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Abstract. This work presents a methodology to inspect the
changing statistical properties of precipitation extremes with
climate change. Data from regional climate models for the
European continent (EURO-CORDEX 11) were used. The
use of climate model data first requires an inspection of the
data and a correction of the biases of the meteorological
model. Corrections to the biases of the point precipitation
data and those of the spatial structure were both performed.
For this purpose, a quantile–quantile transformation of the
point precipitation data and a spatial recorrelation method
were used. Once corrected for bias, the data from the re-
gional climate model were downscaled to a finer spatial scale
using a stochastic method with equally probable outcomes.
This allows for the assessment of the corresponding uncer-
tainties. The downscaled fields were used to derive area–
depth–duration–frequency (ADDF) curves and areal reduc-
tion factors (ARFs) for selected regions in Germany. The es-
timated curves were compared to those derived from a ref-
erence weather radar dataset. While the corrected and down-
scaled data show good agreement with the observed refer-
ence data over all temporal and spatial scales, the future cli-
mate simulations indicate an increase in the estimated areal
rainfall depth for future periods. Moreover, the future ARFs
for short durations and large spatial scales increase compared
to the reference value, while for longer durations the differ-
ence is smaller.

1 Introduction

Climate change became a very important issue in the past
decades. It is likely to affect life conditions all over the world.
One of the important issues in this context is how magni-
tudes and frequencies of extremes will change. A large num-
ber of studies were conducted to investigate this issue. In
general, global climate models (GCMs) are used to model
the past changes (forced by observations) in climate systems
on a global scale and to project future changes (forced by
emissions scenarios) (Randall et al., 2007). These are based
on the numerical solution of mathematical representations
of the physical processes and their interactions (such as the
conservation of energy, mass, and momentum; the thermo-
dynamic equations such as the gas laws; and the connec-
tion of processes on land to the atmosphere and vice versa)
(Randall et al., 2007; Hennemuth et al., 2017). A GCM pro-
vides output variables with relatively coarse space-time reso-
lutions, typically between 100 and 500 km2 and for 6 h inter-
vals (Stocker, 2014). However, the transfer and use of global
results to local and regional climate analysis, especially
for hydrological processes such as precipitation, require a
finer space-time resolution, which can be achieved through
downscaling. The latter can be divided into two categories:
empirical-statistical downscaling (ESD) and dynamic down-
scaling via regional climate models (RCMs) (Rummukainen,
2010). ESD exploits the statistical nonlinear relationships be-
tween small- and large-scale information about climate vari-
ables. RCMs use the GCM output as lateral boundary condi-
tions, and, coupled with parameterization schemes to account
for local aspects (e.g., topography), climate data are acquired
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at a higher spatial resolution. Depending on the driving GCM
and the applied parameterization schemes, several RCM en-
sembles are available (Kotlarski et al., 2014). Although GCM
and RCM data provide essential information about climate
systems, they cannot fully and correctly simulate all relevant
spatial and temporal processes. Representative concentration
pathways (RCPs) provide information about possible future
climate scenarios (Nakicenovic et al., 2000). The change in
emission concentration is integrated into the GCM calcula-
tions and converted into carbon dioxide (CO2) equivalents.
An increase in the amount of greenhouse gases implies an
increase in the global temperature and, hence, an alteration
of the climatic system (Van Vuuren et al., 2011; Pachauri
et al., 2014). In the case of the Coordinated Downscaling Ex-
periment for the European Domain (Euro-CORDEX CMIP5)
data, the governing GCM is driven by a set of several RCP
scenarios (Nakicenovic et al., 2000), with RCP8.5 being the
scenario with the largest increase in greenhouse gas emis-
sions by the end of the 21st century. Due to the increase in
temperature values, the maximum amount of water vapor in
the atmosphere increases, which leads to an increase in the
frequency and intensity of precipitation extremes (Li et al.,
2021). However, the rate of increase is not exactly known,
and the change varies spatially and temporally (Singh, 2017).

Despite the ongoing advancement of RCMs, their imme-
diate applicability is fraught with challenges, including the
existence of biases compared to observational data (e.g., fre-
quency of occurrence of dry and wet values, precipitation in-
tensity in extreme events, wet and dry spatial patches, and
systematic underestimation or overestimation), limitations in
the spatial resolution (discrepancies in the model and ob-
servation spatial scales), and the correct representation of
the spatial dependence structures between the different lo-
cations. Kotlarski et al. (2014) found that precipitation val-
ues from different hourly RCM datasets, even at seasonal
and regional scales, exhibit a bias of ±40 % with a ten-
dency for overestimation. Meredith et al. (2021) examined
the precipitation diurnal cycle for current and future peri-
ods of EURO-CORDEX. Most models exhibit timing er-
rors in the occurrence of maximum hourly precipitation in-
tensities. In all models, the peak occurred several hours be-
fore the one appearing in the observations. Several methods
have been developed to reduce the bias in regional climate
model (RCM) simulations. Teutschbein and Seibert (2012)
provided an overview of several bias correction methods, in-
dicating that even simple approaches were able to mitigate
the biases in the model data. Moreover, Maraun (2013) illus-
trated that bias correction methods based on quantile map-
ping of the cumulative distribution functions (CDFs) of dif-
ferent spatial scales (e.g., points and grid cells) are a deter-
ministic approach that results in a misrepresentation of the
temporal and spatial variability. For reliable results, bias cor-
rection methods should be applied using reference data at
the same spatial scale as the model data. However, even the
most sophisticated bias correction methods cannot handle

large model errors and, if used incorrectly, can lead to false
climate change signals (Maurer and Pierce, 2014; Maraun
et al., 2017). To overcome these problems, so-called trend-
preserving approaches have been developed, which aim to
maintain the trends in the mean and in the higher quantiles
(Hempel et al., 2013; Casanueva et al., 2020).

Lange (2019) and Volosciuk et al. (2017) suggested treat-
ing the bias correction and downscaling parts separately. Bias
adjustment should be performed at the same spatial scale be-
tween observations and the climate model output. Downscal-
ing climate model data to a finer spatial resolution (namely,
bridging the scale gap), should then be done using a stochas-
tic rather than deterministic approach (e.g., interpolation)
(Maraun, 2013). Furthermore, Widmann et al. (2019) com-
pared the resulting spatial variability of multiple downscal-
ing methods and found that only the techniques that consid-
ered a multi-site behavior or directly modeled the spatial de-
pendence gave a realistic representation of the spatial depen-
dence structure. Bárdossy and Pegram (2012) analyzed the
spatial dependence of bias-corrected RCM daily precipita-
tion values and showed how it is underestimated. The effects
of the underestimation were clearly noticeable at larger spa-
tial scales and led to an underestimation of areal precipitation
extremes. To address this, the authors introduced a recorre-
lation approach to correct the model dependence structure.
Switanek et al. (2022) implemented a stochastic downscaling
scheme based on temporally and spatially corrected RCM
daily data to transfer the coarse-scale RCM data to a finer
scale and derive spatially coherent daily precipitation time
series.

Concerning the change in the frequency and intensity of
precipitation extremes, an increase is projected, especially
for sub-daily durations (Westra et al., 2014; Cannon and In-
nocenti, 2019; Fowler et al., 2021). However, Berg et al.
(2019) examined the derivation of summer depth–duration–
frequency (DDF) statistics from hourly EURO-CORDEX
data at the highest available horizontal resolution (EUR-11)
for several European countries (including Germany). Na-
tional DDF reference curves were used for comparison. Sev-
eral RCMs were selected; the quality was considered fair for
the long duration, but the models showed poor representa-
tion of the hourly extreme values for the short duration. The
rainfall amount corresponding to a 10-year return period was
greatly underestimated by the RCM outputs. The problem
lies in the way convection is represented. The latter plays
a major role in sub-grid processes and sub-daily rainfall ex-
tremes. A newer family of models, the convection-permitting
models (CPMs), running at a finer horizontal resolution
(≤4 km), show a better representation of the hourly precipita-
tion extremes (Meredith et al., 2021; Ban et al., 2021). How-
ever, additional development is required due to several bi-
ases being present, and the high computational requirements
limit their current large-scale applications (Kendon et al.,
2014; Berthou et al., 2020). Several approaches were pro-
posed to derive future DDF curves (or adapt current DDF
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curves) from RCM precipitation data. Martel et al. (2021)
provided an overview of current methods. The first line of
thinking consists of modifying current DDF curves by a con-
stant or a variable increase factor. The simple constant per-
centage increase method applies a constant increase factor
(between 15 % and 30 %) to current DDF values. An alterna-
tive is the adaptive percentage increase method that utilizes
an increase factor that is dependent on the projected temper-
ature increase and rainfall frequency for future periods. The
factor changes for the different durations and return periods.
Another approach is the percentage increase based on the
Clausius–Clapeyron relationship, which relates the change in
rainfall intensity to the local increase in temperature (°C−1).
All of the aforementioned methods were based on upscaling
of current DDF curves to future ones. Other methods, how-
ever, exist that utilize the outputs of GCMs and RCMs. For
example, Srivastav et al. (2014) derived future DDF curves
using GCM data for the region of Canada by an equidistant
quantile mapping of the annual maxima. Spatial downscaling
was used to transfer the data to the point scale, and temporal
downscaling was used to account for the changes between the
historical and RCP future projections. Mantegna et al. (2017)
used data from a dynamical and high-resolution convection-
parameterizing RCM to derive sub-daily intensity–duration–
frequency (IDF) curves. The latter were compared to two ob-
servation locations in Australia. The future IDF curves sug-
gest an increase in sub-daily rainfall intensities of 15 % °C−1.
So et al. (2017) derived future IDF curves for South Korea
from daily RCM data through stochastic downscaling to sub-
daily resolutions, which was incorporated into a Bayesian in-
ference framework. The results indicate an increase in the
expected rainfall from 5 % to 30 % under the RCP8.5 sce-
nario. Other studies also exist; for example, Hosseinzade-
htalaei et al. (2018) derived future IDF curves for Belgium,
Forestieri et al. (2018) derived them for Sicily (Italy), and
Khazaei (2021) derived them for Iran.

Many of the previous studies considered deriving the DDF
(or IDF) for the point scale. Traditionally, areal reduction fac-
tors (ARFs) are used to transfer the point value to the areal
(or catchment) scale. These are in general based on simple
assumptions, and the effect of climate change is not consid-
ered. However, the consequences of heavy precipitation, such
as flooding, are related to the volume of water, so the spatial
aspect should not be ignored. This work considers precipita-
tion as a spatial phenomenon, without purely point statistics,
and aims to assess the expected change in future areal pre-
cipitation extremes under the RCP8.5 scenario compared to
reference data and the present period. This is done by calcu-
lating area–depth–duration–frequency (ADDF) curves over
several durations (hourly to daily) and over different spatial
scales from 1 to 1000 km2. Essential questions to be investi-
gated in this work are the following:

1. Knowing that precipitation extremes look different de-
pending on scales, to what extent can the climate model
produce extremes correctly?

2. How can spatial and temporal dependence structures of
climate models be successfully corrected?

3. How will the statistics of areal extremes change with
climate projections?

To answer these questions, the following scheme was under-
taken. The first step consisted of upscaling the point data
to the model scale. This enabled us to derive a reference
for temporal and spatial dependence structures. A recorre-
lation procedure was implemented to correct the model spa-
tial dependence structure to match the reference. In the sec-
ond step, the bias in the magnitudes of future projections and
any subsequent bias in the marginal distribution function was
corrected using a double-QQ (quantile–quantile) transforma-
tion. The corrected data at the model scale were then spatially
downscaled using the random-mixing conditional simulation
method (Bárdossy and Hörning, 2016). From the downscaled
spatial fields, areal precipitation statistics were derived and
compared to those extracted from weather radar data. The
downscaling and analysis of areal precipitation extremes are
showcased in the Sect. 3 of this paper. The results are dis-
cussed, and a conclusion involving key messages finalizes
the paper.

2 Study area and data description

The study area is delimited by the weather radar region
of Hanover, located in the state of Lower Saxony in Ger-
many. The weather radar is positioned at the Hanover Air-
port and has a coverage radius of 128 km. The north of the
region is generally flat, and moving toward the southeast
the elevation increases to 1141 m a.s.l. in the Harz Moun-
tains. The average yearly precipitation ranges from 500 to
1700 mm yr−1 (Haberlandt and Berndt, 2016b). Following
previous studies on the space-time statistics of rainfall ex-
tremes, the weather radar region of Hanover was selected
as the study area (El Hachem, 2023). Within this region,
the German Weather Service (DWD) operates a precipitation
measurement network of 127 rain gauges with sub-hourly
resolution (DWD Climate Data Center, 2021a). The data for
these stations were acquired for the years between 2005 and
2020. Moreover, the hourly weather radar data (RADOLAN,
Radar-Online-Aneichung) for the period 2005–2020 were
used. RADOLAN is the operational DWD radar compos-
ite and is a merged product of the derived precipitation
fields from all available weather radars and the DWD rain
gauges. The data were made available by the DWD (DWD
Climate Data Center, 2021b). For this study, only the ob-
servations lying within the radar area of Hanover were ex-
tracted. The third dataset is the EURO-CORDEX data. These
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have been provided within the Coordinated Regional Down-
scaling Experiment (CORDEX) for the European continent
with two horizontal simulation domains of 50 km (EUR-44)
and 12.5 km (EUR-11). The simulation output consists of
several datasets with hourly resolution, representing differ-
ent atmospheric and near-surface variables such as precip-
itation (Jacob et al., 2014). The REgional MOdel (REMO)
is especially advantageous for precipitation analysis at the
hourly scale since advection is integrated within the parame-
terization scheme (Jacob and Podzun, 1997; Jacob, 2001). In
this work, the MPI-M-MPI-ESM-LR-GERICS-REMO2015-
v1 data developed by the Max-Planck-Institut für Meteo-
rologie (MPI-M) and the Climate Service Center Germany
(GERICS) were used. The data were made available by the
ClimXtreme Central Evaluation System framework (Kadow
et al., 2021).

Figure 1 presents the locations of the EURO-CORDEX
11° center grid points in Germany and in the radar area of
Hanover (black circle). To avoid edge effects in the interpo-
lated and simulated fields, only model points falling within a
10 km inward buffer (red circle) of the radar coverage bound-
ary were selected. The DWD rain gauges are visualized as
orange triangles. The magenta points in the lower right map
present the centers of the radar pixels. The weather radar grid
with a spatial resolution of 1 km constitutes the interpola-
tion and simulation grid. The orange box is a 12.5×12.5 km
polygon presenting one EURO-CORDEX grid cell (centered
around the green point). In total, 273 grid cells are available
within the selected area.

The goal is to find the reliability/usability of the RCM
data for areal precipitation analysis with a special focus on
extremes. Since the model data consist of grid cell aver-
ages, comparing them to rain gauge (point) data is unsuit-
able. Hence, the initial reference data were derived from in-
terpolated fields utilizing the DWD station data, referred to
as DWDpoint. The interpolation was carried out using ordi-
nary kriging, and the weather radar observation grid of 1 km
was used as the interpolation grid. The resulting fields were
then spatially aggregated to match the EURO-CORDEX 11°
grid. This reference dataset will be denoted hereafter as
DWDinterp. The second dataset is the spatially averaged radar
data for the period 2005–2020. The aggregated data match
the model grid and are denoted hereafter as Radaravg. Note
that in all cases the arithmetic mean of the 1 km pixels falling
within each model cell was calculated and assigned to the
corresponding model pixel. A summary of the datasets is pre-
sented in Table 1.

3 Methodology

The procedure for analyzing, correcting, and downscaling
the RCM data is divided into three parts and is presented
in Fig. 2. First, the spatial dependence structure of the model
needs to be corrected according to a reference-based struc-

ture. The distribution of the point precipitation amounts is
subsequently corrected. To mitigate the influence of the bi-
ased precipitation amount distribution on the spatial struc-
ture, the analysis was conducted using pixelwise rank corre-
lation derived from a reference dataset, such as DWDinterp.
This approach is more complicated than using a distance-
based correlation structure. The reason for selecting this pro-
cedure is that, at this scale due to local (e.g., topographi-
cal) effects, the correlation structure is not homogeneous.
The correction is based on a recorrelation procedure de-
scribed in Sect. 3.1. The dependence structure greatly af-
fects the areal extremes, especially for large spatial events
(Bárdossy and Pegram, 2012). This section refers to part
(a) of the flowchart in Fig. 2. After rectifying the depen-
dence structure, it is essential to manage any remaining bias
in the marginal distribution function of future climate pro-
jections. For this, a double-QQ transformation involving in-
formation from the reference data and the model historical
data was applied (Bárdossy and Pegram, 2011). This section
represents part (b) of the flowchart in Fig. 2. Afterwards,
the final corrected data are downscaled using the random-
mixing stochastic simulation algorithm (Bárdossy and Hörn-
ing, 2016) to the finer spatial resolution of 1 km. The fi-
nal fields are eventually used for the analysis of the spa-
tial extent of extremes via area–depth–duration–frequency
(ADDF) curves. The ADDF curves were calculated on the
pixel scale (1 km2 area) for different areas (up to 1024 km2)
and durations (hourly to daily). The possible impact of cli-
mate change on the statistics of areal extremes was investi-
gated. Note that this section refers to part (c) of the flowchart
in Fig. 2.

3.1 Correction to the dependence structure

The spatial dependence of precipitation plays a major role
in the distribution of areal rainfall and the corresponding ex-
tremes. An often neglected problem is whether regional cli-
mate models can replicate the observed dependence struc-
ture. In Bárdossy and Pegram (2012), this problem was dis-
cussed, and a possible solution was presented. A similar pro-
cedure was implemented in this study but using finer spatial
and temporal resolutions. Furthermore, instead of the Pear-
son correlation the Spearman correlation (rank correlation)
was used with normal-score-transformed variables. To ac-
count for different precipitation mechanisms and character-
istics, the reference and model data were divided between
the summer (April–September) and winter (October–March)
seasons, and for each period the dependence structure was
derived. A special challenge while working with sub-daily
and especially hourly precipitation data is the large number
of 0 mm precipitation values (around 80 %).

Figure 3 displays the pairwise normal-score-transformed
rank correlation values for each dataset individually plotted
against the separating distance between each and every other
grid cell. For the EURO-CORDEX data, the historical and
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Figure 1. Map of Germany with the EURO-CODEX 11° grid center locations. The study area is shown, defined by the weather radar area of
Hanover along with the DWD rain gauge data and the radar grid. Background map © Google Maps.

Table 1. Description of the datasets along their availability and corresponding spatial and temporal resolutions.

Notation Data description Period Spatial resolution Temporal resolution

DWDpoint Rain gauges 2005–2020 Point scale Hourly
RADOLAN Weather radar data 2005–2020 1 km Hourly
DWDinterp Interpolated fields 2005–2020 12.5× 12.5 km Hourly
Radaravg Radar fields 2005–2020 12.5× 12.5 km Hourly
EURO-CORDEXhist Historical data 1970–2005 12.5× 12.5 km Hourly
EURO-CORDEXrcp RCP data 2006–2099 12.5× 12.5 km Hourly

future periods present similar behaviors, and only the his-
torical data are displayed. Note that each correlation matrix
has a size of 273× 273 (the number of RCM grid cells).
Panel (a) shows the correlation structure derived from the
DWD rain gauges DWDpoint (black dots) and the spatially
averaged DWDinterp data (red dots). The DWDpoint correla-
tion values are lower than those of the DWDinterp data. This
difference can be justified theoretically – assuming station-
arity of the spatial dependence – as the interblock variability
leads to a reduction of the variance. In fact, the covariance
between two grid cells Vi and Vj can be written as a function

of the covariance function of the point values C(x,y):

Cov(Vi,Vj )=
1
|Vi |

1
|Vj |

∫
Vi

∫
Vj

C(x,y) dx dy. (1)

For the variance of the grid cell V , we have the following:

Var(V )= Cov(V ,V )=
1

|V ||V |

∫
V

∫
V

C(x,y) dx dy. (2)

Both the covariance and the variance decrease when compar-
ing point to areal estimates. The decrease in the covariance is

https://doi.org/10.5194/hess-29-1335-2025 Hydrol. Earth Syst. Sci., 29, 1335–1357, 2025



1340 A. El Hachem et al.: Probabilistic downscaling of EURO-CORDEX precipitation data

Figure 2. Flowchart describing the methodology for correcting the spatial (a) and temporal (b) structures of EURO-CORDEX 11° data. The
corrected values are then downscaled (c) and used for analysis of areal extremes.

less than or equal to that of the variance, thus the correlation
increases. Thus, due to scale difference, using the DWDpoint
correlation structure as a reference for the correction of the
EURO-CORDEX spatial structure would be incorrect.

In panels (b) and (c), the red dots represent the DWDinterp,
the blue dots the Radaravg, and the orange dots the
EURO-CORDEX data. Panel (b) shows the winter period,
and panel (c) shows the summer period. The results for
DWDinterp show a typical behavior of decreasing correlation
with increasing separating distance associated with a large
scatter. In both cases, the correlation structures of Radaravg
present a smaller scatter and fall below those of DWDinterp
and EURO-CORDEX. In other words, Radaravg shows less
spatial continuity (a quick drop of correlation) and larger
variability between the grid cells. Compared to DWDinterp,
the EURO-CORDEX data show an underestimation of the
dependence structure, especially in the summer period. The
recorrelation method aimed to adjust the model dependence
structure to match the reference over all temporal aggrega-
tions.

The procedure presented by Bárdossy and Pegram (2012)
used a mixed-type distribution, defined by a censored Gaus-
sian copula, to transform the daily precipitation data to the
normal space, and a matrix recorrelation procedure based
on linear algebra was implemented. The aim was to recorre-
late the model data to obtain the same reference dependence

structure. The latter was derived by calculating the Pearson
correlation between the daily precipitation time series at the
different grid cell locations. A similar procedure was imple-
mented in this section but using the correlation of the normal-
score-transformed data.

A normal score transformation cannot be performed di-
rectly due to the large portion of zero values. Thus, instead,
indicator series were used. The indicator series I (t,u) were
calculated for the reference and model data, when given a
probability level α. Several threshold values were tested, and
the value α = 0.9 was selected as it provided the best recor-
relation results.

Let F(t,u) be the distribution function of the precipita-
tion time series Z at location u. The indicator series can be
calculated using Eq. (3). After converting the reference and
model data to indicator series (either 0 and 1), the pairwise
correlation between the two indicator series ρi(u,v) was cal-
culated. The indicator correlation matrix is defined by Ri for
the reference data and by Mi for the model data.

I (t,u)=

{
1 if F(Z(t,u)) > α,

0 else.
(3)

For a given probability level α, there is a one-to-one relation-
ship between the indicator correlation (ρi(u,v)) correspond-
ing to two locations u and v and the correlation of a bivari-
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Figure 3. Panel (a) shows the rank correlation values between the DWD rain gauges (DWDpoint) for the winter period (black dots) and
between the DWDinterp grid cell values (red dots) for the same period. Panels (b) and (c) show the calculated grid cell pairwise rank
correlation values from interpolated fields (red points), radar fields (blue points), and EURO-CORDEX fields (orange dots) for the winter
and summer periods, respectively. The x axis refers to the separating distance between the grid cells. Note that the white vertical spaces are
caused by the neighboring grid cells with a separating distance of ≈ 12.5 km.

ate Gaussian variable (ρg(u,v)) which has the same indica-
tor correlation. Figure A2 displays this relation for different
probability levels, and Eq. (4) describes it quantitatively.

ρg(u,v)=
1

2πα(1−α)

arc sin ρi (u,v)∫
0

exp
(
−y2

α

1+ sin t

)
dt (4)

Here, yα is defined as the standard normal quantile corre-
sponding to a probability α. The indicator and Gaussian cor-
relations between the two locations u and v are represented
by ρi(u,v) and ρg(u,v), respectively.

The estimation of ρg(u,v) has to be carried out numer-
ically. Using the relation in Eq. (4), both indicator corre-
lation matrices (describing the correlation between the grid
points) of the reference and model data, Ri and Mi , were
transformed to Gaussian correlation matrices Rg and Mg.
To ensure that the correlation matrices for the grids, Rg and
Mg, are positive and semi-definite, minor modifications to
the correlation values were undertaken while minimizing the
distance between the original matrices (Rg and Mg) and the
modified matrices (R∗g and M∗g) (Bárdossy and Plate, 1992).

The flowchart in Fig. 4 gives an overview of the recorrela-
tion steps as follows:

1. transform reference and model data to indicator series
for every season separately using Eq. (3),

2. calculate the indicator correlation matrix of reference
data Ri ,

3. calculate the indicator correlation matrix of model data
Mi ,

4. transform Ri and Mi to Gaussian correlation matrices
Rg and Mg using Eq. (4),

5. ensure that Rg and Mg are positive and semi-definite
and modify them to R∗g and M∗g,

6. decompose the correlation matrix R∗g by singular value
decomposition (SVD) to obtain its square root matrix
Sg,

7. decompose (SVD) the correlation matrix M∗g and calcu-
late its inverse square root to obtain Tg (the matrix Tg
decorrelates the model results; Sg is then transforming
the decorrelated values to the desired correlation),

8. calculate the recorrelation matrix F= SgTg by matrix
multiplication,

9. recorrelate the model data M to M∗ =MF by matrix
multiplication,

10. transform the M∗ values back to precipitation using the
corresponding marginal distributions.

The correction procedure should correct the dependence
structure of the modeled precipitation. As dependence can
be measured with different statistics, a set of possibilities is
shown in Fig. 5. In all panels of Fig. 5, the x axis and the
y axis values refer to the reference and model data corre-
lation values, respectively. In panel (a), the blue points rep-
resent the indicator correlation values, namely, the matrices
Ri and Mi . In panel (b), the red dots are the correlation val-
ues after the normal score transformation, and the green and
blue dots are those after the correction of the spatial structure.
The Pearson and rank correlations between the reference and
model data were calculated and are presented in panels (c)
and (d), respectively. In panel (c), the original Pearson cor-
relation values (black points) showcase an improvement af-
ter the correlation procedure (orange points). Meanwhile, in
panel (d), the rank correlation values show an improvement
after the correction (points in green). Similar results were ob-
tained for the winter period.

The recorrelation matrix F derived from the historical
observations for each season separately can be used to
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Figure 4. Flowchart describing the methodology for recorrelating the EURO-CORDEX data to have a similar dependence structure as the
reference data.

Figure 5. Panel (a) shows the indicator correlation values between the reference DWDintep (x axis) and the EURO-CORDEX data (y axis)
before correction (blue dots) and after correction (yellow dots). In panel (b), the Gaussian correlation values are displayed before correction
(red dots) and after recorrelation (green and blue dots). In panel (c), the Pearson correlation values before (black and gray dots) and after
recorrelation (orange and yellow dots) are shown. In panel (d) the rank correlation values before (black and gray dots) and after recorrelation
(green dots) are displayed. The reference and model dependence structures were calculated for the summer period.

recorrelate projected RCP scenarios. This is possible since
the model’s historical and future dependence structures are
highly similar (see Fig. A1). In Fig. 6, the correlation val-
ues of the original and recorrelated grid cells are calculated
and compared to reference values. The correlation values of
the EURO-CORDEXhist are displayed by the black dots (be-
fore recorrelation) and the red dots (after recorrelation) in
panel (a) for the winter period and in panel (b) for the sum-
mer period, respectively. The results indicate that the recor-
relation procedure improved the model dependence structure
compared to the observed DWDinterp (x axis) data for both
seasons.

The recorrelation procedure was done for every duration
(from hourly to daily) separately. This provided consistent
results for all durations. Note that this complete section refers
to part (a) of the flowchart in Fig. 2. After correcting the de-
pendence structure, the marginal distribution function of the
model’s future data was corrected using a double-QQ trans-
formation.

3.2 Double-quantile–quantile mapping

In statistics, quantile–quantile plots (QQ plots) are used to
compare two distributions and identify if they both belong
to the same distribution function. Often a test distribution is
compared to a theoretical one. The comparison is based on
the quantiles. Namely, a scatterplot between the quantiles of
both data values is constructed. If the data have the same dis-
tribution function, the QQ plot will be defined by a linear
function (y = x). To derive the QQ plot, the data of the two
distribution functions are sorted, and their quantiles are cal-
culated. In this section, a QQ mapping was applied to cor-
rect the bias in the projected model data while preserving the
ranks of the values. An example of this was shown by Bár-
dossy and Pegram (2011) where the distribution function of a
regional climate model (RCM) was corrected using a double-
QQ transformation as defined by Eq. (5). For this, the CDF of
the upscaled reference data at a location X (e.g., DWDinterp)
and the CDF of the recorrelated model data for the histor-
ical and future periods for the same location X were used.
For the observation and historical data for each temporal res-
olution, a Weibull distribution function with three parame-
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Figure 6. Panels (a) and (b) show the calculated grid cell pairwise rank correlation values for the winter and summer periods from DWDinterp
(x axis) and EURO-CORDEXhist fields (y axis). The dots in black and in red refer to the rank correlation of the EURO-CORDEX fields
before and after recorrelation, respectively.

ters was fitted using the maximum likelihood method (Singh,
1987). The latter was chosen as it provided the best fit.

Z(x, t)= F−1
o (FR(ZR(x, t),x),x), (5)

where x represents the target location, t represents the time
step, Z(x, t) represents the corrected precipitation value,
F−1
o represents the inverse of the fitted CDF to the reference

data, FR represents the CDF of the RCM data, and ZR(x, t)

represents the precipitation simulated by the RCM.
Due to the fact that the rain gauges might have missed

some of the precipitation extremes, the fitted distribu-
tion function to DWDinterp was extrapolated (for Z > Zm;
namely, for U > Um) using an exponential distribution func-
tion with a single parameter λ (Yan and Bárdossy, 2019). The
extrapolation using the exponential distribution is defined by
Eq. (6). Let (Zm,Um) define the pair of the largest precipita-
tion observation and the corresponding probability level; the
parameter λ is calculated following Eq. (7).

F(z)=

{
1− exp−λ z if z > 0,

0 else.
(6)

λ=−
1
Zm

ln(1−Um). (7)

This enables us to correct the RCP future data while allowing
maximum values to exceed the current observed values. Ad-
ditional information regarding the extrapolation and its effect
is presented in Appendix A4.

In panel (a) of Fig. 7, the x axis refers to precipitation in
millimeters, and the y axis refers to the cumulative proba-
bilities. The red curve is the distribution function of the ref-
erence data DWDinterp. The green curve is the RCM distri-
bution for the historical period, and the blue curve shows
the RCM curve for a future scenario. For every precipitation
value in the future data, the corresponding value in the his-
torical data is found, and for that the corresponding value for

the same quantile level in the observation data is assigned as
the future value.

An example of this is presented in Fig. 7. In panel (a),
the blue curve refers to the EURO-CORDEX historical data
after the recorrelation procedure, the green curve refers to
the recorrelated RCP8.5 data, and the red curve refers to
the reference data DWDinterp for the observation period. The
dark blue curve shows the double-QQ-corrected RCP8.5 dis-
tribution function using the previously described procedure.
Panel (b) displays a scatterplot of the values after recorre-
lation (gray dots) and after the recorrelation and double-
QQ mapping (blue dots). The red line refers to the raw
RCP8.5 data. Panel (c) displays the CDFs of DWDinterp,
Radaravg, EURO-CORDEX historical, and RCP8.5 data be-
fore and after correction for the same grid cell location. The
Radaravg values indicate a smaller maximum value compared
to DWDinterp, though both distributions show few differ-
ences. Similarly to the recorrelation procedure, the double-
QQ correction was done for every temporal scale individu-
ally.

Note that this section refers to part (b) in the flowchart in
Fig. 2. This double-QQ transformation reduces the bias in the
model data while preserving the signal in the RCP data (Bár-
dossy and Pegram, 2011). The final recorrelated and double-
QQ-corrected data are used for downscaling and for investi-
gating the areal rainfall statistics.

3.3 Depth–duration–frequency (DDF) curves

To estimate rainfall depth for design values, a statistical anal-
ysis of rainfall maxima derived from long records is required.
In general, design values are associated with the correspond-
ing duration and return period. The previous concept forms
the basis of statistical analysis of heavy rainfall. Rainfall
maxima are extracted from the observation time series for
different durations by considering either the yearly maxima
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Figure 7. Panel (a) shows the upper 0.5 % of the CDFs of the DWDinterp values (red curve), the EURO-CORDEX historical data (green
curve), the recorrelated RCP8.5 data (blue curve), and the double-QQ-corrected RCP8.5 data (black curve). Panel (b) shows the scatter of
the values before and after the recorrelation (points in gray) and the double-QQ mapping (points in blue) for one example grid cell location.
Panel (c) displays the upper 0.1 % of the CDFs along the Radaravg values (orange curve).

(annual series) or the values exceeding a minimum thresh-
old (partial series). The relation between rainfall depth, du-
ration, and return period is commonly known as the depth–
duration–frequency (DDF) or intensity–duration–frequency
(IDF) curve. The idea behind the DDF curve is to derive a
mathematical expression relating the average rainfall inten-
sity (i) occurring over a timescale (d) for a predefined re-
turn period (T ) (Koutsoyiannis and Papalexiou, 2017). DDF
curves are used to estimate the probability of non-exceedance
of a certain rainfall amount for a given duration. These can be
derived by a frequency analysis of the observed station data
for different durations. Standard practice is to fit a theoretical
extreme value distribution function (e.g., Gumbel type I) to
the empirically calculated DDF curve, from which one can
derive the possible rainfall depth (or intensity) for a certain
return period and timescale. The reasoning behind fitting a
distribution function to the sampled annual or partial max-
ima is that these represent only one realization of the possible
rainfall values for the corresponding duration.

In this work, area–depth–duration–frequency (ADDF)
curves were derived from the observed annual series of
15 years (2005–2020), following the procedure described by
the German Association for Water, Wastewater and Waste in
DWA-A 532 (DWA-A, 2012). The extreme value distribu-
tion type I, also known as the Gumbel distribution function,
is applied in the following form:

hN (Tn)= uj +wj

(
− ln ln

Tn

Tn− 1

)
, (8)

where hN represents rainfall depth [mm], Tn represents re-
turn period of the annual maxima in years [a], and uj and wj
represent parameters of the distribution function.

3.4 Area–depth–duration–frequency (ADDF) curves

To calculate precipitation volumes, it is necessary to con-
sider the average precipitation over a given area. Determining
ADDF curves is complex because, unlike point precipitation
measurements, areal precipitation has to be estimated. Addi-
tionally, the spatial patterns and the distribution function of
areal precipitation are different from those of point precipi-
tation values.

For example, using weather radar data for a target loca-
tion of an area of 1000 km2, all pixels located within the area
are identified, and for every time step the average of all the
pixels is calculated. Eventually, a time series is acquired and
used as input to the DDF calculation procedure. Bennett et al.
(2016) first suggested the use of interpolated rainfall data for
the direct estimation of the statistics of areal extremes by in-
troducing the intensity–duration–frequency–area curves. The
need for areal reduction factors (ARFs) to convert points to
spatial rainfall would then be eliminated. Radar-derived pre-
cipitation data can be used to calculate the ADDF curves.
However, the quality of the radar reference data and the rel-
atively short observation time period highly influence the
results (Haberlandt and Berndt, 2016a). Marra and Morin
(2015) used radar quantitative precipitation estimation (QPE)
to derive IDF curves for the region of Israel and compared the
results to nearby rain gauges. Despite efforts to reduce errors
in the radar QPE, the final results showed an increasing over-
estimation of radar-derived IDF curves for larger durations.
Another study by Ghebreyesus and Sharif (2021), using the
radar QPE data over the state of Texas (USA) to derive IDF
curves, showed mostly an underestimation of short-duration
maxima. The goal of using the radar QPE data is to be able
to derive spatially and temporally reliable IDF curves, elimi-
nating the need for areal reduction factors (Ghebreyesus and
Sharif, 2021).
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Areal precipitation extremes derived from weather radar
data are prone to errors (Schleiss et al., 2020), e.g., due to
attenuation, beam blockage, subscale variability, and sim-
plified Z–R relationships (Villarini and Krajewski, 2010).
However, as there is still no possibility to correctly measure
areal extremes, the error term cannot be easily quantified.
Due to sparse rain gauge networks, many short-duration in-
tense rainfall events cannot be correctly sampled, and many
are completely missed (Lengfeld et al., 2020). The high
spatial and temporal availability of the RADOLAN gauge-
adjusted radar data makes it advantageous for the analysis
of areal extremes, and RADOLAN was used in this study
for the estimation of reference ADDF curves (DWD Climate
Data Center, 2021b). However, due to the limited length of
the dataset, the ADDF curves were derived for return peri-
ods of 5 years. Such short return periods are relevant for the
design of urban drainage networks.

3.5 Downscaling from model to point scales

In order to better assess the quality of the EURO-CORDEX
model data when representing areal precipitation extremes,
a direct comparison between point observations and model
values is not reliable due to scale differences. Therefore, a
spatial downscaling of the model grid cell values to a finer
scale is required. A deterministic approach, such as an in-
terpolation technique, can only provide one possible sub-
scale realization without any estimate of an uncertainty inter-
val. In general, most interpolation techniques can only pro-
vide smoothed fields as, in all kriging applications, the equa-
tion system is solved by minimizing the estimation variance.
Hence, the interpolated fields have less variability than the
original one. However, for hydrological applications, many
processes are driven by variability rather than the average
values.

To this end, a simulation of many possible realistic realiza-
tions with the same dependence structure can offer the cor-
responding variability. In general, there are two main types
of simulation methods: conditional and unconditional simu-
lations. Random mixing is a conditional simulation method
that allows for the stochastic generation of realizations that
satisfy multiple conditions (Bárdossy and Hörning, 2016).
The method is extended from the work of Hu (2000) regard-
ing the gradual deformation of Gaussian fields. In order to
achieve the goal of having realistic realizations, the follow-
ing criteria must be fulfilled by the simulated field:

1. The realizations should match the measured data (con-
ditioned on observations).

2. The realizations should have the same spatial depen-
dence structure (represented by a variogram or spatial
copula function).

3. The realizations should have a similar range as the ob-
served values (no extreme values).

The random-mixing methods allow for capturing the spatial
dependence structure through a spatial copula function. A
copula is a mathematical function used to derive and model
the dependence between variables independently of their dis-
tribution functions. If a spatial copula function was used, the
asymmetry of the spatial field could be better taken into ac-
count (asymmetry can be viewed as the measure of skewness
of univariate data). Another advantage of random mixing is
the possibility to include multiple conditional observations
that can be integrated as linear (equality) or nonlinear (in-
equality) constraints. As a stochastic method, several equally
possible realistic realizations of a certain event (or time step)
can be derived along the associated mean uncertainty field.

In this work, random mixing was used to upscale
and downscale the DWDpoint observations to the EURO-
CORDEX scale and vice versa using the RMWSPy Python
package developed by Hörning and Haese (2021). First,
based on the DWDpoint data for the period 2005–2020, con-
ditional fields were simulated for every time step with pre-
cipitation > 1 mm. The simulated fields were conditioned on
the DWDpoint observations, the corresponding marginal dis-
tribution function, and the fitted covariance (or variogram)
model representing the spatial dependence structure.

In this step, the calculated experimental variogram was
normed and saved. Note that because the variogram was cal-
culated in the rank space, its estimation was smoother than
by using the original observations. Eventually, a K-means
clustering was applied, and three clusters of variograms were
identified (Hartigan and Wong, 1979). Different numbers
of clusters were tested, but the chosen number of clusters
(three) was found to be the most suitable as the fitted mod-
els were the most distinct. For each cluster, the mean vari-
ogram was calculated, and an exponential variogram without
a nugget was fitted. Since the EURO-CORDEX data are on
the grid cell scale, the estimated spatial model is smoother
than that of the point scale. Hence, for downscaling, the spa-
tial dependence model calculated from the grid cell values
needed to be rescaled to the point scale. To that end, us-
ing the EURO-CORDEX data, the experimental variograms
were calculated, and a similar clustering approach was ap-
plied. This allowed for assigning a suitable variogram for ev-
ery time step and duration. A similar approach of variogram
clustering was presented in Bárdossy et al. (2021).

Figure 8 shows the fitted exponential variograms for each
average cluster variogram from the point and model data. The
grid cell variograms show a similar behavior as those derived
from the point scale but with a smaller variance and a larger
range. In other terms, for the same separating distance, the
variance of the grid cell model is smaller than that of the
point model. The parameters of all average cluster variogram
models can be found in Table A1.

For each time step in the RCP8.5 data, the corresponding
variogram cluster was identified, and the corresponding point
scale variogram was used to rescale the spatial model. With-
out rescaling the grid cell variogram to the point variogram,
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Figure 8. The calculated and clustered hourly experimental variograms using DWDpoint are shown in panels (a), (b), and (c). Each panel
corresponds to a different variogram cluster. The theoretical models fitted to the average experimental variogram model of each cluster group
(using DWDpoint) are denoted by point model P1, point model P2, and point model P3. These are displayed by the dark red, dark blue, and
dark green curves. Similarly, the fitted theoretical models to the average cluster variogram using EURO-CORDEX RCP8.5 data are denoted
by block model M1 (light red curve in panel a), block model M2 (light blue curve in panel b), and block model M3 (light green curve in
panel c), respectively.

the downscaled fields would be much smoother than the ac-
tual 1 km fields.

Once the spatial dependence structure and the bias in the
cumulative distribution function (CDF) of the future RCP
data were adjusted, conditional realizations were produced
at a finer spatial resolution of 1 km, corresponding to the
weather radar grid. This was achieved through a process
called random mixing, which constitutes the downscaling
phase. It is important to note that this section relates to
part (c) in the flowchart shown in Fig. 2. This process incor-
porates the climate signal from the projections and provides
a dataset that can be used to derive future ADDF curves for
the study area. To account for the uncertainty acquired by
the simulation approach, 50 downscaled and equally proba-
ble time series for every pixel in the simulation domain were
generated.

The step-by-step procedure to downscale the EURO-
CORDEX RCP8.5 data for the period 2005–2099 for a given
ADDF location using random mixing is described below:

1. create a buffer enclosing the ADDF largest area
(1024 km2);

2. find all EURO-CORDEX grid cells falling within the
buffer (conditional values);

3. find all radar pixels falling within the buffer (simulation
domain);

4. for every hour in the projected RCP8.5 data with pre-
cipitation > 1 mm, read corrected values;

5. fit a nonparametric marginal distribution using a kernel
density estimate with a Gaussian kernel;

6. derive the CDF and its inverse (invcdf) by optimizing
the kernel bandwidth;

7. transform the observations to standard normal space us-
ing the fitted CDF;

8. fit an exponential covariance model;

9. scale the model to match the reference point model;

10. run conditional simulations (50 simulations);

11. back-transform to original data space using invcdf;

12. repeat for the next time steps.

An example of the simulation domain for one ADDF loca-
tion is shown in panel (a) of Fig. 9. The domain shown in red
has a total area of 1024 km2. Within this domain, the areas of
1, 16, 36, 100, 256, 576, and 1024 km2 were considered for
deriving the ADDF curves. These are derived as DDF curves
using a time series of the average of all pixels within each
area. For example, for the area of 1024 km2, for every time
step the average of the pixels enclosed by this area (pixels
in red) was calculated. Using the same procedure for DDF
curves (described in Sect. 3.3), the ADDF curve for this area
was derived. In panel (a), the gray pixels represent the com-
plete simulation domain, and the blue dots are the center of
the EURO-CORDEX grid cells. The precipitation values at
these grid cells were used as equality constraints in the down-
scaling part. To showcase the influence of the variogram scal-
ing procedure, two different spatial dependence models were
used: block model M2 (derived from EURO-CORDEX data)
and point model P2 (derived from DWDpoint). Both models
can be seen in panel (b) of Fig. 8. Because the simulations
using random mixing are stochastic, it is difficult to compare
them; hence, for comparison purposes, the average of 50 sim-
ulations was considered. Therefore, 50 realizations were gen-
erated using both models, and the average fields were com-
pared. Panels (b) and (c) in Fig. 9 display the average fields
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using variogram model M2 and variogram model P2, respec-
tively. Note that the main difference in the spatial models is
their range and how they approach the asymptotic limit. In
panel (b), the larger range in model M2 is reflected by larger
connected high (or low) rainfall grid cells and less variability
in the final field, noted by the transition between wet (or high)
and dry (or low) rainfall areas. The field in panel (c), which
is based on model P2, has more variability, and the smaller
range is reflected by more discontinuities between the high
and low values. Note that both average fields were condi-
tioned on the same recorrelated and double-QQ-corrected
RCP8.5 data. Consequently, in order to account for this vari-
ation in the subscale downscaled fields, it was necessary to
rescale the grid cell variograms to align with the point scale.

4 Results

4.1 ADDF curves for future scenarios

4.1.1 ADDF curves for small spatial scales

The downscaled fields are used to calculate the ADDF for
selected regions/pixels in the study area. The aim is to de-
rive areal extremes for future periods, particularly from the
RCP8.5 data. The realizations generated by the conditional
simulations are all equally probable but limited to spatial
constraints and not temporally correlated (e.g., advection is
not included). Therefore, for each time step with precipita-
tion > 1 mm, 50 simulations were generated across the sim-
ulation domain for each duration separately. This was essen-
tial; otherwise, the fields would not be space-time continu-
ous. For example, on the hourly scale, each realization for
each time step will most likely be different from the real-
ization of the next time step, despite being equally probable
and statistically correct. Aggregating these fields will lead
to an incorrect representation of the areal rainfall. A simple
but computationally intensive solution was to aggregate the
hourly corrected data for each required duration and rerun the
simulations again. A different possible solution would have
been to use the generated fields for time step i as uncondi-
tional fields (instead of random fields) for time step i+ 1.
This would have required modifying the simulation algo-
rithm to include time as a third dimension. However, since
the focus is on areal statistics, especially annual maxima,
and not on event reconstruction, the first solution was seen
as adequate enough for this scope. Moreover, an alternative
stochastic simulation approach could have been tested. For
example, Papalexiou et al. (2021) and Bárdossy and Hörning
(2023) present frameworks for simulating space-time rainfall
fields with characteristics such as velocity field, advection,
anisotropy, and a flexible dependence structure.

After the simulations were completed, the ADDF curves
for the area of 1 km2 were calculated from the generated
time series for four different time periods: 2005–2025, 2026–

2045, 2046–2064, and 2065–2099. For comparison pur-
poses, the simulations were performed using the raw data,
the double-QQ data, and the recorrected and double-QQ-
corrected RCP8.5 data. The ADDF curve from RADOLAN
data for the period 2005–2020 was calculated as reference
data. Figure 10 shows an example of the ADDF values for
the center pixel in the ADDF location (seen in panel (a) of
Fig. 9) for the return period of 5 years and for two differ-
ent time periods: panel (a) for the period 2005–2025 and
panel (b) for the period 2065–2099. Each boxplot for every
duration consists of 50 simulations. The ADDF values for the
different durations from the raw, the double-QQ-corrected,
and the double-QQ and recorrelated RCP8.5 data are shown
in the blue, orange, and green boxes, respectively. The blue
crosses, the orange crosses, and the green dots represent the
outliers in the raw and corrected RCP8.5 data, respectively.
As reference data, the ADDF curve from RADOLAN data
for the period 2005–2020 was calculated and is displayed as
the dashed red line (and crosses).

Compared to the RADOLAN data, the raw RCP8.5 val-
ues for both periods show an overestimation of the maxima
over all durations. The final corrected values (green boxes),
however, fall within the range of the RADOLAN data and
show a good agreement for the period 2005–2025. Addition-
ally, the boxplots of the raw data indicate a larger range com-
pared to the corrected data. For example, the estimated rain-
fall depth from raw data for the duration of 720 min (12 h)
varies between 40 and 100 mm with a mean value of 60 mm.
However, in the corrected data, the range is between 25 and
40 mm. This indicates that the raw data have greater spread
and variability, which makes it difficult to use a trustworthy
uncertainty interval. Using the double-QQ correction alone
improved the results compared to the RCP8.5 raw data, but
agreement was still far from the RADOLAN data. This also
indicates the need for correction of the spatial dependence
structure.

In all datasets, an increase in the expected rainfall depth
from the first to the second period is clearly visible, although
with different magnitudes. Panel (b) of Fig. 10 shows the
ADDF for the period 2065–2099 and indicates an increase
in the expected rainfall depth for all durations and a return
period of 5 years. However, the increase is not homogeneous
across all durations and varies accordingly.

4.1.2 ADDF curves for larger spatial scales

From the downscaled fields, the ADDF curves were de-
rived from the raw, the double-QQ, and the recorrelated and
double-QQ-corrected fields and compared to the RADOLAN
values. The results are displayed in Fig. 11. The purpose of
this analysis is to showcase if the pixel (point) and areal ex-
tremes show similar behaviors. The results of this approach
are shown in panels (a) and (b) of Fig. 11 for the periods of
2005–2025 and 2065–2099, respectively. The ADDF curve
for the area of A= 1024 km2 and return period of 5 years is
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Figure 9. Panel (a) shows the 1 km simulation grid domain (in gray) and the locations of the center of the EURO-CORDEX grid cells (blue
dots) within the ADDF (largest area of 1024 km2) (shown in red). Panels (b) and (c) display the average of 50 simulated fields using random
mixing based on the RCP8.5 data (the blue dots in panel a), using the original grid cell variogram (model M2) and the rescaled variogram
(point P2) respectively. Note that the field in panel (c) depicts larger variability.

Figure 10. Derived ADDF curves (A= 1 km2) from RCP8.5 data before and after data correction for the ADDF center pixel for two different
periods and a return period of 5 years. In panel (a) data are for the period 2005–2025, and in panel (b) data are for the period 2065–2099.
For every duration (x axis), 50 simulations were generated and summarized in the boxplots. In both panels, the blue boxes refer to the raw
RCP8.5 data, the yellow boxes to the double-QQ-corrected data (without recorrelation), and the green boxes to the recorrelated and double-
QQ-corrected RCP8.5 data. The rainfall depth values derived from the RADOLAN data for the period 2005–2020 are displayed by the red
crosses (or red curve).

shown and compared to the RADOLAN values. Compared to
the RADOLAN values, the ADDF values from the raw and
the double-QQ-corrected data show an overestimation of the
ADDF curves for all durations and both periods. Similar re-
sults were noted for smaller areas (e.g., 16, 36, 100, 256, and
576 km2). The final corrected data are in agreement with the
RADOLAN results and indicate an increase in the areal rain-
fall depth for all durations in Fig. 11b. Moreover, the raw
data (boxes in blue) show a large uncertainty interval. The
corrected data indicate, however, a smaller uncertainty inter-
val across all durations. In addition, the uncertainty interval
for larger areas is less than for smaller areas. In other words,
the single pixel ADDF (1 km2) curve shows the largest vari-
ations, while the ADDF curve for A= 1024 km2 shows the
smallest.

Looking at the variation in the estimated rainfall depth
across the different spatial scales (i.e., the ADDF areas), it

was found to be dependent on the duration. For instance,
the difference in ADDF values between smaller areas (1
or 16 km2) and larger areas (576 or 1024 km2) varies when
comparing hourly data to 6-hourly data. In particular, the dif-
ference between spatial scales decreases with increasing du-
ration, meaning that over longer durations larger areas tend
to respond similarly to smaller ones. To illustrate this, the 1
and 6 h durations were chosen as an example. For the hourly
scale, the difference between the average estimated rainfall
depth for the small area of 16 km2 and the largest area of
1024 km2 is around 25 %, while for the 6 h duration the dif-
ference is 5 %. Panel (b) of Fig. 13 shows the estimated rain-
fall depth for two durations for each area separately. The
data are derived from the final corrected data and for the
time period 2065–2099. The green boxplots show the hourly
values, and the orange boxplots show the 18 h values. The
RADOLAN values are displayed by the red dots.
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Figure 11. Estimated rainfall depth and ADDF curve from RCP8.5 data before and after data correction for the ADDF area of 1024 km2 for
a return period of 5 years. For every duration (x axis), 50 simulations were generated and summarized in the boxplots. Panel (a) shows the
results for the period 2005–2025. In panel (b), the ADDF curve for the period 2065–2099 is displayed. In both panels, the blue boxes refer
to the raw RCP8.5 data, the yellow boxes to the double-QQ-corrected data (without recorrelation), and the green boxes to the recorrelated
and double-QQ-corrected RCP8.5 data. The rainfall depth values derived from the RADOLAN data for the period 2005–2020 are displayed
by the red crosses (or red curve).

Figure 12. Estimated rainfall depth from RCP8.5 data after data correction for different areas, two selected durations (1 and 6 h), and a return
period of 5 years. For every duration, 50 simulations were generated and summarized in the boxplots. Panel (a) shows the results for the
period 2005–2025, and panel (b) shows results for the period 2065–2099. The rainfall depth values derived from the RADOLAN data for
every duration and for the period 2005–2020 are displayed by the red dots, which are constant for the two time periods.

In Table 2, the average percentage of increase in the ex-
pected rainfall depth between the two time periods and for
the different durations and areas is shown. The percentage
was calculated as the ratio between the mean estimated rain-
fall depth for the two time periods of 2005–2025 and 2065–
2099 for the corresponding area and duration. The results in
Table 2 indicate that the impact of climate change on the dif-
ferent spatial scales is duration dependent. For instance, on
the hourly scale, the percentage of increase is bigger for the
larger areas than for the smaller areas, namely, 15 % for the
area of 1024 km2 and 11 % for the area of 1 km2. This differ-
ence is minimal for durations longer than 8 h. For instance,
on the 18 h duration, all areas have a similar percentage of
increase (≈ 23 %). On the other hand, the percentage of in-
crease changes with the duration for a fixed area. For ex-

ample, for the area of 100 km2, the increase for the hourly
duration is 12 %, while for the daily duration it is 28 %. One
would expect a monotonic increase with the area and dura-
tion. This is mostly the case, but there are some exceptions
such as the duration of 6 h when the area of 256 km2 shows
a slightly larger average increase than the area of 576 km2.
This indicates that applying a constant increase factor is not
adequate and could lead to an incorrect estimation of the fu-
ture areal extremes.

4.2 Areal reduction factor values for future scenarios

A final point to mention is that the ARF values can be calcu-
lated as the ratio between larger and smaller ADDF curves.
An example of this can be seen in Fig. 13. Panel (a) shows
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Table 2. Average percentage of increase in the expected rainfall depth between the periods of 2005–2025 and 2065–2099 for the different
durations and areas. The values correspond to the ratio between the average expected rainfall depth value for the two different time periods.

Area size Duration [min]

[km2] 60 120 360 540 720 1080 1440

1 11.23 12.42 18.27 21.21 21.83 22.58 28.71
16 12.31 12.49 20.3 22.54 24.2 22.51 28.64
36 12.67 13.18 20.6 21.85 24.35 22.56 28.69
100 12.75 15.4 20.65 21.62 24.98 22.83 28.99
256 13.56 17.32 19.3 21.95 24.77 23.06 29.24
576 13.77 20.1 18.49 22.19 25.2 23.14 29.29
1024 14.88 22.81 20.27 22.55 25.81 23.17 29.32

the ARFs calculated as the ratio between the estimated rain-
fall depth of 1024 and 1 km2 areas for the period 2005–2025,
using the raw data (blue boxes) and the final corrected data
(green boxes). The x axis denotes the duration (from hourly
to daily), and the y axis is the ARF value (usually between
0 and 1). The ARFs derived from the RADOLAN values are
shown by the red dots. The results in panel (a) indicate that
the raw data underestimate the ARFs, especially for longer
durations. The corrected data show a better agreement with
the RADOLAN data. Note that the ARF is traditionally used
to transfer the DDF curves calculated from the point scale
(i.e., rain gauge data) to the catchment or areal scales. For in-
stance, the RADOLAN data indicate that for the hourly du-
ration the expected rainfall depth for the area of 1024 km2

is 62 % of the center pixel rainfall depth. The corrected data
indicate an average ARF of 0.64 (64 %). As the duration in-
creases, the ARF approaches the value of 1, indicating that
for a long duration small and large spatial scales behave sim-
ilarly.

In panel (b) of Fig. 13, the ARF values were calculated
using the final corrected RCP8.5 data for two different tem-
poral periods and for a return period of 5 years. For the pe-
riod 2005–2025, the ARF values are presented by the green
boxes. The ARF values for the period 2065–2099 are shown
in the gray boxes. The results show that the future period
has larger ARF values for short durations and similar val-
ues for longer durations. This indicates that the distribution
of large-to-small spatial-scale areal rainfall will change for
future periods. Specifically, the increase in rainfall depth for
the large areas (1024 km2) is greater than that of the smaller
scale (1 km2). Similar results were found for other areas.

4.3 Discussion

The final results indicate that the proposed methodology suc-
ceeded in obtaining reliable areal extremes from regional cli-
mate models over several durations and spatial scales. Us-
ing the RCP8.5 data from the model without any correc-
tion showed an overestimation of the derived ADDF curves
across all temporal durations and considered periods. The

overestimation was evident in comparison to the values
derived from RADOLAN for the period 2005–2020. The
double-QQ method corrected the bias in the marginal distri-
bution function but was not sufficient to achieve values in the
range of the RADOLAN data. The recorrelation procedure,
namely, the correction of the spatial dependence structure,
was needed. To handle the large number of 0 mm values, the
recorrelation had to be applied to the Gaussian-transformed
indicator correlation time series. This improved not only the
pairwise Pearson correlation but also the rank correlation
(Spearman correlation). Eventually, the combination of the
recorrelation method and the double-QQ transformation was
needed. In fact, since the recorrelation procedure is based on
indicator correlations, applying it before or after the double-
QQ mapping makes no difference. The indicator correlation
is not sensitive to quantile mapping. For downscaling to the
smaller spatial scale, the corrected data were used as condi-
tional values within a stochastic downscaling algorithm. This
gave an uncertainty interval for each ADDF curve. However,
as part of the downscaling, the spatial dependence model
needed to be rescaled to achieve larger small-scale variabil-
ity. The final derived ADDF curves were in the same range
as the RADOLAN values for the period 2005–2020. The
procedure used consisted of many steps but was necessary
to obtain reliable results. After the correction and downscal-
ing processes, the signal in the RCP projections remained in-
tact. Increases in areal precipitation values between the initial
period (2005–2025) and the final period (2065–2099) were
observed both before and after the correction. However, the
extent of this increase was less pronounced in the corrected
data. The areal reduction factor (ARF) values, derived from
the ADDF curves, demonstrated improved alignment with
the reference values after correction. These values indicate
an increase between the two time periods, particularly for
shorter durations, suggesting a shift in the relationship be-
tween small- and large-scale precipitation events.

The increase in the expected rainfall depth was obtained
for small and large spatial scales (1 to 1024 km2) and for
short and long durations. However, this increase was not con-
stant but proportional to the increase in area and duration. For
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Figure 13. Panel (a) shows the estimated areal reduction factors (ARFs) from RCP8.5 data before and after data correction for a return period
of 5 years and the time period of 2005–2025. The results are for the areas of 1 and 1024 km2. For every duration (x axis), 50 simulations
were generated and summarized in the boxplots. In panel (a), the blue boxes present the ARFs from the raw data, and the green boxes refer
to the corrected RCP8.5 data. In panel (b), the ARFs are derived from the corrected data from the time periods of 2005–2025 (green boxes)
and of 2065–2099 (gray boxes). The ARF values derived from the RADOLAN data for the period 2005–2020 are displayed by the red dots
in both panels.

shorter durations, the percentage of increase varied between
10 % and 20 %. For longer durations (above 8 h), the percent-
age of increase varied between 20 % and 30 %. The results
are consistent with other studies that examined the influence
of climate change on precipitation extremes. However, the
results in this work provide insight into possible future val-
ues for areal extremes at various spatial scales (and not just
the point scale). Furthermore, the effect of the duration was
stronger than the effect of area. If the area is constant, the
percentage of increase with the duration is greater than if
the duration is constant and the area increases. The largest
increase occurs for the daily duration and largest area. Nev-
ertheless, these results are only valid for the specific RCM
used in this study and might differ for different models. Us-
ing a large number of different climate model outputs with
the same chain of methods can show the uncertainty of the
results with regard to the input uncertainty. In addition, the
Radaravg data used as current reference are available for the
period 2005–2020. As more and longer spatially distributed
rainfall data will become available in the future, longer pe-
riods for comparison with future scenarios will establish a
better foundation since a broader range of climate variability
and trends would be included.

The analysis of future areal extremes is essential for adap-
tation strategies. For practical purposes, such as the design of
urban drainage systems, rainfall depth values associated with
relatively short return periods of 5 years are required. More-
over, the uncertainty interval obtained from the downscaling
scheme provides an ensemble of values needed for risk anal-
ysis. The ADDF curves were derived using the DWA-A 532
procedure with the Gumbel distribution. However, there are
alternative ways to calculate the DDF curves, e.g., by Kout-
soyiannis et al. (1998) or Fischer and Schumann (2018). Sub-

sequently, derived ADDF values will change, and the corre-
sponding results may change as well. Furthermore, the re-
sults shown in this work are only valid for relatively small ar-
eas (mesoscale catchment size) of up to 1000 km2. For larger
areas, the areal mean precipitation is less of interest, while
the areal distribution becomes more relevant. The correla-
tion structure was presumed to be homogeneous and invari-
ant over time. In other words, the spatial dependence struc-
ture is considered to be unaffected by climate change. An
aspect that is already present in the raw EURO-CORDEX
data (see Fig. A1). This assumption may not be valid. How-
ever, the presented approach using the indicator correlation is
more robust, although it assumes a multi-normal dependence
structure, which may not always be valid. The final results
show close agreement with the reference RADOLAN values,
although the latter may underestimate the areal extremes.

5 Conclusion

Investigating the changes in the statistical properties of cli-
matic variables, such as rainfall, due to a changing climate,
is essential for coping and preparing for future periods. Re-
gional climate models provide useful information about cli-
matic data for historical and future scenarios. These have
been generated based on increasing emission levels and,
hence, changing the physical, energetic, and thermodynamic
balance between the atmospheric components. The outcome
of RCM data is, in general, too coarse for local analysis,
and often spatial and/or temporal downscaling is applied. For
having reasonably downscaled values, the original RCM data
should be inspected and eventually corrected. Here, two ma-
jor aspects are crucial. The first is related to the spatial de-
pendence structure. This influences the distribution of areal
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rainfall, and a false structure alters any subsequent results.
The second is related to the presence of a bias in the data of
future periods. A bias in any direction (overestimation/under-
estimation) of the marginal distribution function affects the
temporal structure and the quality of the data. If the model
distribution differs largely from the observed one, it would be
as if it were not a realization of the same process. Hence, the
first and second parts of this paper are related to correcting
the spatial dependence structure and the marginal distribu-
tion function, respectively. Both of these steps were under-
taken on the same spatial and temporal scale as the model
data. This required upscaling of the reference data to the
model scale. The corrected data can now be integrated into
a downscaling scheme. In this part, a probabilistic scheme
involving conditional simulations using random mixing was
applied. For each time step and duration, several realiza-
tions on the 1 km scale were generated and used for analyz-
ing areal extremes. The spatial dependence model derived
from the grid cell scale was rescaled to the point scale to
have higher variability in the simulated fields. From the final
fields, ADDF curves along with ARF values were derived
for different temporal periods and spatial scales and com-
pared to the RADOLAN values. The results indicate a good
agreement with the RADOLAN values for the current pe-
riod (2005–2025) and showcase an increase in the areal ex-
tremes over all durations and temporal scales for the period
2065–2099. The final results show plausible ADDF curves
and ARF values that can be used for impact analysis.

The key findings of this study are as follows:

1. Using regional climate model data directly leads to an
overestimation of the areal extremes.

2. Correcting the spatial dependence structure and the
magnitudes of the data improves the usability of the
data.

3. Spatial downscaling using random mixing is possible
and offers uncertainty intervals.

4. The signal in the RCP is not lost and is present in the
future areal extremes.

5. The corrected data of the RCP8.5 scenario indicate an
increase in the rainfall depth over all temporal and spa-
tial scales.

The study could be further extended and applied to several
GCM–RCM products. This will provide an ensemble of pos-
sible uncertainty scenarios for future projections of DDF
and ADDF curves. Although the procedure would be sim-
ilar for the different GCM–RCM combinations, the results
might differ. The applied bias correction technique could be
replaced by a different approach that handles nonlinear re-
lations and outliers in a different manner. For instance, the
work of Yoshikane and Yoshimura (2022) presents a bias cor-
rection technique using machine learning (a support vector

machine regression model) for the correction of hourly pre-
cipitation values. In addition, recent advancement in gener-
ating high-resolution convection-permitting models (CPMs)
provides a better estimate of local extreme precipitation than
the RCMs. Fosser et al. (2024) found that using data from the
CPM ensemble generated using the CORDEX-FPS Convec-
tion project reduced the estimation uncertainty of summer
precipitation extremes by more than 50 %. Future work us-
ing data from the CPM ensemble is possible; however, this
would involve engaging in partnerships with computational
resources to assist with reducing the substantial expenses as-
sociated with computation. The procedure could be further
evaluated for a larger geographical range to encompass mul-
tiple regions with diverse climatic conditions. This would fa-
cilitate comprehension of regional disparities and enhance
the applicability of the results. Moreover, instead of work-
ing with ADDF areas, a selected hydrological catchment can
also be considered. The resulting future areal precipitation
extremes could be integrated into a hydrological model to as-
sess the impact on the discharge values and establish practi-
cal impact studies regarding flood risk assessments and water
resource management.

Appendix A: Additional figures

A1 Rank correlation values for the EURO-CORDEX
historical and future data

Figure A1 shows the pairwise grid cell rank correlation
values for the EURO-CORDEX historical and future data.
Panel (a) shows the results for the winter period, and
panel (b) shows them for the summer period. In addition,
the correlation values were calculated for the pixels falling
within the same direction as compared to the center of the
study area. This had no effect on the relation between the
correlation values of the two datasets. Hence, the agreement
between the historical and future correlation values is very
high and indicates a stable dependence structure between the
two periods.

A2 Relation between the indicator and Gaussian
correlation values

Figure A2 presents the relation between the indicator and
Gaussian correlation values for different thresholds α. Note
that the curves are only shown for the positive correlation
domain [0, 1]. Each curve is obtained by solving the relation
defined in Eq. (4) for the corresponding α.

A3 Theoretical variograms parameters

Table A1 shows the estimated parameters of the three the-
oretical exponential variogram models. These were fitted to
the average empirical variogram of every cluster (shown in
Fig. 8) using the DWDpoint and the EURO-CORDEX data.
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Figure A1. Scatterplot for the rank correlation values between historical and future (RCP) EURO-CORDEX data for winter (a) and sum-
mer (b) periods.

Figure A2. The relation between the indicator and Gaussian corre-
lation used to transform the indicator correlation matrices to Gaus-
sian correlation matrices. Each curve corresponds to a different
probability level α. Note that only positive correlation values are
shown.

A4 Effect of extrapolation

The aim of this section is to display the effect of the ex-
trapolation within the double-QQ mapping. The extrapola-
tion procedure is only applied to the values in the recorre-
lated EURO-CORDEXrcp data exceeding the maximum ob-
served DWDinterp precipitation values (Z > Zm; namely, for
U > Um) at the corresponding grid cell location. The param-
eter λ is calculated from Eq. (7) for every location separately

Table A1. Parameters of the fitted experimental variograms using
DWDpoint and the EURO-CORDEX grid cell data.

Sill Range [km]

Point model 1 (P1) 1.06 22.76
Grid cell model 1 (M1) 1.55 86.45

Point model 2 (P2) 0.99 7.33
Grid cell model 2 (M2) 1 17.05

Point model 3 (P3) 1.01 13.57
Grid cell model 3 (M3) 1.06 31.82

using the pair of the largest precipitation observation and cor-
responding probability level (Zm,Um). Table A2 showcases
summary statistics for the EURO-CORDEXrcp hourly val-
ues exceeding the maximum DWDinterp. These were gath-
ered from all grid cell locations (in total 322 values). The
first column, DWDinterp, displays the statistics of the max-
imum values as observed within the DWDinterp dataset. If
no extrapolation were performed, i.e., assuming that the rain
gauge network observed all maximum rainfall values cor-
rectly, the upper bound of the double-QQ procedure would
be these values. In other words, all EURO-CORDEXrcp data
would not exceed the values in column DWDinterp. The sec-
ond column displays the values for the recorrelated EURO-
CORDEXhist for the same indices (where Z > Zm in EURO-
CORDEXrcp). These values are presented here for compar-
ison purposes. The third column displays the values after
recorrelation and before the double-QQ mapping. Following
the procedure described in Sect. 3.2, for every Z > Zm in
EURO-CORDEXrcp, the corresponding quantile U is iden-
tified, and using the inverse of Eq. (6), Z∗ =− ln(1−U)/λ
is estimated. In the case where the value is very large, ex-
ceeds the maximum of DWDinterp and EURO-CORDEXhist,
and shows unrealistic values, Eq. (A1) was applied. The latter
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Table A2. Summary statistics for hourly precipitation values [mm h−1] for U > Um. The descriptive statistics are derived from 322 values.

DWDinterp EURO-CORDEXhist EURO-CORDEXrcp EURO-CORDEXrcp
recorrelated recorrelated recorrelated with QQ

without QQ and extrapolation

Mean 13.73 18.62 19.85 15.89
Standard deviation 3.27 5.27 6.13 5.47
Minimum 9.58 11.10 11.73 7.44
25 % 11.72 14.61 15.15 11.92
50 % 13.40 17.13 18.00 14.85
75 % 15.43 21.55 24.08 18.44
Maximum 23.47 35.53 44.11 43.26

restricts the extrapolation by a linear component following
the procedure described in Yan et al. (2020). However, this
was rarely applied, as the recorrelation procedure reduced the
impact of very large values. The last column of Table A2 rep-
resents the statistics of the Z∗ values after the extrapolation
and the double-QQ mapping. This displays the effect of the
extrapolation and provides values larger than DWDinterp but
within the range of the recorrelated EURO-CORDEXhist.

F(z)=min
(

1− e−λz,
Um−Um−1

Zm−Zm−1
+Um

)
, (A1)

with (Zm, Um) and (Zm−1, Um−1) defining the pairs of
the two largest precipitation observations and corresponding
probability levels.
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