA model, using one underperforming PBHM as
a case study. To ensure comparability between the LSTM and
ARIMA approaches, one LSTM (eLSTM) was restricted to
use the same data as ARIMA, whereas the other incorporated
additional meteorologic variables (PBHM-HLSTM). Of par-
ticular interest was how the LSTM approach improved pre-
diction accuracy, especially for flood events and for longer
lead times – both being recognized weaknesses of ARIMA

for cases in which the underlying PBHM provides poor ini-
tial estimates.

When comparing the forecasts obtained by the LSTM and
ARIMA models, we observed that both methods had certain
advantages and disadvantages. ARIMA generally demon-
strated a very high accuracy in the first forecast steps. How-
ever, this initial accuracy was often shown to quickly decline
with increasing lead time. These findings align with those
presented in previous studies, such as Brath et al. (2002)
or Broersen and Weerts (2005). In contrast, the LSTM net-
works generally exhibited a larger error in the first steps but
were able to mostly sustain their initial accuracy over the 24 h
forecast horizon. This became particularly evident when ob-
serving the variance in the absolute errors. Both LSTM mod-
els, particularly the PBHM-HLSTM, displayed a consider-
ably lower error variance compared with the results obtained
by ARIMA. This suggests that, in comparison to ARIMA,
they produced notably fewer poor forecasts. Interestingly,
ARIMA performed particularly well in terms of PBIAS. The
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Table 4. Importance of features for the peak prediction in the forecast window. The values were normalized by the total sum of importance
values per event. The most important input feature per event is highlighted in bold. Values less than or equal to 0.01 are omitted to increase
readability.

Year Event Hindcast features Forecast features

Qsim pmax Tmean pmean Qobs Qsim pmax Tmean pmean

2013 First 0.02 0.02 0.09 0.04 0.11 0.11 0.59
Second 0.12 0.02 0.04 0.20 0.28 0.02 0.12 0.19

2014 First 0.06 0.02 0.02 0.32 0.22 0.02 0.11 0.23
Second 0.07 0.02 0.06 0.20 0.24 0.06 0.15 0.21

2015 First 0.03 0.03 0.05 0.05 0.12 0.18 0.52
Second 0.02 0.11 0.16 0.11 0.22 0.37

2016 First 0.02 0.14 0.10 0.18 0.15 0.36
Second 0.12 0.03 0.21 0.24 0.02 0.10 0.26

2017 First 0.02 0.07 0.27 0.16 0.44
Second 0.03 0.24 0.15 0.54

All folds First 0.02 0.12 0.10 0.17 0.14 0.41
Second 0.06 0.03 0.13 0.17 0.10 0.15 0.34
Both 0.04 0.02 0.12 0.13 0.14 0.14 0.38

reason for that was found in ARIMA’s high accuracy for fore-
casts that followed a clear trend or pattern, which occurs most
often under baseflow conditions in hydrologic model appli-
cations.

When focusing solely on the forecast skill at specific flood
events, the LSTM networks clearly outperformed ARIMA.
This became particularly evident when investigating the
models’ timing errors, i.e., the temporal offset between the
maximum observed and simulated peak discharge. While
both LSTM variants were able to significantly reduce the
initial timing errors of the PBHM, this was not achieved
by ARIMA. This implies that ARIMA was not able to ad-
equately transform the event hydrographs in instances where
the underlying PBHM was not able to give an adequate ini-
tial estimation, a fact that was also shown by Liu et al.
(2015). As for the magnitude errors, i.e., the difference be-
tween the maximum observed and simulated discharge, only
the PBHM-HLSTM was able to achieve somewhat satisfy-
ing results. Interestingly, the eLSTM even performed worse
than ARIMA in this regard. This indicates that the eLSTM
did not receive sufficient context from the observed and sim-
ulated discharge alone to accurately capture the magnitude
of flood events. This underscores the importance of incorpo-
rating meteorologic variables when employing LSTM mod-
els in operational forecasting systems. Notably, the ARIMA
model could also potentially benefit from the inclusion of
meteorologic variables. In a preliminary study, we tested an
ARIMAX model that included the catchment’s mean precip-
itation as an exogenous variable. However, for the case pre-
sented here, the results of the ARIMAX and ARIMA mod-

els were nearly identical and were, thus, excluded from the
study.

Considering the comparably high performance of the
PBHM-HLSTM in this study and, more generally, the re-
markable capabilities of LSTM models in predicting river
discharge (e.g., Kratzert et al., 2019b), a question is raised re-
garding the added benefits that the underperforming PBHM
provides. To assess the added value of the PBHM in this
study, we evaluated the relative importance of each of the
PBHM-HLSTM’s input features. Our findings indicate that,
on average, the PBHM-HLSTM model heavily relied on the
results of the PBHM, particularly its forecasts. In fact, the
PBHM’s discharge predictions were identified as the second-
most important feature, following the observed discharge.
While the PBHM-HLSTM specifically for flood events did,
to some extent, also rely on the PBHM’s forecasts, the
mean catchment precipitation emerged as the most impor-
tant feature in these instances. These findings also explain the
large performance gap between the eLSTM and the PBHM-
HLSTM for flood events.

When employing forecast-enhancing models in opera-
tional flood forecasting systems, several important consid-
erations must be taken into account. First and foremost, such
models are not an all-in-one device suitable for every pur-
pose. Although the PBHM-HLSTM presented here was able
to significantly improve upon the PBHM’s forecasts, it is
still a post-processing technique that is meant to enhance
predictions at the specific location of the gauging station,
while leaving the PBHM’s system states untouched. How-
ever, often these system states, e.g., the state of the snow
cover, the soil moisture, or spatially distributed information
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of the runoff, function as an additional decision criterion for
the system’s operator and are often used for implementing
more complex forecasting chains. Considering the poor per-
formance of the PBHM in this study, its system states are
most likely not correct and can, thus, not provide any added
benefit. Furthermore, it has to be considered that there is a
reason why the PBHM’s performance is poor. Often this can
be linked to poor model parameterization, the inability of the
model to capture some important catchment processes, or un-
certainties in the input data. For the latter, these uncertainties
might be present in the data used for setting up the PBHM, in
the meteorologic forcings, or in the data used for calibration
(e.g., the gauge discharge). Notably, in contrast to PBHMs,
data-driven models (e.g., LSTM networks) might be adept at
learning any systematic errors embedded in the data, conse-
quently improving forecast accuracy. Overall, we believe that
data-driven forecast-enhancing strategies are highly valuable
in contexts like the one presented in this study, where the
PBHM alone fails to deliver satisfactory forecasts.

Although the PBHM-HLSTM model presented here has
already achieved a comparably high forecast accuracy, po-
tential exists for future enhancements. First, refining the pre-
processing phase, especially through more targeted feature
engineering could further enhance the model’s predictive ca-
pabilities. Second, the target data (gauge discharge) can be
diagnosed. For instance, the probe technique presented by
Lees et al. (2022) could be adopted to identify behavioral
anomalies in the LSTM cell states by comparing multiple
catchments. Lastly, future work could also focus on inves-
tigating a hybrid ARIMA–LSTM approach, potentially fur-
ther increasing the model’s prediction accuracy, particularly
in the first forecast steps.

6 Conclusions

In this study, we explored the potential of long short-term
memory (LSTM) networks as a post-processing strategy for
enhancing the forecast performance of an underperforming
process-based hydrologic model (PBHM). We specifically
compared this post-processing strategy to a conventional au-
toregressive integrated moving average (ARIMA) model, as
such models are often employed in operational flood fore-
casting systems. Our focus was on the models’ performance
for extended lead times and, particularly, for flood events,
with both being critical aspects in operational flood forecast-
ing. To facilitate an objective comparison, we developed two
LSTM model variants. One variant, eLSTM, was restricted
to use the same input data as ARIMA, namely observed dis-
charge and the discharge generated by the PBHM, whereas
the other, PBHM-HLSTM, additionally incorporated meteo-
rologic variables. Furthermore, we assessed the added value
of the underperforming PBHM’s results on the predictions of
the PBHM-HLSTM by evaluating the importance of each of

the model’s input features. The main findings of this study
can be summarized as follows:

– All model variants (ARIMA, eLSTM, and PBHM-
HLSTM) significantly enhanced the forecast accuracy
of the existing PBHM.

– ARIMA achieved a particularly high accuracy in the
first forecast steps. However, this initial accuracy de-
clined quickly with increasing lead time. In contrast, the
LSTM models showed a larger initial error but mostly
maintained their initial accuracy over the 24 h forecast
horizon.

– ARIMA showed shortcomings in forecasting the dis-
charge for flood events. Specifically, it failed to accu-
rately predict the timing and the maximum peak dis-
charge of the flood events. The eLSTM improved timing
predictions but significantly underestimated the magni-
tude of the events. Only the PBHM-HLSTM was able to
sufficiently predict both the timing and the magnitude of
the flood events.

– Despite the PBHM’s poor performance, the PBHM-
HLSTM still considered its output informative. On an
annual average, the PBHM’s output was found to be the
second-most important feature, following the observed
discharge. For flood event predictions the PBHM’s re-
sults were also found to be important, but the catch-
ment’s mean precipitation was identified as the most
critical input feature in these cases.

To summarize, in this study, we demonstrated that LSTM
models can pose a viable alternative to frequently employed
ARIMA correction models in operational flood forecasting
systems.
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Appendix A: Statistics of the input data

A1 Model input data

Table A1 shows the key statistics of the observed and simu-
lated discharge as well as the meteorologic forcings used in
this study.

A2 PBHM model residuals

Two statistical tests have been employed to analyze the
PBHM’s residuals. First, the goodness-of-fit test was used to
analyze how closely the residuals follow a Gaussian distri-
bution. For this purpose, the Filliben r correlation value (Fil-
liben, 1975) was computed, for which a value close to 1 sig-
nifies a Gaussian distribution. Second, the Lagrange multi-
plier statistic of the Breusch–Pagan test (Breusch and Pagan,
1979) was evaluated to assess the degree of heteroscedastic-
ity of the residuals. The critical value for homoscedasticity
was computed as 3.84 for a 5 % significance level based on
the Chi distribution given 1 degree of freedom. The appli-
cation of the Box–Cox transform, using a λ value of 0.2,
showed an increase in Gaussianity in the residuals’ distri-
bution as well as a reduction in heteroscedasticity, even be-
low the critical value for homoscedasticity. Figure A1 shows
a quantile–quantile (Q–Q) plot including the Filliben r test
statistics for the original and Box–Cox transformed residu-
als (panel a), alongside a scatterplot of the PBHM’s residuals
against the observed discharge, which includes the test statis-
tics of the Breusch–Pagan test (panel b).

Table A1. Statistics of the catchment’s runoff (gauge observation,Qobs; PBHM simulation,Qsim) as well as its mean precipitation, maximum
precipitation, and temperature (pmean, pmax, and Tmean, respectively).

Year

Parameter Statistic Unit 2011 2012 2013 2014 2015 2016 2017

Qobs µ m3 s−1 0.57 1.01 1.21 1.17 0.71 0.83 0.57
σ m3 s−1 0.25 0.84 0.68 0.67 0.33 0.68 0.23
max m3 s−1 9.61 25.20 15.00 7.27 5.85 17.90 9.21
6 hm3 18.0 31.9 38.1 36.8 22.4 26.2 17.7

Qsim µ m3 s−1 0.62 1.10 1.40 1.35 0.76 0.92 0.91
σ m3 s−1 0.33 0.83 1.02 0.72 0.52 0.70 0.48
max m3 s−1 4.20 8.94 11.40 7.68 4.50 6.43 4.61
6 hm3 19.5 34.9 44.1 42.6 23.8 29.0 28.3

pmax max mmh−1 118 180 100 84.6 109 231 173

pmean max mmh−1 29.2 69.7 45.8 33.5 38.6 61.6 69.3
6 mm 871 1289 1284 1225 912 1188 1153

Tmean µ °C 6.88 6.72 6.43 7.47 7.56 6.98 6.94
σ °C 7.97 8.72 8.21 6.72 7.90 7.59 8.27

A3 Autocorrelation evaluation of the PBHM residuals

We evaluated the autocorrelation function (ACF) and partial
autocorrelation function (PACF) for the PBHM’s residuals.
Both are visualized in Fig. A2. The correlation values and
their 5 % significance bounds were obtained by bootstrap-
ping, where the residuals were analyzed for each year and
the results were averaged. Figure A2 includes the original
PBHM residuals, the Box–Cox transformed residuals, and
the residuals following one differentiation operation.
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Figure A1. A Q–Q plot with Filliben r test statistics for the original and Box–Cox-transformed residuals. (a) Scatterplot of the PBHM’s
original and transformed residuals against the observed discharge including the test statistics of the Breusch–Pagan test (b).

Figure A2. Autocorrelation function (ACF; a) and partial autocorrelation function (PACF; b) for the original PBHM model residuals, the
Box–Cox-transformed residuals, and the residuals following one differentiation operation.
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Appendix B: Evaluation metrics

B1 Nash–Sutcliffe efficiency (NSE)

The Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe,
1970) quantifies how well the model performs compared to
a simple mean discharge benchmark. In its original form, the
NSE can be written as follows:

NSE= 1−
∑N
t=1(Qobs,t −Qsim,t )

2∑N
t=1(Qobs,t −Qobs)

2
, (B1)

where Qobs,t and Qsim,t are the observed and predicted dis-
charge, respectively. The NSE is bound between 1 and −∞,
with 1 indicating perfect model predictions.

B2 Kling–Gupta efficiency (KGE)

The Kling–Gupta efficiency (KGE) was proposed by Gupta
et al. (2009). It is a combined efficiency metric that considers
the correlation, the bias, and the variability in the flow. In
this study, we utilized the modified Kling–Gupta efficiency
(Kling et al., 2012), which can be written as follows:

KGE= 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2, (B2)

where r is the correlation term; β is the bias term given by
the ratio of the mean of the simulated and observed discharge
values, µsim,t/µobs,t ; and γ is the variability term, which is
computed from the standard deviations and the mean values
as σsim,t/µsim,t

σobs,t/µobs,t
. The KGE is bound between 1 and−∞, with 1

indicating perfect model predictions.

B3 Percent bias (PBIAS)

The PBIAS is a measure that quantifies if the model tends to
underpredict or overpredict the observed discharge. It can be
written as follows (Yilmaz et al., 2008):

PBIAS=
∑N
t=1(Qsim,t −Qobs,t )∑N

t=1Qobs,t
· 100, (B3)

where Qsim,t and Qobs,t are the observed and predicted dis-
charge, respectively. The PBIAS can take both positive and
negative values, where positive values indicate that the model
on average overpredicts the observations and vice versa. A
PBIAS close to 0 indicates a widely unbiased model.

B4 High-segment volume percent bias (FHV)

The FHV quantifies the bias at high flows with an exceedance
probability lower than 0.02 based on the flow duration curve
(Yilmaz et al., 2008). It can be written as follows:

FHV=
∑H
i=1(Qsim,i −Qobs,i)∑H

i=1(Qobs,i)
· 100, (B4)

where Qobs,i and Qsim,i are the observed and predicted dis-
charge, respectively, and i = 1,2, . . .H is the index of the
flow value located within the high-flow segment of the flow
duration curve.
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Appendix C: Auxiliary information on LSTM
hyperparameter tuning

To tune the hyperparameters, we selected a combined objec-
tive function (fobj) consisting of the NSE and KGE metrics.
The objective function was computed as follows:

fobj = 2−KGE−NSE, (C1)

where 0 would indicate a perfect fit by the model.
Table C1 shows the LSTM hyperparameters subjected to

optimization, their search space, and their final values after
tuning. Additionally, we investigated two different hindcast
lengths, namely 12 and 24 h, and chose the final model vari-
ants based on the lowest objective function value.

Figure C1 depicts the training and validation losses per
epoch for all five folds for the selected model variants. The
tuner used an early-stopping mechanism by monitoring the
development of the validation loss.

Table C1. Hyperparameter tuning information, defined search space, and final parameter set for the LSTM models.

Parameter Search space eLSTM∗ eLSTM-H48 PBHM- PBHM-

Min Max HLSTM-H96 HLSTM∗

ID best trial 41 40 48 22
Objective 0.232 0.239 0.169 0.162

No. of LSTM units 4 32 17 22 20 23
Initial learning rate 1× 10−3 1× 10−2 0.00774 0.0090 0.0065 0.00912
Dropout rate 0.01 0.5 0.247 0.0228 0.0633 0.039
Batch size 4000 4000 4000 4000
Retrain epochs 5 5 5 5
Hindcast length 96 48 96 48

∗ Selected for further processing based on tuner objective.
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Figure C1. Best models’ losses during training and validation.
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Appendix D: Model predictions for the largest flood
event per year

Figure D1 shows the location and magnitude of the esti-
mated flood peak for all 96 lead time predictions for the
largest flood event per year. Cumulative average precipitation
over the catchment and the PBHM’s predictions are given as
a reference. It can be seen that the predicted peaks of the
PBHM-LSTM model incorporating information on precipi-
tation and temperature during the forecast horizon matched
more closely to the actual peaks than the predictions from the
variants solely built on the PBHM’s results and the observed
discharge. A summary of these findings can also be found in
Table 2.

Figure D1. Forecast comparison for the largest flood events per year. Given are the results of the ARIMA, eLSTM, and PBHM-HLSTM
models.
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Code and data availability. The Python code and pro-
cessed data presented in this study are stored at
https://doi.org/10.5281/zenodo.10907245 (Gegenleithner et al.,
2024b). The published data were derived from the following
datasets:

1. Gauge discharge data were sourced from the Styrian Gov-
ernment, Department 14 – Water Management, Resources and
Sustainability (Hydrographic Service of Styria). The data were
validated by the provider. The time stamps were converted
from GMT+1 to UTC by the authors.

2. Meteorologic data were provided by GeoSphere Austria. More
specifically, 1 km× 1 km rasters were provided from which we
extracted catchment-averaged values. Those averaged values
are included in the dataset.

3. Hydrologic modeling results were obtained from Gegenleith-
ner et al. (2024a).
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