Articles | Volume 28, issue 23
https://doi.org/10.5194/hess-28-5295-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-5295-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
David Jones
National Park Service National Capital Region Network, 4598 MacArthur Blvd. NW, Washington, DC 20007, USA
Diana Oviedo-Vargas
Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
John Paul Schmit
National Park Service National Capital Region Network, 4598 MacArthur Blvd. NW, Washington, DC 20007, USA
Darren L. Ficklin
Department of Geography, Indiana University Bloomington, 701 E. Kirkwood Avenue, Bloomington, IN 47405, USA
Xuesong Zhang
Hydrology and Remote Sensing Laboratory, United States Department of Agriculture Agricultural Research Service, Bldg. 007, Rm. 104, BARC-West, Beltsville, MD 20705-2350, USA
Related authors
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
Hydrol. Earth Syst. Sci., 27, 1755–1770, https://doi.org/10.5194/hess-27-1755-2023, https://doi.org/10.5194/hess-27-1755-2023, 2023
Short summary
Short summary
We projected climate change impacts to rain-on-snow (ROS) melt events in the Great Lakes Basin. Decreases in snowpack limit future ROS melt. Areas with mean winter/spring air temperatures near freezing are most sensitive to ROS changes. The projected proportion of total monthly snowmelt from ROS decreases. The timing for ROS melt is projected to be 2 weeks earlier by the mid-21st century and affects spring streamflow. This could affect freshwater resources management.
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
Hydrol. Earth Syst. Sci., 27, 1755–1770, https://doi.org/10.5194/hess-27-1755-2023, https://doi.org/10.5194/hess-27-1755-2023, 2023
Short summary
Short summary
We projected climate change impacts to rain-on-snow (ROS) melt events in the Great Lakes Basin. Decreases in snowpack limit future ROS melt. Areas with mean winter/spring air temperatures near freezing are most sensitive to ROS changes. The projected proportion of total monthly snowmelt from ROS decreases. The timing for ROS melt is projected to be 2 weeks earlier by the mid-21st century and affects spring streamflow. This could affect freshwater resources management.
Han Qiu, Dalei Hao, Yelu Zeng, Xuesong Zhang, and Min Chen
Earth Syst. Dynam., 14, 1–16, https://doi.org/10.5194/esd-14-1-2023, https://doi.org/10.5194/esd-14-1-2023, 2023
Short summary
Short summary
The carbon cycling in terrestrial ecosystems is complex. In our analyses, we found that both the global and the northern-high-latitude (NHL) ecosystems will continue to have positive net ecosystem production (NEP) in the next few decades under four global change scenarios but with large uncertainties. NHL ecosystems will experience faster climate warming but steadily contribute a small fraction of the global NEP. However, the relative uncertainty of NHL NEP is much larger than the global values.
Sangchul Lee, Dongho Kim, Gregory W. McCarty, Martha Anderson, Feng Gao, Fangni Lei, Glenn E. Moglen, Xuesong Zhang, Haw Yen, Junyu Qi, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-187, https://doi.org/10.5194/hess-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
Watershed modeling is important to protect water resources. However, errors are involved in watershed modeling. To reduce errors, remotely sensed evapotranspiration data are widely used. However, the use of remotely sensed evapotranspiration data still includes errors. This study applied two remotely sensed data (evapotranspiration and leaf area index) into watershed modeling to reduce errors. The results showed advancement of watershed modeling by two remotely sensed data.
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013.
Abbaspour, K. C., Johnson, C. A., and van Genuchten, M. Th.: Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure, Vadose Zone J., 3, 1340–1352, https://doi.org/10.2136/vzj2004.1340, 2004.
Abbaspour, K. C., Vaghefi, S. A., Yang, H., and Srinivasan, R.: Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT Applications, Scientific Data, 6, 1–11, https://doi.org/10.1038/s41597-019-0282-4, 2019.
Arabi, M., Frankenberger, J. R., Engel, B. A., and Arnold, J. G.: Representation of agricultural conservation practices with SWAT, Hydrol. Process., 22, 3042–3055, https://doi.org/10.1002/hyp.6890, 2008.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large Area Hydrologic Modeling and Assessment Part I: Model Development, J. Am. Water Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., and Neitsch, S. L.: Soil & Water Assessment Tool: Input/output documentation. version 2012, Texas Water Resources Institute, TR-439, https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf (last access: 3 December 2024), 2013.
Avellaneda, P. M., Ficklin, D. L., Lowry, C. S., Knouft, J. H., and Hall, D. M.: Improving Hydrological Models With the Assimilation of Crowdsourced Data, Water Resour. Res., 56, e2019WR026325, https://doi.org/10.1029/2019WR026325, 2020.
Basu, A. S., Gill, L. W., Pilla, F., and Basu, B.: Assessment of Variations in Runoff Due to Landcover Changes Using the SWAT Model in an Urban River in Dublin, Ireland, Sustainability, 14, 534, https://doi.org/10.3390/SU14010534, 2022.
Baumgartner, S. D. and Robinson, C. T.: Changes in macroinvertebrate trophic structure along a land-use gradient within a lowland stream network, Aquat. Sci., 79, 418, https://doi.org/10.1007/s00027-016-0506-z, 2017.
Boryan, C., Yang, Z., Mueller, R., and Craig, M.: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program, Geocarto Int., 26, 341–358, https://doi.org/10.1080/10106049.2011.562309, 2011.
Botero-Acosta, A., Ficklin, D. L., Ehsani, N., and Knouft, J. H.: Climate induced changes in streamflow and water temperature in basins across the Atlantic Coast of the United States: An opportunity for nature-based regional management, J. Hydrol. Reg. Stud., 44, 101202, https://doi.org/10.1016/J.EJRH.2022.101202, 2022.
Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., and Tait, A. M.: Dynamic World, Near real-time global 10 m land use land cover mapping, Scientific Data, 9, 1–17, https://doi.org/10.1038/s41597-022-01307-4, 2022.
Buchhorn, M., Lesiv, M., Tsendbazar, N. E., Herold, M., Bertels, L., and Smets, B.: Copernicus Global Land Cover Layers – Collection 2, Remote Sensing, 12, 1044, https://doi.org/10.3390/RS12061044, 2020.
Cai, S., Liu, D., Sulla-Menashe, D., and Friedl, M. A.: Enhancing MODIS land cover product with a spatial-temporal modeling algorithm, Remote Sens. Environ., 147, 243–255, https://doi.org/10.1016/j.rse.2014.03.012, 2014.
Di Vittorio, A. V., Mao, J., Shi, X., Chini, L., Hurtt, G., and Collins, W. D.: Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates, Geophys. Res. Lett., 45, 974–982, https://doi.org/10.1002/2017GL075124, 2018.
Dow, C. L. and Zampella, R. A.: Specific Conductance and pH as Indicators of Watershed Disturbance in Streams of the New Jersey Pinelands, USA, Environ. Manage., 26, 437–445, https://doi.org/10.1007/S002670010101, 2000.
Fontaine, T. A., Cruickshank, T. S., Arnold, J. G., and Hotchkiss, R. H.: Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT), J. Hydrol. (Amst.), 262, 209–223, https://doi.org/10.1016/S0022-1694(02)00029-X, 2002.
Frans, C., Istanbulluoglu, E., Mishra, V., Munoz-Arriola, F., and Lettenmaier, D. P.: Are climatic or land cover changes the dominant cause of runoff trends in the Upper Mississippi River Basin?, Geophys. Res. Lett., 40, 1104–1110, https://doi.org/10.1002/grl.50262, 2013.
Fu, B., Merritt, W. S., Croke, B. F. W., Weber, T. R., and Jakeman, A. J.: A review of catchment-scale water quality and erosion models and a synthesis of future prospects, Environ. Modell. Softw., 114, 75–97, https://doi.org/10.1016/J.ENVSOFT.2018.12.008, 2019.
Fuka, D. R., Easton, Z. M., Brooks, E. S., Boll, J., Steenhuis, T. S., and Walter, M. T.: A Simple Process-Based Snowmelt Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model, J. Am. Water Resour. As., 48, 1151–1161, https://doi.org/10.1111/j.1752-1688.2012.00680.x, 2012.
Glotfelty, T., Ramírez-Mejía, D., Bowden, J., Ghilardi, A., and West, J. J.: Limitations of WRF land surface models for simulating land use and land cover change in Sub-Saharan Africa and development of an improved model (CLM-AF v. 1.0), Geosci. Model Dev., 14, 3215–3249, https://doi.org/10.5194/gmd-14-3215-2021, 2021.
Gómez, C., White, J. C., and Wulder, M. A.: Optical remotely sensed time series data for land cover classification: A review, ISPRS J. Photogramm., 116, 55–72, https://doi.org/10.1016/j.isprsjprs.2016.03.008, 2016.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/J.RSE.2017.06.031, 2017.
Graesser, J., Stanimirova, R., Tarrio, K., Copati, E. J., Volante, J. N., Verón, S. R., Banchero, S., Elena, H., Abelleyra, D. de, and Friedl, M. A.: Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America, Remote Sens.-Basel, 14, 4005, https://doi.org/10.3390/rs14164005, 2022.
Gray, J., Sulla-Menashe, D., and Friedl, M. A.: User Guide to Collection 6.1 MODIS Land Cover Dynamics (MCD12Q2) Product, https://lpdaac.usgs.gov/documents/1417/MCD12Q2_User_Guide_V61.pdf (last access: 16 May 2023), 2022.
Guo, D., Lintern, A., Webb, J. A., Ryu, D., Bende-Michl, U., Liu, S., and Western, A. W.: A data-based predictive model for spatiotemporal variability in stream water quality, Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020, 2020.
Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration, J. Hydrol. Eng., 4, 135–143, https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135), 1999.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol. (Amst.), 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Halefom, A., Sisay, E., Khare, D., Singh, L., and Worku, T.: Hydrological modeling of urban catchment using semi-distributed model, Model. Earth Syst. Environ., 3, 683–692, https://doi.org/10.1007/s40808-017-0327-7, 2017.
Hales, R. C., Williams, G. P., Nelson, E. J., Sowby, R. B., Ames, D. P., and Lozano, J. L. S.: Bias Correcting Discharge Simulations from the GEOGloWS Global Hydrologic Model, J. Hydrol. (Amst.), 626, 130279, https://doi.org/10.1016/j.jhydrol.2023.130279, 2023.
Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., and Hobart, G. W.: Disturbance-Informed Annual Land Cover Classification Maps of Canada's Forested Ecosystems for a 29-Year Landsat Time Series, Can. J. Remote Sens., 44, 67–87, https://doi.org/10.1080/07038992.2018.1437719, 2018.
Hood, R. R., Shenk, G. W., Dixon, R. L., Smith, S. M. C., Ball, W. P., Bash, J. O., Batiuk, R., Boomer, K., Brady, D. C., Cerco, C., Claggett, P., de Mutsert, K., Easton, Z. M., Elmore, A. J., Friedrichs, M. A. M., Harris, L. A., Ihde, T. F., Lacher, L., Li, L., Linker, L. C., Miller, A., Moriarty, J., Noe, G. B., Onyullo, G., Rose, K., Skalak, K., Tian, R., Veith, T. L., Wainger, L., Weller, D., and Zhang, Y. J.: The Chesapeake Bay program modeling system: Overview and recommendations for future development, Ecol. Model., 456, 109635, https://doi.org/10.1016/J.ECOLMODEL.2021.109635, 2021.
Hu, X., Huang, B., Verones, F., Cavalett, O., and Cherubini, F.: Overview of recent land-cover changes in biodiversity hotspots, Front. Ecol. Environ., 19, 91–97, https://doi.org/10.1002/fee.2276, 2021.
Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., and Howard, D.: Overall Methodology Design for the United States National Land Cover Database 2016 Products, Remote Sensing, 11, 2971, https://doi.org/10.3390/RS11242971, 2019.
Kalin, L., Isik, S., Schoonover, J. E., and Lockaby, B. G.: Predicting Water Quality in Unmonitored Watersheds Using Artificial Neural Networks, J. Environ. Qual., 39, 1429–1440, https://doi.org/10.2134/jeq2009.0441, 2010.
Kaufman, Y. J.: Atmospheric Effects On Remote Sensing Of Surface Reflectance, Remote Sensing: Critical Review of Technology, 0475, 20–33, https://doi.org/10.1117/12.966238, 1984.
Kaushal, S. S., Groffman, P. M., Likens, G. E., Belt, K. T., Stack, W. P., Kelly, V. R., Band, L. E., and Fisher, G. T.: Increased salinization of fresh water in the northeastern United States, P. Natl. Acad. Sci. USA, 102, 13517–13520, https://doi.org/10.1073/PNAS.0506414102, 2005.
Khodaee, M., Hwang, T., Ficklin, D. L., and Duncan, J. M.: With warming, spring streamflow peaks are more coupled with vegetation green-up than snowmelt in the northeastern United States, Hydrol. Process., 36, e14621, https://doi.org/10.1002/HYP.14621, 2022.
Koltsida, E., Mamassis, N., and Kallioras, A.: Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece), Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023, 2023.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty, J. Adv. Model Earth. Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
Leeper, R. D., Rennie, J., and Palecki, M. A.: Observational Perspectives from U.S. Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) Network: Temperature and Precipitation Comparison, J. Atmos. Ocean Tech., 32, 703–721, https://doi.org/10.1175/JTECH-D-14-00172.1, 2015.
Lehner, B., Verdin, K., and Jarvis, A.: HydroSHEDS Technical Documentation, World Wildlife Fund, Washington, DC, https://data.hydrosheds.org/file/technical-documentation/HydroSHEDS_TechDoc_v1_4.pdf (last access: 15 May 2023), 2006.
Lindsay, J. B.: The Whitebox Geospatial Analysis Tools Project and Open-Access GIS, Proceedings of the GIS research UK 22nd annual conference, The University of Glasgow, 16–18, https://jblindsay.github.io/ghrg/pubs/LindsayGISRUK2014.pdf (last access: 3 December 2024), 2014.
Liu, D. and Cai, S.: A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change Trajectories from Multi-temporal Satellite Imagery, Ann. Assoc. Am. Geogr., 102, 1329–1347, https://doi.org/10.1080/00045608.2011.596357, 2012.
Li, D., Bou-Zeid, E., Barlage, M., Chen, F., and Smith, J. A.: Development and evaluation of a mosaic approach in the WRF-Noah framework, J. Geophys. Res.-Atmos., 118, 11918–11935, https://doi.org/10.1002/2013JD020657, 2013.
Li, Y., Chang, J., Luo, L., Wang, Y., Guo, A., Ma, F., and Fan, J.: Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters, Hydrol. Res., 50, 244–261, https://doi.org/10.2166/NH.2018.006, 2019.
Li, W., Li, L., Chen, J., Lin, Q., and Chen, H.: Impacts of land use and land cover change and reforestation on summer rainfall in the Yangtze River basin, Hydrol. Earth Syst. Sci., 25, 4531–4548, https://doi.org/10.5194/hess-25-4531-2021, 2021.
Luo, M., Li, F., Hao, D., Zhu, Q., Dashti, H., and Chen, M.: Uncertain spatial pattern of future land use and land cover change and its impacts on terrestrial carbon cycle over the Arctic–Boreal region of North America, Earths Future, 11, e2023EF003648, https://doi.org/10.1029/2023EF003648, 2023.
Marufah, U., June, T., Faqih, A., Ali, A. A., Stiegler, C., and Knohl, A.: Implication of land use change to biogeophysical and biogeochemical processes in Jambi, Indonesia: Analysed using CLM5, Terrestrial, Atmospheric and Oceanic Sciences, 32, 203–215, https://doi.org/10.3319/TAO.2020.12.17.01, 2021.
Maryland Department of Environment: Maryland's Phase III Watershed Implementation Plan to Restore Chesapeake Bay by 2025, https://mde.maryland.gov/programs/Water/TMDL/TMDLImplementation/Pages/Phase3WIP.aspx (last access: 15 May 2023), 2019.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205–234, 1965.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W. Van, Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Murphy, J. C.: Changing suspended sediment in United States rivers and streams: linking sediment trends to changes in land use/cover, hydrology and climate, Hydrol. Earth Syst. Sci., 24, 991–1010, https://doi.org/10.5194/hess-24-991-2020, 2020.
Myers, D. T., Ficklin, D. L., Robeson, S. M., Neupane, R. P., Botero-Acosta, A., and Avellaneda, P. M.: Choosing an arbitrary calibration period for hydrologic models: How much does it influence water balance simulations?, Hydrol. Process., 35, e14045, https://doi.org/10.1002/hyp.14045, 2021a.
Myers, D. T., Ficklin, D. L., and Robeson, S. M.: Incorporating rain-on-snow into the SWAT model results in more accurate simulations of hydrologic extremes, J. Hydrol. (Amst.), 603, 126972, https://doi.org/10.1016/J.JHYDROL.2021.126972, 2021b.
Myers, D. T., Jones, D., Oviedo-Vargas, D., Schmit, J. P., Ficklin, D. L., and Zhang, X.: Seasonal landcover variation and environmental modeling data, Mendeley Data [data set], https://doi.org/10.17632/bbb9xbpv22.3, 2022.
Myers, D. T., Jones, D., Oviedo-Vargas, D., Schmit, J. P., Ficklin, D. L., and Zhang, X.: Seasonal land cover variation and environmental modeling scripts, figshare [code], https://doi.org/10.6084/m9.figshare.27952815, 2024.
Naha, S., Rico-Ramirez, M. A., and Rosolem, R.: Quantifying the impacts of land cover change on hydrological responses in the Mahanadi river basin in India, Hydrol. Earth Syst. Sci., 25, 6339–6357, https://doi.org/10.5194/hess-25-6339-2021, 2021.
Nash, J. E. and Sutcliffe, J. v.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol. (Amst.), 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nguyen, T. V, Dietrich, J., Dang, T. D., Tran, D. A., Van Doan, B., Sarrazin, F. J., Abbaspour, K., and Srinivasan, R.: An interactive graphical interface tool for parameter calibration, sensitivity analysis, uncertainty analysis, and visualization for the Soil and Water Assessment Tool, Environ. Modell. Softw., 156, 105497, https://doi.org/10.1016/j.envsoft.2022.105497, 2022.
Ni, X., Parajuli, P. B., Ouyang, Y., Dash, P., and Siegert, C.: Assessing land use change impact on stream discharge and stream water quality in an agricultural watershed, Catena, 198, 105055, https://doi.org/10.1016/j.catena.2020.105055, 2021.
Nkwasa, A., Chawanda, C. J., Msigwa, A., Komakech, H. C., Verbeiren, B., and van Griensven, A.: How Can We Represent Seasonal Land Use Dynamics in SWAT and SWAT+ Models for African Cultivated Catchments?, Water, 12, 1541, https://doi.org/10.3390/W12061541, 2020.
Norris, M., Pieper, J., Watts, T., and Cattani, A.: National Capital Region Network Inventory and Monitoring Program Water Chemistry and Quantity Monitoring Protocol Version 2.0 Water chemistry, nutrient dynamics, and surface water dynamics vital signs, Natural Resource Report NPS/NCRN/NRR-2011/423, https://irma.nps.gov/DataStore/Reference/Profile/2172524 (last access: 3 December 2024), 2011.
NRCS: Technical Release 55: Urban Hydrology for Small Watersheds, USDA Natural Resource Conservation Service Conservation Engineering Division Technical Release 55, https://tamug-ir.tdl.org/handle/1969.3/24438 (last access: 16 May 2023), 1986.
Pianosi, F. and Wagener, T.: A simple and efficient method for global sensitivity analysis based oncumulative distribution functions, Environ. Modell. Softw., 67, 1–11, https://doi.org/10.1016/j.envsoft.2015.01.004, 2015.
Pianosi, F., Sarrazin, F., and Wagener, T.: A Matlab toolbox for Global Sensitivity Analysis, Environ. Modell. Softw., 70, 80–85, https://doi.org/10.1016/j.envsoft.2015.04.009, 2015.
Qin, Y., Wang, D., Cao, Y., Cai, X., Liang, S., Beck, H. E., and Zeng, Z.: Sub-Grid Representation of Vegetation Cover in Land Surface Schemes Improves the Modeling of How Climate Responds to Deforestation, Geophys. Res. Lett., 50, e2023GL104164, https://doi.org/10.1029/2023GL104164, 2023.
Radeloff, V. C., Roy, D. P., Wulder, M. A., Anderson, M., Cook, B., Crawford, C. J., Friedl, M., Gao, F., Gorelick, N., and Hansen, M.: Need and vision for global medium-resolution Landsat and Sentinel-2 data products, Remote Sens. Environ., 300, 113918, https://doi.org/10.1016/j.rse.2023.113918, 2024.
Ries, K. G., Newson, J. K., Smith, M. J., Guthrie, J. D., Steeves, P. A., Haluska, T., Kolb, K., Thompson, R. F., Santoro, R. D., and Vraga, H. W.: StreamStats, version 4, US Geological Survey, https://doi.org/10.3133/FS20173046, 2017.
Ritchie, J. T.: Model for predicting evaporation from a row crop with incomplete cover, Water Resour. Res., 8, 1204–1213, https://doi.org/10.1029/WR008i005p01204, 1972.
Rumora, L., Miler, M., and Medak, D.: Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover Classification Accuracy Using Machine Learning Classifiers, ISPRS Int. J. Geo-Inf., 9, 277, https://doi.org/10.3390/IJGI9040277, 2020.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010.
Sexton, J. O., Song, X. P., Huang, C., Channan, S., Baker, M. E., and Townshend, J. R.: Urban growth of the Washington, D.C.-Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover, Remote Sens. Environ., 129, 42–53, https://doi.org/10.1016/j.rse.2012.10.025, 2013.
Small, C. and Sousa, D.: Spectral Characteristics of the Dynamic World Land Cover Classification, Remote Sens.-Basel, 15, 575, https://doi.org/10.3390/rs15030575, 2023.
Sugarbaker, L. J., Constance, E. W., Heidemann, H. K., Jason, A. L., Lukas, V., Saghy, D. L., and Stoker, J. M.: USGS Circular 1399: The 3D Elevation Program Initiative – A Call for Action, https://pubs.usgs.gov/circ/1399/ (last access: 16 May 2023), 2014.
Sulla-Menashe, D. and Friedl, M. A.: User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product, https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf (last access: 3 December 2024), 2018.
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.: Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product, Remote Sens. Environ., 222, 183–194, 2019.
Tong, S. T. Y., Liu, A. J., and Goodrich, J. A.: Assessing the water quality impacts of future land-use changes in an urbanising watershed, Civil Engineering and Environmental Systems, 26, 3–18, https://doi.org/10.1080/10286600802003393, 2009.
USDA: National Agriculture Imagery Program (NAIP) – Catalog, https://www.usgs.gov/centers/eros/science/usgs-eros-archive-aerial-photography-national-agriculture-imagery-program-naip (last access: 16 May 2023), 2022.
USGS: National Water Information System data available on the World Wide Web (USGS Water Data for the Nation), United States Geological Survey, https://waterdata.usgs.gov/nwis/rt (last access: 16 May 2023), 2022.
Utz, R., Bidlack, S., Fisher, B., Kaushal, S., and Ryan Utz, C. M.: Urbanization drives geographically heterogeneous freshwater salinization in the northeastern United States, J. Environ. Qual., 51, 952–965, https://doi.org/10.1002/JEQ2.20379, 2022.
van Beusekom, A. E., Hay, L. E., Viger, R. J., Gould, W. A., Collazo, J. A., and Henareh Khalyani, A.: The Effects of Changing Land Cover on Streamflow Simulation in Puerto Rico, J. Am. Water Resour. As., 50, 1575–1593, https://doi.org/10.1111/jawr.12227, 2014.
Venter, Z. S., Barton, D. N., Chakraborty, T., Simensen, T., and Singh, G.: Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover, Remote Sensing, 14, 4101, https://doi.org/10.3390/RS14164101, 2022.
Vrugt, J. A. and Robinson, B. A.: Improved evolutionary optimization from genetically adaptive multimethod search, P. Natl. Acad. Sci. USA, 104, 708–711, https://doi.org/10.1073/pnas.0610471104, 2007.
Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O'Donnell, J., and Rowe, C. M.: Statistics for the evaluation and comparison of models, J. Geophys. Res., 90, 8995, https://doi.org/10.1029/JC090iC05p08995, 1985.
Willmott, C. J., Robeson, S. M., and Matsuura, K.: Short Communication A refined index of model performance, Int. J. Climatol., 33, 1053–1056, https://doi.org/10.1002/joc.2419, 2012.
Yang, X., Rode, M., Jomaa, S., Merbach, I., Tetzlaff, D., Soulsby, C., and Borchardt, D.: Functional Multi-Scale Integration of Agricultural Nitrogen-Budgets Into Catchment Water Quality Modeling, Geophys. Res. Lett., 49, e2021GL096833, https://doi.org/10.1029/2021GL096833, 2022.
Zadeh, F. K., Nossent, J., Sarrazin, F., Pianosi, F., van Griensven, A., Wagener, T., and Bauwens, W.: Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model, Environ. Modell. Softw., 91, 210–222, https://doi.org/10.1016/j.envsoft.2017.02.001, 2017.
Zhang, H. K., Roy, D. P., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S., and Roger, J. C.: Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences, Remote Sens. Environ., 215, 482–494, https://doi.org/10.1016/J.RSE.2018.04.031, 2018.
Zhang, K., Bin Mamoon, W., Schwartz, E., and Parolari, A. J.: Reconstruction of Sparse Stream Flow and Concentration Time-Series Through Compressed Sensing, Geophys. Res. Lett., 50, e2022GL101177, https://doi.org/10.1029/2022GL101177, 2023.
Zhao, K., Wulder, M. A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick, B., Zhang, X., and Brown, M.: Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm, Remote Sens. Environ., 232, 111181, https://doi.org/10.1016/j.rse.2019.04.034, 2019.
Zhu, Z. and Woodcock, C. E.: Continuous change detection and classification of land cover using all available Landsat data, Remote Sens. Environ., 144, 152–171, https://doi.org/10.1016/j.rse.2014.01.011, 2014.
Zhu, Z., Woodcock, C. E., and Olofsson, P.: Continuous monitoring of forest disturbance using all available Landsat imagery, Remote Sens. Environ., 122, 75–91, https://doi.org/10.1016/j.rse.2011.10.030, 2012.
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
We studied how streamflow and water quality models respond to land cover data collected by...