



## Supplement of

# Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models

Daniel T. Myers et al.

Correspondence to: Daniel T. Myers (dmyers@stroudcenter.org)

The copyright of individual parts of the supplement might differ from the article licence.

## **Contents of this file**

Figures S1 to S5 Tables S1 to S5 References

### Introduction

This supporting information includes supplementary tables and figures from the study. These include diagrams of the modeling approach, background landcover and study area information, model parameters, and the landcover lookup table for the SWAT model.



**Figure S1.** Flowchart of the AMALGAM calibration approach used in this study. Parameter sets are randomly generated within specified reasonable ranges of parameter values. Then, hydrologic models are distributed among multiple computer processing cores, simulations are run, and outputs are evaluated for performance against observed streamflow data. The algorithm learns from these outputs and generates new sets of parameter values. This process is iterated and optimal parameter sets are identified based on model evaluations.



**Figure S2.** Comparison of Dynamic World 2016 built class and National Land Cover Database (NLCD) developed classes as proportions of watershed area for the 37 currently monitored study watersheds, with 95% confidence intervals as dotted lines. RMAD: Relative mean absolute difference.



**Figure S3.** Visual comparison of LULC classification in a mixed landuse area of Maryland, USA showing (a,b) differences in Dynamic World data between growing (spring equinox 2016 to autumn equinox 2016) and non-growing (autumn equinox 2015 to spring equinox 2016) seasons. (c,d) Sentinel-2 imagery examples for growing (20 July, 2016) and non-growing (23 November, 2015) seasons. And, (e,f) before-and-after images from the National Agriculture Imagery Program (NAIP).



**Figure S4.** Delineated hydrologic response units (HRUs) for the Rock Creek Watershed (Case #2; top two rows) and Difficult Run Watershed (Case #3; bottom two rows). Rows show the input LULC data for each watershed and the resulting HRUs, while columns differentiate Dynamic World 2016 (DW16) growing and non-growing seasons and NLCD 2016. HRU numbers for Rock Creek were 13 for each LULC input, as each subbasin was assigned the dominant combination of LULC, soils, and slopes. HRU numbers for Difficult Run (which used the maximum HRU number approach) were 43 for Dynamic World 2016 growing season, 48 for Dynamic World 2016 non-growing season, and 111 for NLCD 2016 input.



**Figure S5.** a) Proportions of HRU area being populated with Dynamic World 2016 trees and built area classes for the Rock Creek and Difficult Run Watersheds, split between growing and non-growing season inputs, and b) Proportions of HRU area being populated with NLCD 2016 developed and forest classes. All other HRU LULC assignments combined made up 0-4% of each watershed for Dynamic World inputs, and 2-7% of each watershed for NLCD inputs. For Rock Creek (dominant HRU approach), there was a difference in HRUs populated with Dynamic World 2016 trees class of 21.8% between growing and non-growing seasons, while that difference was 12.8% for Difficult Run (maximum HRU approach).

| Dataset                     | Source                    | Citation                     |
|-----------------------------|---------------------------|------------------------------|
| LULC                        | Dynamic World             | (Brown et al., 2022)         |
| LULC                        | National Landcover        | (Jin et al., 2019)           |
|                             | Database 2016             |                              |
| Specific conductance        | National Capital Region   | (Norris et al., 2011)        |
|                             | Network                   |                              |
| Watersheds                  | USGS Streamstats and      | (Lindsay, 2022; Ries et al., |
|                             | Whitebox Tools            | 2017)                        |
| Elevation                   | 3DEP 30 m DEM             | (Sugarbaker et al., 2014)    |
| Soils                       | Global Soil Database      | (Abbaspour et al., 2019)     |
| Streams                     | WWF HydroSHEDS            | (Lehner et al., 2006)        |
| Daily precipitation and air | NOAA weather station      | (Leeper et al., 2015)        |
| temperature                 | USW00093738               |                              |
| Daily precipitation and air | GridMET                   | (Abatzoglou, 2013)           |
| temperature                 |                           |                              |
| Observed streamflow and     | <b>USGS NWIS stations</b> | (USGS, 2022)                 |
| nitrate-nitrite-nitrogen    | 01648010 and 01646000     |                              |

**Table S1.** Datasets and sources used in model development and comparison. USGS:United States Geological Survey. NOAA: United States National Oceanic and<br/>Atmospheric Administration.

| LANDUSE_ID | SWAT_CODE |
|------------|-----------|
| 0          | WATR      |
| 1          | FRST      |
| 2          | RNGE      |
| 3          | WETL      |
| 4          | AGRL      |
| 5          | RNGB      |
| 6          | UCOM      |
| 7          | SWRN      |
| 8          | WATR      |
|            |           |

**Table S2.** This LULC lookup table can be read into the QSWAT model so that SWAT uses the Dynamic World LULC image as the LULC input.

Table S3. Parameters used in SWAT model streamflow and nitrate-nitrite-nitrogencalibration for Rock Creek Watershed (Case #2), for models input with growing and non-growing season Dynamic World 2016 data, as well as the model with NLCD 2016 input.SymbolDefinition †LowerUpperCalibrated

| Symbol        | Definition †                                     | Lower | Upper | Calibrated |
|---------------|--------------------------------------------------|-------|-------|------------|
|               |                                                  | Limit | Limit |            |
| CH_K2.rte     | Channel hydraulic conductivity (mm/hour) (v)     | 0.1   | 150   | 113        |
| ALPHA_BNK.rte | Bank flow recession constant (v)                 | 0.01  | 1     | 0.91       |
| CN2.mgt       | Runoff curve number (r)                          | -0.25 | 0.25  | -0.15      |
| N_UPDIS.bsn   | Nitrogen update distribution parameter (v)       | 0     | 30    | 20.7       |
| LAT_TTIME.hru | Lateral flow travel time in days (v)             | 0.01  | 180   | 90         |
| SFTMP.bsn     | Snowfall temperature threshold °C (v)            | 0     | 3     | 1.87       |
| CH_N2.rte     | Manning's n value for main channel (v)           | 0.01  | 0.30  | 0.10       |
| NPERCO.bsn    | Nitrogen percolation coefficient (v)             | 0.01  | 1     | 0.14       |
| CDN.bsn       | Denitrification exponential rate coefficient (v) | 0     | 3     | 0.05       |
| SDNCO.bsn     | Denitrification threshold water constant (v)     | 0     | 1.1   | 0.33       |

 $\dagger$  A 'v' indicates that the original parameter from QSWAT was replaced by the calibrated value, in the same unit. An 'r' indicates that the original parameter was modified relatively, multiplying it by 1 + the calibrated value (e.g. a value of -0.2 reduces the original parameter by 20%).

| Symbol        | Definition                                          | Description                                                                                                                         |
|---------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| CH_KII.rte    | Channel hydraulic<br>conductivity (mm/h) (v)        | Effective hydraulic conductivity<br>for alluvium in the main<br>channel of the reach, describing<br>relationships with groundwater. |
| ALPHA_BNK.rte | Bank flow recession<br>constant (v)                 | Regulates bank flow to the reach using a recession constant.                                                                        |
| CN_F.mgt      | Runoff curve number (r)                             | Representation of soil<br>permeability, landscape<br>characteristics, and antecedent<br>moisture conditions.                        |
| SNO50COV.bsn  | Fraction of<br>SNOCOVMX for 50%<br>cover (v)        | Fraction of complete snow<br>cover which represents 50%<br>snow cover in areal depletion<br>curve.                                  |
| ESCO.hru      | Soil evaporation compensation coef. (v)             | Modification to soil evaporative demand at different depths.                                                                        |
| CH_NII.rte    | Manning's n value for<br>main channel (v)           | Roughness coefficient for the main channel of the reach.                                                                            |
| SOL_BD.sol    | Soil moist bulk density<br>(r)                      | Ratio of oven dry soil mass to total volume near field capacity.                                                                    |
| SNOCOVMX.bsn  | Snow depth above<br>which is 100% cover<br>(mm) (v) | Amount of snowpack needed for complete areal coverage.                                                                              |
| SFTMP.bsn     | Snowfall temperature<br>threshold (°C) (v)          | Temperature threshold that<br>distinguishes snowfall from<br>rainfall during a precipitation<br>event.                              |
| SOL_AWC.sol   | Available Water<br>Capacity (r)                     | Plant available water capacity of the soil.                                                                                         |

**Table S4.** Further explanations of SWAT model parameters mentioned in Table 1 of the text for the Difficult Run Watershed. Readers are directed to Arnold et al. (2013) for additional documentation.

| LULC type                                | <b>Rock Creek</b> | <b>Difficult Run</b> |
|------------------------------------------|-------------------|----------------------|
|                                          | (% area)          | (% area)             |
| Dyn. World 2016 growing season built     | 57                | 44                   |
| Dyn. World 2016 non-growing season built | 66                | 54                   |
| NLCD 2016 open space developed           | 29                | 30                   |
| NLCD 2016 low intensity developed        | 26                | 17                   |
| NLCD 2016 medium intensity developed     | 10                | 8                    |
| NLCD 2016 high intensity developed       | 5                 | 3                    |
| Dyn. World 2016 growing season crops     | 0                 | 0                    |
| Dyn. World 2016 non-growing season crops | 2                 | 1                    |
| NLCD 2016 cultivated crops               | 0                 | 0                    |
| NLCD 2016 pasture/hay                    | 6                 | 2                    |
| Dyn. World 2016 growing season trees     | 38                | 54                   |
| Dyn. World 2016 non-growing season trees | 26                | 42                   |
| NLCD 2016 deciduous forest               | 19                | 27                   |
| NLCD 2016 evergreen forest               | 0                 | 0                    |
| NLCD 2016 mixed forest                   | 1                 | 8                    |

**Table S5.** Proportions of watershed area that were built or developed, agricultural (crops or pasture/hay), or forested LULC categories for the Rock Creek Watershed (Case #2) and Difficult Run Watershed (Case #3).

#### **References:**

- Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, International Journal of Climatology, 33, https://doi.org/10.1002/joc.3413, 2013.
- Abbaspour, K. C., Vaghefi, S. A., Yang, H., and Srinivasan, R.: Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT Applications, Scientific Data 2019 6:1, 6, 1–11, https://doi.org/10.1038/s41597-019-0282-4, 2019.
- Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., and Neitsch, S. L.: Soil & Water Assessment Tool: Input/output documentation. version 2012, Texas Water Resources Institute, TR-439, 2013.
- Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., and Tait, A. M.: Dynamic World, Near real-time global 10 m land use land cover mapping, Scientific Data 2022 9:1, 9, 1–17, https://doi.org/10.1038/s41597-022-01307-4, 2022.
- Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., and Howard, D.: Overall Methodology Design for the United States National Land Cover Database 2016 Products, Remote Sensing 2019, Vol. 11, Page 2971, 11, 2971, https://doi.org/10.3390/RS11242971, 2019.
- Leeper, R. D., Rennie, J., and Palecki, M. A.: Observational Perspectives from U.S. Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) Network: Temperature and Precipitation Comparison, J Atmos Ocean Technol, 32, 703–721, https://doi.org/10.1175/JTECH-D-14-00172.1, 2015.
- Lehner, B., Verdin, K., and Jarvis, A.: HydroSHEDS Technical Documentation, https://data.hydrosheds.org/file/technicaldocumentation/HydroSHEDS\_TechDoc\_v1\_4.pdf (accessed 15 May 2023), World Wildlife Fund, Washington, DC, 2006.
- Lindsay, J. B.: The Whitebox Geospatial Analysis Tools Project and Open-Access GIS, 2022.
- Norris, M., Pieper, J., Watts, T., and Cattani, A.: National Capital Region Network Inventory and Monitoring Program Water Chemistry and Quantity Monitoring Protocol Version 2.0 Water chemistry, nutrient dynamics, and surface water dynamics vital signs, Natural Resource Report NPS/NCRN/NRR—2011/423, 2011.
- Ries, K. G., Newson, J. K., Smith, M. J., Guthrie, J. D., Steeves, P. A., Haluska, T., Kolb, K., Thompson, R. F., Santoro, R. D., and Vraga, H. W.: StreamStats, version 4, US Geological Survey, https://doi.org/10.3133/FS20173046, 2017.
- Sugarbaker, L. J., Constance, E. W., Heidemann, H. K., Jason, A. L., Lukas, V., Saghy, D. L., and Stoker, J. M.: USGS Circular 1399: The 3D Elevation Program Initiative— A Call for Action, https://pubs.usgs.gov/circ/1399/ (accessed 16 May 2023), 2014.
- USGS: National Water Information System data available on the World Wide Web (USGS Water Data for the Nation), United States Geological Survey, https://waterdata.usgs.gov/nwis/rt (accessed 16 May 2023), 2022.