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Abstract. Most readily available land use/land cover
(LULC) data are developed using growing season remote
sensing images often at annual time steps, but seasonal
changes in remote sensing data can lead to inconsistencies
in LULC classification, which could impact geospatial mod-
els based on LULC. We used the Dynamic World near-real-
time global LULC dataset to compare how geospatial envi-
ronmental models of water quality and hydrology respond
to LULC estimated from growing vs. non-growing season
data for temperate watersheds of the eastern United States.
Non-growing season data resulted in LULC classifications
that had more built area and less tree cover than growing
season data due to seasonal impacts on classifications rather
than actual LULC changes (e.g., quick construction or suc-
cession). In mixed-LULC watersheds, seasonal LULC clas-
sification inconsistencies could lead to differences in model
outputs depending on the LULC season used, such as differ-
ences in watershed nitrogen yields simulated by the Soil and
Water Assessment Tool. Within reason, using separate cali-
bration for each season may compensate for these inconsis-
tencies but lead to different model parameter optimizations.
Our findings provide guidelines on the use of near-real-time
and high-temporal-resolution LULC in geospatial models.

1 Introduction

Environmental models incorporating land use/land cover
(LULC) data are common in many fields including hydrol-
ogy, biogeochemistry, ecology, and climate science, often
with decision-making implications (Hu et al., 2021; Baum-
gartner and Robinson, 2017; Naha et al., 2021; Li et al.,
2021). Studies relating hydrology and water quality to LULC
often use an LULC dataset developed primarily from grow-
ing season data, such as the United States National Land
Cover Database (NLCD; Jin et al., 2019) or Cropland Data
Layer (CDL; Boryan et al., 2011), and/or use an LULC
dataset available at an annual time step (Sulla-Menashe and
Friedl, 2018; Buchhorn et al., 2020; Gray et al., 2022).
Characteristics of LULC (e.g., canopy density and precipi-
tation interception) vary seasonally, particularly in temper-
ate regions where vegetation leaf cover is reduced during the
non-growing season compared to the growing season (van
Beusekom et al., 2014). This has prompted popular hydro-
logical models such as the Soil and Water Assessment Tool
(SWAT; Arnold et al., 1998) to include seasonal cycles for
factors like leaf area and crops (Nkwasa et al., 2020; Frans
et al., 2013). However, there can also be temporal inconsis-
tencies in LULC classifications due to variation in spectral
signals that are often not accounted for, such as built LULC
being classified as other types within the course of a year or
other classes being classified as trees too quickly for natural
succession (Cai et al., 2014; Gómez et al., 2016). Addressing
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temporal inconsistencies is important for accurately identi-
fying LULC change (Sexton et al., 2013; Liu and Cai, 2012;
Hermosilla et al., 2018), and various approaches have been
developed that include incorporating time as a co-dependent
in the classifier to remove illogical changes (Graesser et
al., 2022) and probability-based statistics to separate noise
from trends (Zhu et al., 2012; Zhu and Woodcock, 2014;
Sulla-Menashe et al., 2019; Zhao et al., 2019). However,
these approaches are typically not readily incorporated into
watershed-scale hydrologic and water quality model frame-
works, which take pre-classified LULC as model input (Li
et al., 2019). These models are known to be sensitive to ac-
tual LULC changes over longer (e.g., > 10-year) time spans,
such as forests being converted to other LULC types (Li et
al., 2019; Basu et al., 2022).

Present-day high-temporal-resolution LULC datasets,
such as the global Dynamic World dataset (Brown et al.,
2022), can facilitate the study of non-growing season and
near-real-time impacts of LULC classifications on environ-
mental models, including those of hydrology and water qual-
ity. Dynamic World, which has a 10 m spatial resolution at
5 d intervals from Sentinel-2 satellites (2A and 2B), has clas-
sification accuracy comparable to other LULC datasets in-
cluding the NLCD, European Space Agency WorldCover,
and Esri Land Cover data (Venter et al., 2022; Brown et
al., 2022), and its 5 d temporal resolution is much more fre-
quent than the annual-or-longer frequency of other common
LULC datasets. This high spatiotemporal resolution creates
unprecedented opportunities for modelers to study the im-
pacts of phenomena such as emerging settlements, agricul-
tural dynamics, and forest conversion on outputs such as
ecosystem dynamics and biogeochemical budgets (Brown et
al., 2022). For environmental research to take advantage of
these high-temporal-resolution data, we need to understand
the impacts of potential seasonal variation in LULC esti-
mates on geospatial models, which use LULC data to sup-
port water resource management across the globe (Fu et al.,
2019; Guo et al., 2020; Murphy, 2020). Evaluation of LULC
products at high spatiotemporal resolution is an important
research need with vast societal implications (Radeloff et al.,
2024).

Worldwide, investigations of LULC impacts on hydrol-
ogy and water quality often employ regression-based mod-
els (Fu et al., 2019; Dow and Zampella, 2000), SWAT mod-
els simulating LULC change (Ni et al., 2021; Tong et al.,
2009), and/or SWAT model configurations compared objec-
tively to evaluate model performance (Fuka et al., 2012; Li
et al., 2019). We used the Dynamic World LULC dataset to
demonstrate how estimates of LULC can change between
the growing and non-growing seasons (note that estimates
of LULC could change due to real transitions or due to illog-
ical classification inconsistencies described above). We then
used a long-term United States National Park Service (NPS)
water quality dataset for temperate watersheds in the east-
ern United States, along with the above hydrologic and water

Figure 1. Study area map showing active monitoring sites and
all (active+ historic) watersheds. Sources: Esri, DeLorme, HERE,
MapmyIndia.

quality models, to assess the use of seasonally based LULC
classifications as an input for three modeling cases ranging
from low to high complexity. We asked the following ques-
tions: how different are model outputs (effect sizes) when
using growing vs. non-growing season LULC inputs, and are
there differences in calibrated model performance if growing
vs. non-growing season LULC input is used? We hypothe-
sized that watersheds with mixed land cover types (e.g., a
combination of built and trees) would have the greatest vari-
ability in land cover classification between growing and non-
growing seasons due to heightened temporal inconsistencies,
which could carry over into sensitivities for watershed-scale
geospatial models.

2 Materials and methods

2.1 Study area and data

Our study area was 37 current (plus 18 historic) wadeable
stream water quality sites monitored by the National Park
Service National Capital Region Network (NCRN), with
sites in Maryland; Virginia; West Virginia; and Washington,
DC, USA (case no. 1; Fig. 1). All sites are in the Chesapeake
Bay watershed and were chosen to help inform natural re-
source management (Norris et al., 2011). This includes the
167 km2 Rock Creek watershed of Rock Creek Park (case
no. 2) and the 150 km2 Difficult Run watershed of George
Washington Memorial Parkway (case no. 3), selected from
the above watersheds for having continuous calibration and
evaluation data.
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Specific conductance (SC) can be used as an indicator
of the overall amount of anthropogenic impact to stream
water quality in a watershed (Dow and Zampella, 2000).
SC data from 2005–2018 for our study sites (Norris et al.,
2011) were downloaded from the Water Quality Portal (https:
//www.waterqualitydata.us/, last access: 9 October 2022).
Discrete samples were taken every 1 to 3 months for each
site following data quality controls and protocol (Norris et
al., 2011), with an average of 179± 89 measurements per
site. Median SC values over the entire time period were used
as the indicator of anthropogenic impacts on each stream for
comparison between monitoring sites (Dow and Zampella,
2000). Model calibration data are described in Sect. 2.5.

2.2 Seasonal land cover comparisons

We used Google Earth Engine (Gorelick et al., 2017) to
generate a different Dynamic World LULC dataset for the
growing season (spring equinox to autumn equinox 2016)
and non-growing season (autumn equinox 2015 to spring
equinox 2016) for the monitored watersheds by taking dom-
inant LULC data for each pixel over these time periods, fol-
lowing the suggested approach (Brown et al., 2022). Thus,
there was one composite image for each season (growing
and non-growing) that represented the most common LULC
class for each pixel over the time period of individual im-
ages, for input into the hydrologic and water quality mod-
els. Dynamic World’s built class aggregates both hard struc-
tures (e.g., buildings and parking lots) and the surrounding
vegetation, as is done in other common SWAT LULC inputs
such as NLCD developed classes (Brown et al., 2022; Jin et
al., 2019). We chose the years 2015–2016 because that pe-
riod had the earliest available Dynamic World data and was
nearest to the center of our 2005–2018 time period for water
quality data but repeated the process for every year of avail-
able Dynamic World data (2016–2021) for the Rock Creek
and Difficult Run watersheds to verify there was a seasonal
cycle throughout years (see below). The timing of the data
also aligned with the instance of NLCD data from 2016 for
comparisons.

2.3 Experimental design

Different watersheds were tested in each case to demonstrate
that the seasonal LULC estimate differences were not lim-
ited to a single watershed (Fig. 2). For our water quality re-
gressions (case no. 1), we evaluated how well LULC clas-
sifications based on Dynamic World data from a single sea-
son could identify an LULC forcing, affecting water qual-
ity at the watershed scale, following the common regres-
sion approach used in water quality investigations worldwide
(Fu et al., 2019). We developed quadratic least-squares re-
gression models of median stream SC values over the entire
2005–2018 period for 37 currently monitored NCRN sites
explained by seasonal Dynamic World 2016 built LULC.

Figure 2. Conceptual diagram of the study.

Performance measures R2 and the root mean square error
(RMSE; Willmott et al., 1985) were used to compare mod-
els from different seasons. For the LULC change simula-
tion (case no. 2), we evaluated how a model calibrated to
one LULC season could respond to LULC data from an-
other season, such as when simulating impacts of a water-
shed LULC change, particularly with regards to sensitivity
to potential illogical LULC transitions in the high-temporal-
frequency data. Here, we developed and calibrated SWAT
hydrologic and nitrogen (nitrate N+ nitrite N) yield models
for the Rock Creek watershed, then used them to simulate
a change in LULC classification between growing and non-
growing seasons. For the independently calibrated models
(case no. 3), we assessed the performance of seasonally tuned
models rather than the single model of the LULC change case
to provide a fairer comparison of calibrated model perfor-
mance since each model was optimized to its unique LULC
situation. Here, we developed and calibrated SWAT hydro-
logic models with growing and non-growing season Dy-
namic World 2016 inputs independently of one another for
the Difficult Run watershed. For each case we repeated the
analysis with LULC from the commonly used NLCD 2016
for comparison.

2.4 Soil and Water Assessment Tool

SWAT is the most common water quality model globally (Fu
et al., 2019) and has been used in over 6000 peer-reviewed
studies (https://www.card.iastate.edu/swat_articles/, last ac-
cess: 7 January 2024). The SWAT models (rev. 681) used in
this study simulated streamflow using a water balance ap-
proach (Arnold et al., 1998, 2013), surface runoff using the
runoff curve number (NRCS, 1986), groundwater flow using
a water balance for shallow aquifer storage (Arnold et al.,
1998), snowmelt based on snowpack temperature (Fontaine
et al., 2002), and evapotranspiration using the Penman–
Monteith method (Monteith, 1965; Ritchie, 1972). Nitrogen
yields were simulated based on estimates of runoff, crop use,
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lateral flow, percolation, and concentrations in soil and water
(Arnold et al., 1998). SWAT divides a watershed into spatial
subbasins, which may be further divided into unique com-
binations of soils, land use, and slopes called hydrologic re-
sponse units (HRUs). HRUs are pertinent to this work as their
delineations are in part determined by LULC. HRUs are thus
a mechanism by which differences in LULC classification,
including erroneous differences derived from seasonality in
remote sensing data, can impact the model. Subbasins were
delineated using the program QSWAT. In the development
of the SWAT models, one spatial data layer for each of el-
evation, soils, and LULC (Table S1) was input to generate
tables that represent base watershed conditions (Abbaspour
et al., 2019; Leeper et al., 2015; Lehner et al., 2006; Lindsay,
2014; Sugarbaker et al., 2014; USGS, 2022; USDA, 2022;
Ries et al., 2017). We created a new SWAT LULC lookup
table for QSWAT to read Dynamic World data and recreate
HRUs (Table S2). The Rock Creek models for LULC change
simulation (case no. 2) had 13 subbasins, each assigned the
dominant HRU, as has been done to more efficiently use
computational resources (Myers et al., 2021b; Arabi et al.,
2008). Gridded 4 km gridMET historic weather inputs were
used as the Rock Creek watershed extends over 30 km from
north to south (Abatzoglou, 2013). The Difficult Run SWAT
models (case no. 3) had seven subbasins. Our Difficult Run
watershed SWAT models were constructed so that the max-
imum number of HRUs was incorporated (i.e., no minimum
HRU area threshold), as has been done to compare inde-
pendently calibrated model performance (Fuka et al., 2012),
with weather data from National Oceanic and Atmospheric
Administration (NOAA) station USW00093738 (Table S1).
Further descriptions of model HRU numbers and proportions
of watershed HRU areas with different LULC inputs can be
found in Figs. S4 and S5. We chose the SWAT model for
this study because it can be used to support water resource
decision-making in mixed-LULC watersheds (Koltsida et al.,
2023).

2.5 Sensitivity analysis and calibration

The Rock Creek models (case no. 2) used parameters cali-
brated with a Latin hypercube approach (to generate a large
number of parameter sets; Abbaspour et al., 2004) to the
SWAT model with growing season Dynamic World 2016
inputs, using R-SWAT software (Nguyen et al., 2022). R-
SWAT is an open-source, graphic-interface, parallelizable,
and user-friendly tool to calibrate the SWAT model and ana-
lyze results (Nguyen et al., 2022). The parameters optimized
during the Latin hypercube approach, which had 2500 itera-
tions (based on Nguyen et al., 2022, and Abbaspour et al.,
2004), are shown in Table S3. Calibration and evaluation
data were complete monthly streamflow (n= 108 months)
and nitrogen (n= 10 months) data from the USGS station
01648010 (concentrations converted to loads by multiplying
by streamflow), split with the first half for calibration and the

latter half for evaluation at a monthly time step. The years
2013–2021 were used in the simulations as these were the
years the USGS station had been active for streamflow, and
there was a 3-year model warm-up period (2010–2012) to re-
duce the influence of initial states. The calibrated parameter
set was chosen as having the best performing Nash–Sutcliffe
efficiency (NSE; Nash and Sutcliffe, 1970) values for stream-
flow and nitrogen yield out of the sample of parameter sets.

For case no. 3, sensitivities of Difficult Run watershed
SWAT model performance to specific parameters were an-
alyzed using the density-based PAWN method in the Sensi-
tivity Analysis for Everybody (SAFE) toolbox (Pianosi and
Wagener, 2015; Pianosi et al., 2015; Zadeh et al., 2017). A to-
tal of 8000 SWAT model runs with growing season Dynamic
World 2016 data were used for the sensitivity analysis, based
on Myers et al. (2021a). We analyzed the sensitivity of 35
parameters and then chose the top 10 parameters with sensi-
tivities greater than the dummy parameter to use in the cal-
ibration (Table 1). We then calibrated the Difficult Run wa-
tershed SWAT models at a daily time step using the AMAL-
GAM optimization algorithm (Vrugt and Robinson, 2007)
with 3200 iterations (based on Myers et al., 2021a) and NSE
as the objective function (the metric that the algorithm aims
to maximize) and observed daily streamflow from USGS sta-
tion 01646000 (with the first half for calibration and latter
half for validation; Fig. S1). In addition to NSE, metrics for
the Kling–Gupta efficiency (KGE; Gupta et al., 2009) and a
refined index of agreement (dr; Willmott et al., 2012) were
calculated to confirm our interpretations, with higher values
implying better model performance.

3 Results and discussion

3.1 Seasonal land cover comparisons

The Dynamic World 2016 data classified a greater area of the
55 watersheds as trees during the growing season than dur-
ing the non-growing season, typically by 5 %–10 % of wa-
tershed area (Fig. 3a). During the non-growing season, some
areas classified as trees during the growing season were in-
stead given built or shrubland LULC classes. Differences
in seasonal LULC classifications in Dynamic World data
were strongest in mixed-LULC watersheds (i.e., watersheds
with 15 % to 85 % of the area classified as built LULC) and
weaker in very low built or very high built percentage water-
sheds (R2

= 0.49, df= 52, F = 24.82, p < 0.001; Fig. 3b).
There was a relative mean absolute difference (RMAD) of
9.0 % of the watershed area between NLCD 2016 developed
(including open space, low, medium, and high intensity) and
Dynamic World 2016 growing season built data (5.9 % using
non-growing season built data) for the 37 currently moni-
tored watersheds (Fig. S2 and Table S5).

The differences between seasons were not limited to a sin-
gle year of data or watershed and could be more or less pro-
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Table 1. Parameters used in SWAT model streamflow calibration for the Difficult Run watershed (case no. 3), for model input with growing
and non-growing season Dynamic World 2016 data, as well as the model with NLCD 2016 input. Further descriptions of these parameters
can be found in Table S4.

Symbol Definition∗ Lower Upper Calibrated Calibrated Calibrated
limit limit growing non-growing NLCD 2016

CH_KII.rte Channel hydraulic con-
ductivity (mm h−1) (v)

0.1 150 0.11 3.86 0.14

ALPHA_BNK.rte Bank flow recession
constant (v)

0.01 1 0.14 0.27 1.00

CN_F.mgt Runoff curve number
(r)

−0.2 0.2 −0.17 −0.20 −0.08

SNO50COV.bsn Fraction of
SNOCOVMX for
50 % cover (v)

0.01 0.8 0.03 0.03 0.25

ESCO.hru Soil evaporation
compensation coef. (v)

0.01 1 0.01 0.03 0.35

CH_NII.rte Manning’s n value for
the main channel (v)

0.01 0.30 0.30 0.30 0.30

SOL_BD.sol Soil moist bulk density
(r)

−0.2 0.2 −0.19 −0.01 0.00

SNOCOVMX.bsn Snow depth above
which is 100 % cover
(mm) (v)

0 500 471 496 205

SFTMP.bsn Snowfall temperature
threshold (°C) (v)

0 3 0.95 0.98 1.02

SOL_AWC.sol Available water
capacity (r)

−0.25 0.25 −0.23 −0.25 −0.23

∗ A “v” indicates that the original parameter from QSWAT was replaced by the calibrated value globally, in the same unit. An “r” indicates that the
original parameter was modified relatively, multiplying it regionally by 1+ the calibrated value (e.g., a value of −0.2 reduces the original
parameter by 20 %).

nounced depending on the watershed and time period. For
instance, our study watershed for the LULC change simu-
lation (case no. 2, Rock Creek) showed a 9 % increase in
built LULC and a 12 % decrease in tree area, in non-growing
season relative to growing season Dynamic World data from
2016. Meanwhile, our study watershed for the independently
calibrated models (case no. 3, Difficult Run) showed a 12 %
decrease in tree cover and a 10 % increase in built areas in the
non-growing season compared to the growing season in Dy-
namic World 2016. Over the entire time period of available
Dynamic World estimates for these watersheds, growing sea-
son LULC estimates generally had more tree area, while the
non-growing season had more built area, and 2016 had the
most pronounced differences (Fig. 3c–f). For 2019, when the
next instance of NLCD is available for comparisons, differ-
ences between non-growing and growing season estimates
would be less pronounced for the Rock Creek watershed
(+5 % built area and−8 % trees) but approximately the same
as 2016 for the Difficult Run watershed (+10 % built area

and −11 % trees). In some years such as 2017–2018 the re-
lationship could be reversed. Potential causes for these dif-
ferences include vegetation phenology (e.g., green up) af-
fected by climate (Khodaee et al., 2022) or measurement
artifacts such as atmospheric conditions (aerosol scattering,
water vapor, and absorption of light) and reflectance (bidi-
rectional reflectance and zenith angle), which can cause non-
random errors in top-of-atmosphere readings used for clas-
sifying LULC (Zhang et al., 2018; Kaufman, 1984; Rumora
et al., 2020). Dynamic World used a calibrated surface re-
flectance product to train the classifier (Sentinel-2 Level-2A;
L2A) but a top-of-atmosphere product (Sentinel-2 Level 1C;
L1C) to generate the dataset (Brown et al., 2022). Previ-
ous work in our study area has found strong inter-annual
variations across spectral bands in remotely sensed imagery
that were caused by uncorrected atmospheric conditions and
could impact multi-year LULC classification (Sexton et al.,
2013). These differences in atmospheric conditions and re-
flectance would not be corrected for in Dynamic World data
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Figure 3. Dynamic World 2016 data. (a) Difference between growing and non-growing season LULC for 55 watersheds (classes of water,
flooded vegetation, barren, and snow/ice were approximately 1 % of the watershed area, so they were omitted; boxplots show median,
interquartile range (IQR), and outliers outside 1.5 · IQR). (b) Quadratic relationship between built area and the seasonal difference in built
area for 55 watersheds, with 95 % confidence intervals as dashed lines. (c, d) Time series of built-area estimates for the Rock Creek and
Difficult Run watersheds, respectively. (e, f) Same as above but for tree area.

and potentially contribute to differences in classification re-
sults over time.

Changes in LULC estimates between seasons were of-
ten concentrated along forested edges of mixed-LULC ar-
eas (Fig. S3). In these deciduous areas, such as the edges of
mixed residential–forested zones, leaf cover decreases during
the non-growing season, which could expose other types of
LULC underneath or making forest more difficult to distin-
guish from surrounding built area for the classifications. Ac-
tual on-the-ground changes from built LULC to other types
or from other LULC types to trees (e.g., succession) are not
likely to occur within the short (seasonal) time interval be-
tween our LULC composites (Cai et al., 2014).

3.2 Case no. 1: water quality regressions

Median stream water specific conductance (SC) was posi-
tively correlated with Dynamic World 2016 built LULC dur-
ing both seasons (Fig. 4; Table 2). This relationship is ex-

pected and confirms that urban development has a strong
positive effect on surface water salinization (Utz et al., 2022;
Kaushal et al., 2005). The model for growing season built
LULC vs. median SC had an R2 of 0.69, while the same
model for non-growing season LULC had an R2 of 0.70,
and the RMSE’s for both models were within three RMSE
units (150.16 and 148.08, respectively), which suggests sim-
ilar performance. For perspective, a model created with de-
veloped classes from NLCD 2016 had a fit similar to both
seasonal models (R2 of 0.66 and RMSE of 155.91; Table 2),
supporting the fact that Dynamic World could be relevant for
identifying LULC forcings affecting water quality particu-
larly where regional products such as NLCD are not avail-
able.

3.3 Case no. 2: hydrologic and nitrogen yield models

Our Rock Creek watershed SWAT model for streamflow
and nitrogen yield, developed and calibrated using Dy-
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Table 2. Regression models for specific conductance for the growing vs. non-growing seasons of Dynamic World 2016 built data and the
model of NLCD 2016 developed classes (df= 34). CI: upper and lower 95 % confidence intervals. Quadratic equation: ax2

+ bx+ c.

LULC a b c R2 F p value CI (a) CI (b) RMSE

Dynamic World growing season −0.05 10.83 123.65 0.69 37.52 < 0.001 −0.13–0.02 4.58-17.07 150.16
Dynamic World non-growing season −0.04 9.96 113.59 0.70 39.07 < 0.001 −0.11–0.02 3.70-16.21 148.08
NLCD 2016 −0.05 11.03 49.04 0.66 33.57 < 0.001 −0.13–0.03 3.30-18.76 155.91

Figure 4. Modeled median specific conductance (SC) for 37 water-
sheds comparing Dynamic World 2016 growing and non-growing
season built and NLCD 2016 developed LULC, with 95 % confi-
dence intervals as dashed lines.

namic World 2016 growing season data, performed with
a streamflow calibration NSE of 0.56 (validation NSE of
0.65), nitrogen yield calibration NSE of 0.45 (validation
NSE of 0.80), and nitrogen yield calibration percent bias
(PBIAS; where < 0 implies overestimation bias; Gupta et
al., 1999) of 14.6 % (validation PBIAS of 1.6 %) (Table 3).
As these values are similar to those of previous SWAT eval-
uations in urban watersheds that occurred at monthly time
steps (Basu et al., 2022; Halefom et al., 2017) and other
work with multiple calibration variables (e.g., Myers et al.,
2021b), we concluded that the model developed with Dy-
namic World 2016 growing season data reliably simulated
real conditions at a monthly time step (Fig. 5a, b; red cir-
cles). When the calibrated parameter adjustments were trans-
ferred to the SWAT model developed with non-growing sea-
son LULC (as could be done when simulating an actual
LULC change), streamflow performance decreased by ap-
proximately 0.30 NSE units and nitrogen yield PBIAS be-
came−34.4 % to−57.4 %, implying overestimation of nitro-
gen (Table 3; Fig. 5a, b; blue circles). Note that both models
were run over the same time period to compare performance.
Also, the model simulated 50 % greater nitrogen yield over
the entire 2013–2021 time period when non-growing sea-
son Dynamic World 2016 data were used as the LULC in-
put, rather than growing season LULC (Fig. 5c). These dis-
crepancies between model outputs are not negligible. In rela-
tive terms, this difference is greater than the current pollutant

load reduction target for Chesapeake Bay of 17 % total ni-
trogen load (Maryland Department of Environment, 2019).
Therefore, we advise taking the potential seasonal variability
in LULC estimates into consideration if used to design wa-
ter quality improvement efforts, particularly when decision-
making is involved or an LULC change is being simulated.
A model could be fit to one season of LULC but have bias
if transferred to a different season of LULC estimates due to
temporal inconsistencies. This aligns with previous work that
found impacts of actual LULC changes on hydrologic model
performance, albeit at longer (e.g., > 10-year) time spans (Li
et al., 2019). Although hydrologic and water quality models
such as SWAT are often developed using LULC classified
primarily in the growing season (e.g., Botero-Acosta et al.,
2022; Avellaneda et al., 2020), the availability of analysis-
ready seasonal LULC data such as Dynamic World makes
evaluations of LULC estimate sensitivity at shorter (i.e., sea-
sonal) time spans pertinent.

The differences observed between models using Dynamic
World LULC were due to the 9 % increase in built areas
in non-growing season Dynamic World 2016 data, which
have more impervious surfaces and a higher runoff curve
number and generate proportionally more water and nutri-
ent runoff than the forested areas which were classified dur-
ing the growing season. This could be particularly problem-
atic when using computationally more efficient SWAT mod-
els that assign subbasin conditions based on the dominant
HRU, as a change in the dominant LULC type in a wa-
tershed could result in different subbasin conditions in the
model greater than the proportional change in LULC. In this
case, using non-growing season instead of growing season
LULC input caused the model to switch two HRUs repre-
senting 21.9 % of watershed area from being populated with
the Dynamic World tree LULC class to the built LULC class
(Figs. S4 and S5). For perspective, the nutrient outputs for
the SWAT model with Dynamic World 2016 growing season
LULC were similar to those simulated by the SWAT model
with NLCD 2016 LULC input using the same parameter ad-
justments (Fig. 5c).

3.4 Case no. 3: independently calibrated hydrologic
models

The individually calibrated SWAT models using growing
season vs. non-growing season Dynamic World 2016 LULC
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Figure 5. (a) Observed vs. simulated monthly discharge for the Rock Creek watershed comparing Dynamic World 2016 growing and non-
growing season built and NLCD 2016 developed LULC. (b) Same for monthly nitrogen (N) yields for Rock Creek. (c) Modeled average
annual nitrogen yields for Rock Creek.

Table 3. Model performance metrics for the calibrated Rock Creek hydrologic model (case no. 2) for streamflow and nitrogen yield, based
on Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE), and percent bias (PBIAS, where < 0 implies overestimation bias), at a
monthly time step. In this case, model parameters were all calibrated to growing season Dynamic World 2016 data to investigate the impacts
of simulating an LULC change using non-growing season data (e.g., the optimized parameter adjustments were kept the same).

SWAT LULC Period Streamflow N yield N yield N yield
input NSE NSE MAE (kg) PBIAS

Dynamic World 2016
growing season

Calibration 0.65 0.45 713 14.6 %

Dynamic World 2016
growing season

Validation 0.56 0.80 909 1.6 %

Dynamic World 2016
non-growing season

Calibration 0.35 −0.53 1177 −34.4 %

Dynamic World 2016
non-growing season

Validation 0.21 −2.00 3205 −57.4 %

NLCD 2016 Calibration 0.71 −1.14 1694 −7.8 %

NLCD 2016 Validation 0.85 −0.33 2364 22.1%

input for the Difficult Run watershed had comparable perfor-
mance when simulating streamflow, despite the differences
in LULC inputs (10 % increase in built areas and 12 % de-
crease in tree cover for the non-growing season LULC in-
put). NSE performance metrics at a daily time step were be-
tween 0.52 and 0.54 for each model with Dynamic World
LULC over the calibration and validation time periods, KGE
was between 0.61 and 0.75, and dr (which by not squaring er-
rors provides a better measure of low-flow performance) only
ranged between 0.68 and 0.70 (Table 4; scatterplots in log
scale to show daily baseflows and time series are presented
in Fig. 6a–d). These are in line with satisfactory perfor-
mance from previous work, particularly considering a daily
time step (Moriasi et al., 2007; Kalin et al., 2010; Basu et
al., 2022). For perspective, the SWAT model calibrated with
NLCD 2016 LULC had an NSE of 0.48 for the calibration
period and 0.47 over the validation period (Table 4). Discrep-
ancies such as underestimated low flows or peaks could re-

flect difficulties in simulating hydrology in urban areas with
complex stormwater pathways, as the Difficult Run water-
shed was 58 % developed area in the NLCD 2016 data. Also,
differences between independently calibrated streamflows
could be smaller than differences with observed data, which
could be due to uncertainties in other non-LULC model in-
puts shared among the calibrations (Basu et al., 2022). At the
HRU level, using growing vs. non-growing season Dynamic
World 2016 LULC in this case resulted in a 12.8 % change
in model HRU tree proportions, which is proportionate to the
change in input tree estimates, as would be expected with the
maximum HRU designation approach (Figs. S4 and S5).

The most sensitive parameters for the Difficult Run water-
shed case were the channel hydraulic conductivity (CH_KII),
bank flow recession coefficient (ALPHA_BNK), and runoff
curve number (CN_F) (Fig. 7). Among these and other sen-
sitive parameters, there were differences in optimized values
depending upon the SWAT LULC input (Table 1). For exam-
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Table 4. Comparison of streamflow performance for calibrated SWAT models developed independently with Dynamic World 2016 growing
season LULC input, Dynamic World 2016 non-growing season LULC input, and NLCD 2016, at a daily time step for the Difficult Run
watershed (case no. 3). Performance indices are R2, the Nash–Sutcliffe efficiency (NSE), the Kling–Gupta efficiency (KGE), and a refined
index of agreement (dr).

SWAT land use input Period R2 NSE KGE dr

Growing season Calibration 0.54 0.53 0.61 0.69
Non-growing season Calibration 0.54 0.54 0.65 0.70
NLCD 2016 Calibration 0.49 0.48 0.56 0.69

Growing season Validation 0.56 0.53 0.73 0.68
Non-growing season Validation 0.57 0.52 0.75 0.68
NLCD 2016 Validation 0.53 0.47 0.69 0.68

Figure 6. Daily discharge models for the Difficult Run watershed displaying a base-10 log so that daily baseflows and low flows are visible,
comparing independently calibrated models with (a) Dynamic World 2016 growing season LULC, (b) Dynamic World 2016 non-growing
season LULC, and (c) NLCD 2016. (d) Time series of Difficult Run modeled discharge.

ple, the CN_F adjustment was optimized to −0.17 for grow-
ing season Dynamic World 2016, −0.20 for non-growing
season Dynamic World 2016, and −0.08 for NLCD 2016
inputs, suggesting that the optimization adjusted runoff pro-
cesses to compensate for the different proportions of LULC.
The difference in forests of 12 % of watershed area between
growing and non-growing season Dynamic World 2016 data

for Difficult Run (Table S5) is as large a difference as real
changes in forests that have been found to cause these sen-
sitivities in model parameters (Li et al., 2019) but was likely
caused by classification variation rather than an actual cycle
from trees to built area and back (Hermosilla et al., 2018).
It is critical to consider that the differences in parameter val-
ues create the potential for the models to respond differently
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Figure 7. PAWN sensitivity analysis results ranking the SWAT pa-
rameters from most to least sensitive, using 8000 samples (N ) and
conditioning intervals (n) of 10. The red line is the “dummy” pa-
rameter, and bars are 95 % confidence intervals. KS: Kolmogorov–
Smirnov statistic. Higher median KS indicates higher sensitivity of
SWAT model streamflow output to the parameter. Readers are di-
rected to Table S4 and Arnold et al. (2013) for further documenta-
tion of these input factors.

to future changes in LULC or climate change due to vari-
ations in unmeasured water balance outputs (Myers et al.,
2021a). Also, although we did not investigate equifinality
using model ensembles for this case, we aimed to limit it
by employing a calibration approach with multiple optimiza-
tion algorithms (AMALGAM; Vrugt and Robinson, 2007)
and calibrating only the most sensitive parameters. Previous
work has found this approach to be robust to equifinality rel-
ative to other factors affecting parameter optimizations such
as calibration/validation time period selection (Myers et al.,
2021a) and model structures (Myers et al., 2021b), and our
findings are in line with previous investigations of LULC in-
put changes impacting SWAT model parameter optimizations
(such as forest conversion causing runoff curve number ad-
justment to relatively vary by 21 %; Li et al., 2019).

3.5 Future directions

Illogical LULC classifications related to seasonal differences
in remote sensing data could be pertinent to models beyond
our cases of regressions and SWAT in the eastern United
States, such as models for which accurate parameterization
of LULC processes is essential for simulating the impacts of
climate change (Glotfelty et al., 2021). For instance, poten-
tial seasonal variation in LULC estimates should be consid-
ered during an LULC update in a modeling approach such as
Hales et al. (2023), where the global hydrologic model GE-
OGloWS is bias-corrected for extreme event forecasting in
underdeveloped regions using a single instance of Dynamic
World data. Our findings show that there is the potential for
discrepancies at least for temperate watersheds in the eastern
United States if the season for the LULC update were not
accounted for. These illogical LULC changes could also be
pertinent for models that can use a mosaic approach to rep-
resent spatial variability in LULC within coarser grid cells
(e.g., CLM5; Lawrence et al., 2019). The mosaic approach

assumes that land surface properties (e.g., water fluxes) are
homogeneously related to the LULC type (Li et al., 2013;
Qin et al., 2023), in which case an illogical conversion of
12 % area from forest to other types (our case no. 3 example)
could carry forward into the models and potentially impact
water and energy flux estimates or parameterizations similar
to an actual LULC change. For instance, deforestation has
previously been shown to alter heat and carbon fluxes and
ecosystem productivity in CLM5 (Marufah et al., 2021; Luo
et al., 2023). Variability within input data subgrids has also
been shown to influence model parameter optimization and
performance simulating hydrology, making it an important
aspect to account for (Samaniego et al., 2010). As models
advance into higher spatiotemporal resolution following in-
creasing computational resources and data availability (e.g.,
Hales et al., 2023), we encourage the modeling community
to be cognizant of the potential impacts of illogical seasonal
LULC change, such as we identified for mixed-LULC ar-
eas of the eastern United States. The strength of the effect
of the illogical seasonal LULC change on the model outputs
and optimized parameters would depend on many factors in-
cluding model processes and spatiotemporal extent. A model
intercomparison study in this regard would likely be a mean-
ingful contribution to the advancement of the field regarding
higher spatiotemporal capabilities.

When using seasonal LULC estimates in hydrologic and
water quality models, we recommend differentiating HRUs
as much as possible (like our approach of maximum HRU
resolution for case no. 3) so that the potential for dispropor-
tionate impacts from the LULC season is minimized. Ag-
gregating HRUs by dominant characteristics over an area
may lead to high variability in responses depending on ar-
eas where estimated LULC changes are substantial enough
to switch dominant HRU LULC characteristics, which in our
second case was two HRUs in the northern part of the water-
shed. However, future work could investigate approaches to
differentiate HRUs that further limit or remove the impacts
of seasonal variation in LULC estimates, such as separating
areas with stable LULC across seasons from those with sub-
stantial LULC variability to isolate the most affected parts of
the watershed. Thus, HRUs that remain unaffected by sea-
sonal changes in LULC estimates would be preserved, while
HRUs with potential for change due to illogical seasonal
LULC transitions could be identified and treated separately.
In this proposed approach, aggregating HRUs may be pos-
sible to resist disproportionate impacts of LULC seasonality
while alleviating computational burdens of large HRU num-
bers. Evaluation of such an approach could help advance the
hydrologic and water quality modeling community regarding
higher-spatiotemporal-resolution LULC capabilities.

The impacts of seasonal land cover inconsistencies on
geospatial models could yield several additional future re-
search directions that build upon our findings. As our study
used watershed-scale water quality and quantity investiga-
tions, further work should investigate how seasonal LULC
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classification inconsistencies could affect assessments of
habitat, biodiversity, land management, ecology, global hy-
drology, and future climate based on LULC change (Yang et
al., 2022; Di Vittorio et al., 2018; Hales et al., 2023; Hood et
al., 2021). It may be particularly useful to explore whether
the high-resolution, high-frequency LULC data could be
used in the LULC change models (e.g., Hood et al., 2021)
to improve the temporal precision of interpolations between
discrete LULC images. Future work could also investigate
how seasonal LULC classification inconsistencies influence
models outside our temperate study area (e.g., mountainous,
arid, tropical, high-latitude, savannah, Mediterranean, con-
tinental) to gain a broader understanding of global geospa-
tial model impacts. The use of high-frequency monitoring
data (Zhang et al., 2023) could be explored to investigate the
influence of high-temporal-resolution LULC on water qual-
ity patterns, as well as whether a modification to environ-
mental models such as time-varying parameters (Li et al.,
2019) could account for the seasonal differences in Dynamic
World LULC classifications. Future research could also in-
corporate LULC pixel probabilities from the Dynamic World
dataset (Brown et al., 2022; Small and Sousa, 2023) into
geospatial models and investigate their utility for environ-
mental fields. Post-processing approaches for high-temporal-
resolution LULC products to address seasonal inconsisten-
cies (Sexton et al., 2013; Liu and Cai, 2012; Hermosilla et al.,
2018; Zhao et al., 2019) could aid in alleviating the impacts
of seasonal inconsistencies that cause model sensitivities as
well. Finally, future work could investigate which seasons
of LULC data are most accurate for different purposes, such
as vegetation or impervious surface classification, and how
causes of year-to-year inconsistencies in seasonal LULC es-
timates could affect models.

4 Conclusions

When seasonal changes in LULC data occur, due to classi-
fication difficulties such as vegetation cycles (e.g., decidu-
ous leaf cover in mixed-LULC areas), hydrologic and water
quality models developed using growing season LULC in-
puts could behave differently from those using non-growing
season LULC (Fig. 8), with meaningful differences for en-
vironmental efforts such as pollutant load reduction targets.
The cause in temperate watersheds is primarily a sensitiv-
ity to changes from built to forest LULC proportions that
affects modeled runoff and nutrient yields, representing tem-
poral classification inconsistencies rather than actual succes-
sion or restoration. Environmental and geospatial researchers
should be aware of this sensitivity when developing models
and assessing changes in LULC as they relate to water quan-
tity and quality, especially when considering the use of dif-
ferent seasons of available LULC data in a model. The sea-
sonal variation in Dynamic World LULC data we identified
is pertinent for environmental models of future climates, bio-

Figure 8. Conceptual diagram of the conclusions of the study in
temperate watersheds of the eastern United States.

diversity, habitat loss, land management, ecology, and bio-
geochemistry that are dependent on precise assessments of
LULC change that could be affected by the seasonal classifi-
cation variation. With a limited geographic scope (e.g., tem-
perate watersheds) and small sample of models, our work
does not intend to show definitively when, where, or in
what model configurations these sensitivities would occur
but that they are a possibility that modelers should be aware
of. We discussed future research directions which could ad-
vance capabilities regarding the use of high-spatiotemporal-
resolution global LULC information such as Dynamic World
for geospatial models across disciplines.

Code and data availability. Data from this study, including
the LULC images, water quality data, and model out-
puts from each case, are available from Mendeley Data at
https://doi.org/10.17632/bbb9xbpv22.3 (Myers et al., 2022). Codes
from this study, including Google Earth Engine scripts and those
to reproduce figures and analyses, are available on figshare at
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