Articles | Volume 29, issue 5
https://doi.org/10.5194/hess-29-1335-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-1335-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Probabilistic downscaling of EURO-CORDEX precipitation data for the assessment of future areal precipitation extremes for hourly to daily durations
Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, 70569 Stuttgart, Germany
Federal Waterways Engineering and Research Institute (BAW), Karlsruhe, Germany
Jochen Seidel
Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, 70569 Stuttgart, Germany
András Bárdossy
Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, 70569 Stuttgart, Germany
Related authors
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024, https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for data quality control.
Abbas El Hachem, Jochen Seidel, Florian Imbery, Thomas Junghänel, and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 6137–6146, https://doi.org/10.5194/hess-26-6137-2022, https://doi.org/10.5194/hess-26-6137-2022, 2022
Short summary
Short summary
Through this work, a methodology to identify outliers in intense precipitation data was presented. The results show the presence of several suspicious observations that strongly differ from their surroundings. Many identified outliers did not have unusually high values but disagreed with their neighboring values at the corresponding time steps. Weather radar and discharge data were used to distinguish between single events and false observations.
András Bárdossy, Jochen Seidel, and Abbas El Hachem
Hydrol. Earth Syst. Sci., 25, 583–601, https://doi.org/10.5194/hess-25-583-2021, https://doi.org/10.5194/hess-25-583-2021, 2021
Short summary
Short summary
In this study, the applicability of data from private weather stations (PWS) for precipitation interpolation was investigated. Due to unknown errors and biases in these observations, a two-step filter was developed that uses indicator correlations and event-based spatial precipitation patterns. The procedure was tested and cross validated for the state of Baden-Württemberg (Germany). The biggest improvement is achieved for the shortest time aggregations.
Sanika Baste, Daniel Klotz, Eduardo Acuña Espinoza, Andras Bardossy, and Ralf Loritz
EGUsphere, https://doi.org/10.5194/egusphere-2025-425, https://doi.org/10.5194/egusphere-2025-425, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study evaluates the extrapolation performance of Long Short-Term Memory (LSTM) networks in rainfall-runoff modeling, specifically under extreme conditions. The findings reveal that the LSTM cannot predict discharge values beyond a theoretical limit, which is well below the extremity of its training data. This behavior results from the LSTM's gating structures rather than saturation of cell states alone.
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024, https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for data quality control.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
András Bárdossy and Faizan Anwar
Hydrol. Earth Syst. Sci., 27, 1987–2000, https://doi.org/10.5194/hess-27-1987-2023, https://doi.org/10.5194/hess-27-1987-2023, 2023
Short summary
Short summary
This study demonstrates the fact that the large river flows forecasted by the models show an underestimation that is inversely related to the number of locations where precipitation is recorded, which is independent of the model. The higher the number of points where the amount of precipitation is recorded, the better the estimate of the river flows.
Abbas El Hachem, Jochen Seidel, Florian Imbery, Thomas Junghänel, and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 6137–6146, https://doi.org/10.5194/hess-26-6137-2022, https://doi.org/10.5194/hess-26-6137-2022, 2022
Short summary
Short summary
Through this work, a methodology to identify outliers in intense precipitation data was presented. The results show the presence of several suspicious observations that strongly differ from their surroundings. Many identified outliers did not have unusually high values but disagreed with their neighboring values at the corresponding time steps. Weather radar and discharge data were used to distinguish between single events and false observations.
Dhiraj Raj Gyawali and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 3055–3077, https://doi.org/10.5194/hess-26-3055-2022, https://doi.org/10.5194/hess-26-3055-2022, 2022
Short summary
Short summary
In this study, different extensions of the degree-day model were calibrated on snow-cover distribution against freely available satellite snow-cover images. The calibrated models simulated the distribution very well in Baden-Württemberg (Germany) and Switzerland. In addition to reliable identification of snow cover, the melt outputs from the calibrated models were able to improve the flow simulations in different catchments in the study region.
Jieru Yan, Fei Li, András Bárdossy, and Tao Tao
Hydrol. Earth Syst. Sci., 25, 3819–3835, https://doi.org/10.5194/hess-25-3819-2021, https://doi.org/10.5194/hess-25-3819-2021, 2021
Short summary
Short summary
Accurate spatial precipitation estimates are important in various fields. An approach to simulate spatial rainfall fields conditioned on radar and rain gauge data is proposed. Unlike the commonly used Kriging methods, which provide a Kriged mean field, the output of the proposed approach is an ensemble of estimates that represents the estimation uncertainty. The approach is robust to nonlinear error in radar estimates and is shown to have some advantages, especially when estimating the extremes.
András Bárdossy, Jochen Seidel, and Abbas El Hachem
Hydrol. Earth Syst. Sci., 25, 583–601, https://doi.org/10.5194/hess-25-583-2021, https://doi.org/10.5194/hess-25-583-2021, 2021
Short summary
Short summary
In this study, the applicability of data from private weather stations (PWS) for precipitation interpolation was investigated. Due to unknown errors and biases in these observations, a two-step filter was developed that uses indicator correlations and event-based spatial precipitation patterns. The procedure was tested and cross validated for the state of Baden-Württemberg (Germany). The biggest improvement is achieved for the shortest time aggregations.
Jieru Yan, András Bárdossy, Sebastian Hörning, and Tao Tao
Hydrol. Earth Syst. Sci., 24, 2287–2301, https://doi.org/10.5194/hess-24-2287-2020, https://doi.org/10.5194/hess-24-2287-2020, 2020
Short summary
Short summary
For applications such as flood forecasting of urban- or town-scale distributed hydrological modeling, high-resolution quantitative precipitation estimation (QPE) with enough accuracy is the most important driving factor and thus the focus of this paper. Considering the fact that rain gauges are sparse but accurate and radar-based precipitation estimates are inaccurate but densely distributed, we are merging the two types of data intellectually to obtain accurate QPEs with high resolution.
Elena Ridolfi, Hemendra Kumar, and András Bárdossy
Hydrol. Earth Syst. Sci., 24, 2043–2060, https://doi.org/10.5194/hess-24-2043-2020, https://doi.org/10.5194/hess-24-2043-2020, 2020
Short summary
Short summary
The paper presents a new, simple and model-free methodology to estimate the streamflow at partially gauged basins, given the precipitation gauged at another basin. We show that the FDC is not a characteristic of the basin only, but of both the basin and the weather. Because of the dependence on the climate, discharge data at the target site are here retrieved using the Antecedent Precipitation Index (API) of the donor site as it represents in a streamflow-like way the precipitation of the basin.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Takayuki Sugimoto, András Bárdossy, Geoffrey G. S. Pegram, and Johannes Cullmann
Hydrol. Earth Syst. Sci., 20, 2705–2720, https://doi.org/10.5194/hess-20-2705-2016, https://doi.org/10.5194/hess-20-2705-2016, 2016
Short summary
Short summary
This paper is aims to detect the climate change impacts on the hydrological regime from the long-term discharge records. A new method for stochastic analysis using copulas, which has the advantage of scrutinizing the data independent of marginal, is suggested in this paper. Two measures are used in the copula domain: one focuses on the asymmetric characteristic of data and the other compares the distances between the copulas. These are calculated for 100 years of daily discharges and the results are discussed.
Demetris Koutsoyiannis, Günter Blöschl, András Bárdossy, Christophe Cudennec, Denis Hughes, Alberto Montanari, Insa Neuweiler, and Hubert Savenije
Hydrol. Earth Syst. Sci., 20, 1081–1084, https://doi.org/10.5194/hess-20-1081-2016, https://doi.org/10.5194/hess-20-1081-2016, 2016
J. Pringle, D. D. Stretch, and A. Bárdossy
Nat. Hazards Earth Syst. Sci., 14, 2145–2155, https://doi.org/10.5194/nhess-14-2145-2014, https://doi.org/10.5194/nhess-14-2145-2014, 2014
G. Blöschl, A. Bárdossy, D. Koutsoyiannis, Z. W. Kundzewicz, I. Littlewood, A. Montanari, and H. Savenije
Hydrol. Earth Syst. Sci., 18, 2433–2435, https://doi.org/10.5194/hess-18-2433-2014, https://doi.org/10.5194/hess-18-2433-2014, 2014
F. Beck and A. Bárdossy
Hydrol. Earth Syst. Sci., 17, 4851–4863, https://doi.org/10.5194/hess-17-4851-2013, https://doi.org/10.5194/hess-17-4851-2013, 2013
M. Liu, A. Bárdossy, and E. Zehe
Hydrol. Earth Syst. Sci., 17, 4685–4699, https://doi.org/10.5194/hess-17-4685-2013, https://doi.org/10.5194/hess-17-4685-2013, 2013
N. V. Dung, B. Merz, A. Bárdossy, and H. Apel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-275-2013, https://doi.org/10.5194/nhessd-1-275-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Modelling approaches
An extension of the logistic function to account for nonstationary drought losses
Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts
A systematic review of climate change science relevant to Australian design flood estimation
Technical Note: Resolution enhancement of flood inundation grids
Floods and droughts: a multivariate perspective
Technical note: Statistical generation of climate-perturbed flow duration curves
Deep learning methods for flood mapping: a review of existing applications and future research directions
Extreme floods in Europe: going beyond observations using reforecast ensemble pooling
Hydroinformatics education – the Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training
Wetropolis extreme rainfall and flood demonstrator: from mathematical design to outreach
Technical note: The beneficial role of a natural permeable layer in slope stabilization by drainage trenches
Assessing the impacts of reservoirs on downstream flood frequency by coupling the effect of scheduling-related multivariate rainfall with an indicator of reservoir effects
Observation operators for assimilation of satellite observations in fluvial inundation forecasting
Contribution of potential evaporation forecasts to 10-day streamflow forecast skill for the Rhine River
Inundation mapping based on reach-scale effective geometry
Effects of variability in probable maximum precipitation patterns on flood losses
The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data
A comparison of the discrete cosine and wavelet transforms for hydrologic model input data reduction
Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset
Technical note: Design flood under hydrological uncertainty
Topography- and nightlight-based national flood risk assessment in Canada
Regime shifts in annual maximum rainfall across Australia – implications for intensity–frequency–duration (IFD) relationships
Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs
A continuous rainfall model based on vine copulas
Estimates of global dew collection potential on artificial surfaces
Climate changes of hydrometeorological and hydrological extremes in the Paute basin, Ecuadorean Andes
An assessment of the ability of Bartlett–Lewis type of rainfall models to reproduce drought statistics
Modeling root reinforcement using a root-failure Weibull survival function
Socio-hydrology: conceptualising human-flood interactions
Application of a model-based rainfall-runoff database as efficient tool for flood risk management
Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis
HydroViz: design and evaluation of a Web-based tool for improving hydrology education
Web 2.0 collaboration tool to support student research in hydrology – an opinion
SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach
Discharge estimation combining flow routing and occasional measurements of velocity
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application
Comment on "A praxis-oriented perspective of streamflow inference from stage observations – the method of Dottori et al. (2009) and the alternative of the Jones Formula, with the kinematic wave celerity computed on the looped rating curve" by Koussis (2009)
An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting
Tongtiegang Zhao, Zecong Chen, and Yongyong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3476, https://doi.org/10.5194/egusphere-2024-3476, 2024
Short summary
Short summary
The classic logistic function characterizes the stationary relationship between drought loss and intensity. This paper incorporates the time into the three parameters of logistic function and derives three nonstationary intensity loss functions. The functions are tested through a case study of drought-affected population by province in mainland China during the period from 2006 to 2023. Overall, the nonstationary intensity loss functions are shown to be a useful tool for drought management.
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 27, 2479–2497, https://doi.org/10.5194/hess-27-2479-2023, https://doi.org/10.5194/hess-27-2479-2023, 2023
Short summary
Short summary
I discuss different types of multivariate hydrological extremes and their dependencies, including regional extremes affecting multiple locations, such as spatially connected flood events; consecutive extremes occurring in close temporal succession, such as successive droughts; extremes characterized by multiple characteristics, such as floods with jointly high peak discharge and flood volume; and transitions between different types of extremes, such as drought-to-flood transitions.
Veysel Yildiz, Robert Milton, Solomon Brown, and Charles Rougé
Hydrol. Earth Syst. Sci., 27, 2499–2507, https://doi.org/10.5194/hess-27-2499-2023, https://doi.org/10.5194/hess-27-2499-2023, 2023
Short summary
Short summary
The proposed approach is based on the parameterisation of flow duration curves (FDCs) to generate hypothetical streamflow futures. (1) We sample a broad range of future climates with modified values of three key streamflow statistics. (2) We generate an FDC for each hydro-climate future. (3) The resulting ensemble is ready to support robustness assessments in a changing climate. Our approach seamlessly represents a large range of futures with increased frequencies of both high and low flows.
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Short summary
Deep learning methods have been increasingly used in flood management to improve traditional techniques. While promising results have been obtained, our review shows significant challenges in building deep learning models that can (i) generalize across multiple scenarios, (ii) account for complex interactions, and (iii) perform probabilistic predictions. We argue that these shortcomings could be addressed by transferring recent fundamental advancements in deep learning to flood mapping.
Manuela I. Brunner and Louise J. Slater
Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022, https://doi.org/10.5194/hess-26-469-2022, 2022
Short summary
Short summary
Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System to increase the sample size available to estimate the frequency of extreme flood events. We demonstrate that such ensemble pooling produces more robust estimates than observation-based estimates.
Thorsten Wagener, Dragan Savic, David Butler, Reza Ahmadian, Tom Arnot, Jonathan Dawes, Slobodan Djordjevic, Roger Falconer, Raziyeh Farmani, Debbie Ford, Jan Hofman, Zoran Kapelan, Shunqi Pan, and Ross Woods
Hydrol. Earth Syst. Sci., 25, 2721–2738, https://doi.org/10.5194/hess-25-2721-2021, https://doi.org/10.5194/hess-25-2721-2021, 2021
Short summary
Short summary
How can we effectively train PhD candidates both (i) across different knowledge domains in water science and engineering and (ii) in computer science? To address this issue, the Water Informatics in Science and Engineering Centre for Doctoral Training (WISE CDT) offers a postgraduate programme that fosters enhanced levels of innovation and collaboration by training a cohort of engineers and scientists at the boundary of water informatics, science and engineering.
Onno Bokhove, Tiffany Hicks, Wout Zweers, and Thomas Kent
Hydrol. Earth Syst. Sci., 24, 2483–2503, https://doi.org/10.5194/hess-24-2483-2020, https://doi.org/10.5194/hess-24-2483-2020, 2020
Short summary
Short summary
Wetropolis is a
table-topdemonstration model with extreme rainfall and flooding, including random rainfall, river flow, flood plains, an upland reservoir, a porous moor, and a city which can flood. It lets the viewer experience extreme rainfall and flood events in a physical model on reduced spatial and temporal scales with an event return period of 6.06 min rather than, say, 200 years. We disseminate its mathematical design and how it has been shown most prominently to over 500 flood victims.
Gianfranco Urciuoli, Luca Comegna, Marianna Pirone, and Luciano Picarelli
Hydrol. Earth Syst. Sci., 24, 1669–1676, https://doi.org/10.5194/hess-24-1669-2020, https://doi.org/10.5194/hess-24-1669-2020, 2020
Short summary
Short summary
The aim of this paper is to demonstrate, through a numerical approach, that the presence of soil layers of higher permeability, a not unlikely condition in some deep landslides in clay, may be exploited to improve the efficiency of systems of drainage trenches for slope stabilization. The problem has been examined for the case that a unique pervious layer, parallel to the ground surface, is present at an elevation higher than the bottom of the trenches.
Bin Xiong, Lihua Xiong, Jun Xia, Chong-Yu Xu, Cong Jiang, and Tao Du
Hydrol. Earth Syst. Sci., 23, 4453–4470, https://doi.org/10.5194/hess-23-4453-2019, https://doi.org/10.5194/hess-23-4453-2019, 2019
Short summary
Short summary
We develop a new indicator of reservoir effects, called the rainfall–reservoir composite index (RRCI). RRCI, coupled with the effects of static reservoir capacity and scheduling-related multivariate rainfall, has a better performance than the previous indicator in terms of explaining the variation in the downstream floods affected by reservoir operation. A covariate-based flood frequency analysis using RRCI can provide more reliable downstream flood risk estimation.
Elizabeth S. Cooper, Sarah L. Dance, Javier García-Pintado, Nancy K. Nichols, and Polly J. Smith
Hydrol. Earth Syst. Sci., 23, 2541–2559, https://doi.org/10.5194/hess-23-2541-2019, https://doi.org/10.5194/hess-23-2541-2019, 2019
Short summary
Short summary
Flooding from rivers is a huge and costly problem worldwide. Computer simulations can help to warn people if and when they are likely to be affected by river floodwater, but such predictions are not always accurate or reliable. Information about flood extent from satellites can help to keep these forecasts on track. Here we investigate different ways of using information from satellite images and look at the effect on computer predictions. This will help to develop flood warning systems.
Bart van Osnabrugge, Remko Uijlenhoet, and Albrecht Weerts
Hydrol. Earth Syst. Sci., 23, 1453–1467, https://doi.org/10.5194/hess-23-1453-2019, https://doi.org/10.5194/hess-23-1453-2019, 2019
Short summary
Short summary
A correct estimate of the amount of future precipitation is the most important factor in making a good streamflow forecast, but evaporation is also an important component that determines the discharge of a river. However, in this study for the Rhine River we found that evaporation forecasts only give an almost negligible improvement compared to methods that use statistical information on climatology for a 10-day streamflow forecast. This is important to guide research on low flow forecasts.
Cédric Rebolho, Vazken Andréassian, and Nicolas Le Moine
Hydrol. Earth Syst. Sci., 22, 5967–5985, https://doi.org/10.5194/hess-22-5967-2018, https://doi.org/10.5194/hess-22-5967-2018, 2018
Short summary
Short summary
Inundation models are useful for hazard management and prevention. They are traditionally based on hydraulic partial differential equations (with satisfying results but large data and computational requirements). This study presents a simplified approach combining reach-scale geometric properties with steady uniform flow equations. The model shows promising results overall, although difficulties persist in the most complex urbanised reaches.
Andreas Paul Zischg, Guido Felder, Rolf Weingartner, Niall Quinn, Gemma Coxon, Jeffrey Neal, Jim Freer, and Paul Bates
Hydrol. Earth Syst. Sci., 22, 2759–2773, https://doi.org/10.5194/hess-22-2759-2018, https://doi.org/10.5194/hess-22-2759-2018, 2018
Short summary
Short summary
We developed a model experiment and distributed different rainfall patterns over a mountain river basin. For each rainfall scenario, we computed the flood losses with a model chain. The experiment shows that flood losses vary considerably within the river basin and depend on the timing of the flood peaks from the basin's sub-catchments. Basin-specific characteristics such as the location of the main settlements within the floodplains play an additional important role in determining flood losses.
Guillaume Le Bihan, Olivier Payrastre, Eric Gaume, David Moncoulon, and Frédéric Pons
Hydrol. Earth Syst. Sci., 21, 5911–5928, https://doi.org/10.5194/hess-21-5911-2017, https://doi.org/10.5194/hess-21-5911-2017, 2017
Short summary
Short summary
This paper illustrates how an integrated flash flood monitoring (or forecasting) system may be designed to directly provide information on possibly flooded areas and associated impacts on a very detailed river network and over large territories. The approach is extensively tested in the regions of Alès and Draguignan, located in south-eastern France. Validation results are presented in terms of accuracy of the estimated flood extents and related impacts (based on insurance claim data).
Ashley Wright, Jeffrey P. Walker, David E. Robertson, and Valentijn R. N. Pauwels
Hydrol. Earth Syst. Sci., 21, 3827–3838, https://doi.org/10.5194/hess-21-3827-2017, https://doi.org/10.5194/hess-21-3827-2017, 2017
Short summary
Short summary
The accurate reduction of hydrologic model input data is an impediment towards understanding input uncertainty and model structural errors. This paper compares the ability of two transforms to reduce rainfall input data. The resultant transforms are compressed to varying extents and reconstructed before being evaluated with standard simulation performance summary metrics and descriptive statistics. It is concluded the discrete wavelet transform is most capable of preserving rainfall time series.
Ricardo Zubieta, Augusto Getirana, Jhan Carlo Espinoza, Waldo Lavado-Casimiro, and Luis Aragon
Hydrol. Earth Syst. Sci., 21, 3543–3555, https://doi.org/10.5194/hess-21-3543-2017, https://doi.org/10.5194/hess-21-3543-2017, 2017
Short summary
Short summary
This paper indicates that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, in comparison to observed rainfall (by 11.1 % and 15.7 %, respectively). Statistical analysis indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets for estimating observed streamflows in Andean–Amazonian regions (Ucayali Basin, southern regions of the Amazon Basin of Peru and Ecuador).
Anna Botto, Daniele Ganora, Pierluigi Claps, and Francesco Laio
Hydrol. Earth Syst. Sci., 21, 3353–3358, https://doi.org/10.5194/hess-21-3353-2017, https://doi.org/10.5194/hess-21-3353-2017, 2017
Short summary
Short summary
The paper provides an easy-to-use implementation of the UNCODE framework, which allows one to estimate the design flood value by directly accounting for sample uncertainty. Other than a design tool, this methodology is also a practical way to quantify the value of data in the design process.
Amin Elshorbagy, Raja Bharath, Anchit Lakhanpal, Serena Ceola, Alberto Montanari, and Karl-Erich Lindenschmidt
Hydrol. Earth Syst. Sci., 21, 2219–2232, https://doi.org/10.5194/hess-21-2219-2017, https://doi.org/10.5194/hess-21-2219-2017, 2017
Short summary
Short summary
Flood mapping is one of Canada's major national interests. This work presents a simple and effective method for large-scale flood hazard and risk mapping, applied in this study to Canada. Readily available data, such as remote sensing night-light data, topography, and stream network were used to create the maps.
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 19, 4735–4746, https://doi.org/10.5194/hess-19-4735-2015, https://doi.org/10.5194/hess-19-4735-2015, 2015
Short summary
Short summary
Rainfall intensity-frequency-duration (IFD) relationships are required for the design and planning of water supply and management systems around the world. Currently IFD information is based on the "stationary climate assumption". However, this paper provides evidence of regime shifts in annual maxima rainfall time series using 96 daily rainfall stations and 66 sub-daily rainfall stations across Australia. Importantly, current IFD relationships may under- or overestimate the design rainfall.
P. A. Marker, N. Foged, X. He, A. V. Christiansen, J. C. Refsgaard, E. Auken, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 19, 3875–3890, https://doi.org/10.5194/hess-19-3875-2015, https://doi.org/10.5194/hess-19-3875-2015, 2015
H. Vernieuwe, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 19, 2685–2699, https://doi.org/10.5194/hess-19-2685-2015, https://doi.org/10.5194/hess-19-2685-2015, 2015
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
D. E. Mora, L. Campozano, F. Cisneros, G. Wyseure, and P. Willems
Hydrol. Earth Syst. Sci., 18, 631–648, https://doi.org/10.5194/hess-18-631-2014, https://doi.org/10.5194/hess-18-631-2014, 2014
M. T. Pham, W. J. Vanhaute, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 17, 5167–5183, https://doi.org/10.5194/hess-17-5167-2013, https://doi.org/10.5194/hess-17-5167-2013, 2013
M. Schwarz, F. Giadrossich, and D. Cohen
Hydrol. Earth Syst. Sci., 17, 4367–4377, https://doi.org/10.5194/hess-17-4367-2013, https://doi.org/10.5194/hess-17-4367-2013, 2013
G. Di Baldassarre, A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, https://doi.org/10.5194/hess-17-3295-2013, 2013
L. Brocca, S. Liersch, F. Melone, T. Moramarco, and M. Volk
Hydrol. Earth Syst. Sci., 17, 3159–3169, https://doi.org/10.5194/hess-17-3159-2013, https://doi.org/10.5194/hess-17-3159-2013, 2013
T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar
Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, https://doi.org/10.5194/hess-17-1331-2013, 2013
E. Habib, Y. Ma, D. Williams, H. O. Sharif, and F. Hossain
Hydrol. Earth Syst. Sci., 16, 3767–3781, https://doi.org/10.5194/hess-16-3767-2012, https://doi.org/10.5194/hess-16-3767-2012, 2012
A. Pathirana, B. Gersonius, and M. Radhakrishnan
Hydrol. Earth Syst. Sci., 16, 2499–2509, https://doi.org/10.5194/hess-16-2499-2012, https://doi.org/10.5194/hess-16-2499-2012, 2012
K. X. Soulis and J. D. Valiantzas
Hydrol. Earth Syst. Sci., 16, 1001–1015, https://doi.org/10.5194/hess-16-1001-2012, https://doi.org/10.5194/hess-16-1001-2012, 2012
G. Corato, T. Moramarco, and T. Tucciarelli
Hydrol. Earth Syst. Sci., 15, 2979–2994, https://doi.org/10.5194/hess-15-2979-2011, https://doi.org/10.5194/hess-15-2979-2011, 2011
A. Elshorbagy, G. Corzo, S. Srinivasulu, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 14, 1943–1961, https://doi.org/10.5194/hess-14-1943-2010, https://doi.org/10.5194/hess-14-1943-2010, 2010
A. D. Koussis
Hydrol. Earth Syst. Sci., 14, 1093–1097, https://doi.org/10.5194/hess-14-1093-2010, https://doi.org/10.5194/hess-14-1093-2010, 2010
J. A. Velázquez, T. Petit, A. Lavoie, M.-A. Boucher, R. Turcotte, V. Fortin, and F. Anctil
Hydrol. Earth Syst. Sci., 13, 2221–2231, https://doi.org/10.5194/hess-13-2221-2009, https://doi.org/10.5194/hess-13-2221-2009, 2009
Cited articles
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D., Berthou, S., Brisson, E., Cardoso, R. M., Chan, S. C., Christensen, O. B., Fernández, J., Fita, L., Frisius, T., Gašparac, G., Giorgi, F., Goergen, K., Haugen, J. E., Hodnebrog, Ø., Kartsios, S., Katragkou, E., Kendon, E. J., Keuler, K., Lavin-Gullon, A., Lenderink, G., Leutwyler, D., Lorenz, T., Maraun, D., Mercogliano, P., Milovac, J., Panitz, H.-J., Raffa, M., Remedio, A. R., Schär, C., Soares, P. M. M., Srnec, L., Steensen, B. M., Stocchi, P., Tölle, M. H., Truhetz, H., Vergara-Temprado, J., de Vries, H., Warrach-Sagi, K., Wulfmeyer, V., and Zander, M. J.: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation, Clim. Dynam., 57, 275–302, 2021. a
Bárdossy, A. and Hörning, S.: Definition of Spatial Copula Based Dependence Using a Family of Non-Gaussian Spatial Random Fields, Water Resour. Res., 59, e2023WR034446, https://doi.org/10.1029/2023WR034446, 2023. a
Bárdossy, A. and Pegram, G.: Downscaling precipitation using regional climate models and circulation patterns toward hydrology, Water Resour. Res., 47, 129678800, https://doi.org/10.1029/2010WR009689, 2011. a, b, c
Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small, Water Resour. Res., 48, W09502, https://doi.org/10.1029/2011WR011524, 2012. a, b, c, d
Bárdossy, A. and Plate, E. J.: Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28, 1247–1259, 1992. a
Bárdossy, A., Modiri, E., Anwar, F., and Pegram, G.: Gridded daily precipitation data for Iran: A comparison of different methods, J. Hydrol.-Regional Studies, 38, 100958, https://doi.org/10.1016/j.ejrh.2021.100958, 2021. a
Bennett, B., Lambert, M., Thyer, M., Bates, B. C., and Leonard, M.: Estimating extreme spatial rainfall intensities, J. Hydrol. Eng., 21, 04015074, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001316, 2016. a
Berg, P., Christensen, O. B., Klehmet, K., Lenderink, G., Olsson, J., Teichmann, C., and Yang, W.: Summertime precipitation extremes in a EURO-CORDEX 0.11° ensemble at an hourly resolution, Nat. Hazards Earth Syst. Sci., 19, 957–971, https://doi.org/10.5194/nhess-19-957-2019, 2019. a
Berthou, S., Kendon, E. J., Chan, S. C., Ban, N., Leutwyler, D., Schär, C., and Fosser, G.: Pan-European climate at convection-permitting scale: a model intercomparison study, Clim. Dynam., 55, 35–59, 2020. a
Cannon, A. J. and Innocenti, S.: Projected intensification of sub-daily and daily rainfall extremes in convection-permitting climate model simulations over North America: implications for future intensity–duration–frequency curves, Nat. Hazards Earth Syst. Sci., 19, 421–440, https://doi.org/10.5194/nhess-19-421-2019, 2019. a
Casanueva, A., Herrera, S., Iturbide, M., Lange, S., Jury, M., Dosio, A., Maraun, D., and Gutiérrez, J. M.: Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch, Atmos. Sci. Lett., 21, e978, https://doi.org/10.1002/asl.978, 2020. a
DWA-A: Arbeitsblatt DWA-A 531: Starkregen in Abhängigkeit von Wiederkehrzeit und Dauer, https://webshop.dwa.de/de/dwa-a-531-starkregen-9-2012.html (last access: 1 December 2023), 2012. a
DWD Climate Data Center (CDC): Historical hourly station observations of precipitation for Germany, Version v21.3, 2021, 2021a. a
El Hachem, A.: Spatial extent of precipitation extremes in hydrology, Stuttgart: Eigenverlag des Instituts für Wasser-und Umweltsystemmodellierung, https://doi.org/10.18419/opus-14325, 2023. a, b
Fischer, S. and Schumann, A.: Berücksichtigung von Starkregen in der Niederschlagsstatistik, Hydrol. Wasserbewirts., 62, 248–256, 2018. a
Forestieri, A., Arnone, E., Blenkinsop, S., Candela, A., Fowler, H., and Noto, L. V.: The impact of climate change on extreme precipitation in Sicily, Italy, Hydrol. Process., 32, 332–348, 2018. a
Fosser, G., Gaetani, M., Kendon, E. J., Adinolfi, M., Ban, N., Belušić, D., Caillaud, C., Careto, J. A. M., Coppola, E., Demory, M.-E., de Vries, H., Dobler, A., Feldmann, H., Goergen, K., Lenderink, G., Pichelli, E., Schär, C., Soares, P. M. M., Somot, S., and Tölle, M. H.: Convection-permitting climate models offer more certain extreme rainfall projections, npj climate and atmospheric science, 7, 51, 2024. a
Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S. B., Haerter, J. O., Kendon, E., Lewis, E., Schaer, C., Sharma, A., Villarini, G., Wasko, C., and Zhang, X.: Anthropogenic intensification of short-duration rainfall extremes, Nat. Rev. Earth Environ., 2, 107–122, 2021. a
Ghebreyesus, D. T. and Sharif, H. O.: Development and Assessment of High-Resolution Radar-Based Precipitation Intensity-Duration-Curve (IDF) Curves for the State of Texas, Remote Sens., 13, 2890, https://doi.org/10.3390/rs13152890, 2021. a, b
Haberlandt, U. and Berndt, C.: Development of Rainfall Area-Intensity-Duration-Frequency Curves from Weather Radar Data, in: AGU Fall Meeting Abstracts, 2016, H13J–1557, 2016a. a
Haberlandt, U. and Berndt, C.: The value of weather radar data for the estimation of design storms–an analysis for the Hannover region, P. Int. Ass. Hydrol. Sci., 373, 81–85, 2016b. a
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136: A k-means clustering algorithm, J. Roy. Stat. Soc. C, 28, 100–108, 1979. a
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013. a
Hennemuth, B., Jacob, D. J., Keup-Thiel, E., Kotlarski, S., Nikulin, G., Otto, J., Rechid, D., Sieck, K., Sobolowski, S. P., Szabó, P., Benestad, R. E., Buonomo, E., Gutiérrez, J. M., Haensler, A., Illy, T., Katragkou, E., Remke, T., Szépszó, G., Teichmann, C., Vautard, R., Weber, T., and Zsebeházi, G.: Guidance for EURO-CORDEX climate projections data use, Version 1. 0-2017.08, 6, 118, 2017. a
Hörning, S. and Haese, B.: RMWSPy (v 1.1): A Python code for spatial simulation and inversion for environmental applications, Environ. Model. Softw., 138, 104970, https://doi.org/10.1016/j.envsoft.2021.104970, 2021. a, b
Hosseinzadehtalaei, P., Tabari, H., and Willems, P.: Precipitation intensity–duration–frequency curves for central Belgium with an ensemble of EURO-CORDEX simulations, and associated uncertainties, Atmos. Res., 200, 1–12, 2018. a
Hu, L. Y.: Gradual deformation and iterative calibration of Gaussian-related stochastic models, Math. Geol., 32, 87–108, 2000. a
Jacob, D.: A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin, Meteorol. Atmos. Phys., 77, 61–73, 2001. a
Jacob, D. and Podzun, R.: Sensitivity studies with the regional climate model REMO, Meteorol. Atmos. Phys., 63, 119–129, 1997. a
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, 2014. a
Kadow, C., Illing, S., Lucio-Eceiza, E. E., Bergemann, M., Ramadoss, M., Sommer, P. S., Kunst, O., Schartner, T., Pankatz, K., Grieger, J., Schuster, M., Richling, A., Thiemann, H., Kirchner, I., Rust, H. W., Ludwig, T., Cubasch, U., and Ulbrich, U.: Introduction to Freva – A Free Evaluation System Framework for Earth System Modeling, J. Open Res. Softw., 9, 13, https://doi.org/10.5334/jors.253, 2021. a, b
Kaspar, F., Müller-Westermeier, G., Penda, E., Mächel, H., Zimmermann, K., Kaiser-Weiss, A., and Deutschländer, T.: Monitoring of climate change in Germany – data, products and services of Germany's National Climate Data Centre, Adv. Sci. Res., 10, 99–106, https://doi.org/10.5194/asr-10-99-2013, 2013 (data available at: https://opendata.dwd.de/climate_environment/CDC, last access: 1 December 2023). a
Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., and Senior, C. A.: Heavier summer downpours with climate change revealed by weather forecast resolution model, Nat. Clim. Change, 4, 570–576, 2014. a
Khazaei, M. R.: A robust method to develop future rainfall IDF curves under climate change condition in two major basins of Iran, Theor. Appl. Climatol., 144, 179–190, 2021. a
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014. a, b
Koutsoyiannis, D. and Papalexiou, S. M.: Extreme rainfall: Global perspective, Handbook of Applied Hydrology; McGraw-Hill, New York, NY, USA, 74–1, 2017. a
Koutsoyiannis, D., Kozonis, D., and Manetas, A.: A mathematical framework for studying rainfall intensity-duration-frequency relationships, J. Hydrol., 206, 118–135, 1998. a
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019. a
Lengfeld, K., Kirstetter, P.-E., Fowler, H. J., Yu, J., Becker, A., Flamig, Z., and Gourley, J.: Use of radar data for characterizing extreme precipitation at fine scales and short durations, Environ. Res. Lett., 15, 085003, https://doi.org/10.1088/1748-9326/ab98b4, 2020. a
Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., and Wehner, M.: Changes in annual extremes of daily temperature and precipitation in CMIP6 models, J. Climate, 34, 3441–3460, 2021. a
Mantegna, G. A., White, C. J., Remenyi, T. A., Corney, S. P., and Fox-Hughes, P.: Simulating sub-daily intensity-frequency-duration curves in Australia using a dynamical high-resolution regional climate model, J. Hydrol., 554, 277–291, 2017. a
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J. M., Hagemann, S., Richter, I., Soares, P. M. M., Hall, A., and Mearns, L. O.: Towards process-informed bias correction of climate change simulations, Nat. Clim. Change, 7, 764–773, 2017. a
Marra, F. and Morin, E.: Use of radar QPE for the derivation of Intensity–Duration–Frequency curves in a range of climatic regimes, J. Hydrol., 531, 427–440, 2015. a
Martel, J.-L., Brissette, F. P., Lucas-Picher, P., Troin, M., and Arsenault, R.: Climate change and rainfall intensity–duration–frequency curves: Overview of science and guidelines for adaptation, J. Hydrol. Eng., 26, 03121001, https://doi.org/10.1061/(ASCE)HE.1943-5584.000212, 2021. a
Maurer, E. P. and Pierce, D. W.: Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean, Hydrol. Earth Syst. Sci., 18, 915–925, https://doi.org/10.5194/hess-18-915-2014, 2014. a
Meredith, E. P., Ulbrich, U., Rust, H. W., and Truhetz, H.: Present and future diurnal hourly precipitation in 0.11 EURO-CORDEX models and at convection-permitting resolution, Environ. Res. Commun., 3, 055002, https://doi.org/10.1088/2515-7620/abf15e, 2021. a, b
Nakicenovic, N., Alcamo, J., Davis, G., Vries, B. D., Fenhann, J. V., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., Rovere, E. L. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., Rooijen, S. V., Victor, N., and Dadi, Z.: Special report on emissions scenarios, Special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 2000. a, b
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G. K., Pörtner, H. O., Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van Ypserle, J. P.: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pachauri, R. and Meyer, L., Geneva, Switzerland, IPCC, 151 pp., ISBN 978-92-9169-143-2, 2014. a
Papalexiou, S. M., Serinaldi, F., and Porcu, E.: Advancing Space-Time Simulation of Random Fields: From Storms to Cyclones and Beyond, Water Resour. Res., 57, e2020WR029466, https://doi.org/10.1029/2020WR029466, 2021. a
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A., and Taylor, K. E.: Cilmate Models and Their Evaluation. In: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. a, b
Rummukainen, M.: State-of-the-art with regional climate models, Wiley Interdisciplinary Reviews: Climate Change, 1, 82–96, 2010. a
Schleiss, M., Olsson, J., Berg, P., Niemi, T., Kokkonen, T., Thorndahl, S., Nielsen, R., Ellerbæk Nielsen, J., Bozhinova, D., and Pulkkinen, S.: The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden, Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020, 2020. a
Singh, V. P.: On application of the Weibull distribution in hydrology, Water Resour. Manage., 1, 33–43, 1987. a
Singh, V. P.: Handbook of Applied Hydrology, McGraw-Hill Education, ISBN 9780071835091, https://www.accessengineeringlibrary.com/content/book/9780071835091 (last access: 1 December 2023), 2017. a
So, B.-J., Kim, J.-Y., Kwon, H.-H., and Lima, C. H.: Stochastic extreme downscaling model for an assessment of changes in rainfall intensity-duration-frequency curves over South Korea using multiple regional climate models, J. Hydrol., 553, 321–337, 2017. a
Srivastav, R. K., Schardong, A., and Simonovic, S. P.: Equidistance quantile matching method for updating IDFCurves under climate change, Water Resour. Manage., 28, 2539–2562, 2014. a
Stocker, T.: Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2014. a
Switanek, M., Maraun, D., and Bevacqua, E.: Stochastic downscaling of gridded precipitation to spatially coherent subgrid precipitation fields using a transformed Gaussian model, Int. J. Climatol., 42, 6126–6147, 2022. a
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456, 12–29, 2012. a
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen M., Nakicenovic N., Smith S. J., and Rose S. K.: The representative concentration pathways: an overview, Clim. Change, 109, 5–31, 2011. a
Villarini, G. and Krajewski, W. F.: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall, Surv. Geophys., 31, 107–129, 2010. a
Volosciuk, C., Maraun, D., Vrac, M., and Widmann, M.: A combined statistical bias correction and stochastic downscaling method for precipitation, Hydrol. Earth Syst. Sci., 21, 1693–1719, https://doi.org/10.5194/hess-21-1693-2017, 2017. a
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G., and Roberts, N.: Future changes to the intensity and frequency of short-duration extreme rainfall, Rev. Geophys., 52, 522–555, 2014. a
Widmann, M., Bedia, J., Gutiérrez, J. M., Bosshard, T., Hertig, E., Maraun, D., Casado, M. J., Ramos, P., Cardoso, R. M., Soares, P. M., Ribalaygua, J., Pagé, C., Fischer, A. M., Herrera, S., and Huth, R.: Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment, Int. J. Climatol., 39, 3819–3845, 2019. a
Yan, J. and Bárdossy, A.: Short time precipitation estimation using weather radar and surface observations: With rainfall displacement information integrated in a stochastic manner, J. Hydrol., 574, 672–682, 2019. a
Yan, J., Bárdossy, A., Hörning, S., and Tao, T.: Conditional simulation of surface rainfall fields using modified phase annealing, Hydrol. Earth Syst. Sci., 24, 2287–2301, https://doi.org/10.5194/hess-24-2287-2020, 2020. a
Yoshikane, T. and Yoshimura, K.: A bias correction method for precipitation through recognizing mesoscale precipitation systems corresponding to weather conditions, PLoS Water, 1, e0000016, https://doi.org/10.1371/journal.pwat.0000016, 2022. a
Short summary
The influence of climate change on areal precipitation extremes is examined. After an upscaling of reference observations, the climate model data are corrected, and a downscaling to a finer spatial scale is done. For different temporal durations and spatial scales, areal precipitation extremes are derived. The final result indicates an increase in the expected rainfall depth compared to reference values. However, the increase varied with the duration and area size.
The influence of climate change on areal precipitation extremes is examined. After an upscaling...