Articles | Volume 28, issue 21
https://doi.org/10.5194/hess-28-4861-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4861-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Snowmelt-mediated isotopic homogenization of shallow till soil
Water, Energy and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
Pertti Ala-Aho
Water, Energy and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
Matthias Sprenger
Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Björn Klöve
Water, Energy and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
Hannu Marttila
Water, Energy and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
Related authors
No articles found.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Teemu Juselius-Rajamäki, Sanna Piilo, Susanna Salminen-Paatero, Emilia Tuomaala, Tarmo Virtanen, Atte Korhola, Anna Autio, Hannu Marttila, Pertti Ala-Aho, Annalea Lohila, and Minna Väliranta
EGUsphere, https://doi.org/10.5194/egusphere-2024-2102, https://doi.org/10.5194/egusphere-2024-2102, 2024
Short summary
Short summary
The vegetation can be used to infer the potential climate feedback of peatlands. New studies have shown recent expansion of peatlands but their plant community succession of has not been studied. Although generally described as dry bog-types, our results show that peatland margins in a subarctic fen initiated as wet fen with high methane emissions and shifted to dryer peatland types only after dryer post Little Ice Age climate. Thus, they have acted as a carbon source for most of their history.
Umer Saleem, Ali Torabi Haghighi, Björn Klöve, and Mourad Oussalah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1170, https://doi.org/10.5194/egusphere-2024-1170, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This paper discusses the impact of citizen science and remote sensing on water quality monitoring. It explores applications combining citizen science with tools like microwave and optical systems, assessing parameters and techniques via apps such as EyeOnWater and HydroColor. It highlights the transformative potential in addressing water quality research gaps.
Getnet Demil, Ali Torabi Haghighi, Björn Klöve, and Mourad Oussalah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1158, https://doi.org/10.5194/egusphere-2024-1158, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This review explores using advanced image-based methods to estimate snow parameters for water resource management. Deep learning and satellite imagery improve accuracy in predicting snowmelt and depth. Challenges like data availability persist; addressing them requires novel deep learning architectures and better data synchronization. Integration of image-based approaches can revolutionize snow hydrology modeling and environmental management.
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024, https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Short summary
Stable isotopes of water (described as d-excess) in mountain snowpack can be used to infer proportions of high-elevation snowmelt in stream water. In a Colorado River headwater catchment, nearly half of the water during peak streamflow is derived from melted snow at elevations greater than 3200 m. High-elevation snowpack contributions were higher for years with lower snowpack and warmer spring temperatures. Thus, we suggest that d-excess could serve to assess high-elevation snowpack changes.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Anssi Rauhala, Leo-Juhani Meriö, Anton Kuzmin, Pasi Korpelainen, Pertti Ala-aho, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4343–4362, https://doi.org/10.5194/tc-17-4343-2023, https://doi.org/10.5194/tc-17-4343-2023, 2023
Short summary
Short summary
Snow conditions in the Northern Hemisphere are rapidly changing, and information on snow depth is important for decision-making. We present snow depth measurements using different drones throughout the winter at a subarctic site. Generally, all drones produced good estimates of snow depth in open areas. However, differences were observed in the accuracies produced by the different drones, and a reduction in accuracy was observed when moving from an open mire area to forest-covered areas.
Leo-Juhani Meriö, Anssi Rauhala, Pertti Ala-aho, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4363–4380, https://doi.org/10.5194/tc-17-4363-2023, https://doi.org/10.5194/tc-17-4363-2023, 2023
Short summary
Short summary
Information on seasonal snow cover is essential in understanding snow processes and operational forecasting. We study the spatiotemporal variability in snow depth and snow processes in a subarctic, boreal landscape using drones. We identified multiple theoretically known snow processes and interactions between snow and vegetation. The results highlight the applicability of the drones to be used for a detailed study of snow depth in multiple land cover types and snow–vegetation interactions.
Shiqin Wang, Zhixiong Zhang, Shoucai Wei, Wenbo Zheng, Binbin Liu, Matthias Sprenger, Yanjun Shen, and Yizhang Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-391, https://doi.org/10.5194/hess-2022-391, 2023
Revised manuscript not accepted
Short summary
Short summary
By seasonal isotopic signatures of precipitation and groundwater, we obtained the mechanism of groundwater recharge dominated by preferential soil flow and the cause of nitrate variation. Large pores in soils accelerate the infiltration of water and contamination, increasing groundwater recharge while increasing the risk of contamination.Groundwater recharge shows different hysteresis characteristics due to the combination of geological and anthropogenic factors.
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022, https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
Short summary
Our catchment-scale transit time modeling study shows that including stable isotope data on evapotranspiration in addition to the commonly used stream water isotopes helps constrain the model parametrization and reveals that the water taken up by plants has resided longer in the catchment storage than the water leaving the catchment as stream discharge. This finding is important for our understanding of how water is stored and released, which impacts the water availability for plants and humans.
Matthias Sprenger, Pilar Llorens, Carles Cayuela, Francesc Gallart, and Jérôme Latron
Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019, https://doi.org/10.5194/hess-23-2751-2019, 2019
Short summary
Short summary
We find that the stable isotopic compositions of mobile and matrix bound soil water are continuously different over 8 months. Long-term data further show that these isotopic differences result from the refilling of small soil pores by isotopically depleted rains during low soil moisture conditions. Thus, subsurface water is not well mixed, but flow velocities and storage in soils are highly variable; this has important implications for ecohydrological studies and soil hydrological modeling.
Tanja de Boer-Euser, Leo-Juhani Meriö, and Hannu Marttila
Hydrol. Earth Syst. Sci., 23, 125–138, https://doi.org/10.5194/hess-23-125-2019, https://doi.org/10.5194/hess-23-125-2019, 2019
Short summary
Short summary
The root zone storage capacity (Sr) of the vegetation is an important hydrological parameter. This study used a relatively new method based on climate data to estimate Sr values in boreal regions, instead of using soil data. The study shows that the climate-derived Sr values are not only linked to climate, but can also be directly linked to vegetation characteristics, and that the (non-)coincidence of snow melt and potential evaporation can have a large influence on the derived Sr values.
Nizar Abou Zaki, Ali Torabi Haghighi, Pekka M. Rossi, Mohammad J. Tourian, and Bjørn Klove
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-471, https://doi.org/10.5194/hess-2018-471, 2018
Preprint withdrawn
Short summary
Short summary
Groundwater is considered a main source of fresh water in semi-arid climatic zones, especially for agricultural usage. This study compares in-situ groundwater volume variation measurements with GRACE derived water mass data. The study concludes the possibility of using GRACE data to monitor groundwater depletion in catchments that lack measured data. GRACE data can here help in drawing general conclusions for integrated water resources management, and sustainable usage of this resources.
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.
Pertti Ala-aho, Doerthe Tetzlaff, James P. McNamara, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, https://doi.org/10.5194/hess-21-5089-2017, 2017
Short summary
Short summary
We used the Spatially Distributed Tracer-Aided Rainfall-Runoff model (STARR) to simulate streamflows, stable water isotope ratios, snowpack dynamics, and water ages in three snow-influenced experimental catchments with exceptionally long and rich datasets. Our simulations reproduced the hydrological observations in all three catchments, suggested contrasting stream water age distributions between catchments, and demonstrated the importance of snow isotope processes in tracer-aided modelling.
Matthias Sprenger, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, https://doi.org/10.5194/hess-21-3839-2017, 2017
Short summary
Short summary
We sampled the isotopic composition in the top 20 cm at four different sites in the Scottish Highlands at 5 cm intervals over 1 year. The relationship between the soil water isotopic fractionation and evapotranspiration showed a hysteresis pattern due to a lag response to onset and offset of the evaporative losses. The isotope data revealed that vegetation had a significant influence on the soil evaporation with evaporation being double from soils beneath Scots pine compared to heather.
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
P. Ala-aho, P. M. Rossi, and B. Kløve
Hydrol. Earth Syst. Sci., 19, 1961–1976, https://doi.org/10.5194/hess-19-1961-2015, https://doi.org/10.5194/hess-19-1961-2015, 2015
Short summary
Short summary
We present a novel simulation method for estimating spatially distributed and transient groundwater recharge in unconfined sandy aquifers. The approach uses field data for the most important parameters affecting groundwater recharge and accounts for parameter uncertainty. The results show that tree canopy cover is the most important factor in controlling groundwater recharge at our study area. Tree canopy is thinned by forestry, which may lead to a significant increase of groundwater recharge.
E. Isokangas, K. Rozanski, P. M. Rossi, A.-K. Ronkanen, and B. Kløve
Hydrol. Earth Syst. Sci., 19, 1247–1262, https://doi.org/10.5194/hess-19-1247-2015, https://doi.org/10.5194/hess-19-1247-2015, 2015
Short summary
Short summary
An iterative isotope mass balance approach was used to quantify the groundwater dependence of 67 kettle lakes and ponds. A quantitative measure for the dependence of a lake on groundwater (G index) introduced in this study revealed generally large groundwater dependency among the lakes. The isotope mass balance approach proved to be especially useful when the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions needs to be determined.
T. P. Karjalainen, P. M. Rossi, P. Ala-aho, R. Eskelinen, K. Reinikainen, B. Kløve, M. Pulido-Velazquez, and H. Yang
Hydrol. Earth Syst. Sci., 17, 5141–5153, https://doi.org/10.5194/hess-17-5141-2013, https://doi.org/10.5194/hess-17-5141-2013, 2013
Related subject area
Subject: Vadose Zone Hydrology | Techniques and Approaches: Theory development
Hydro-pedotransfer functions: a roadmap for future development
The dimensions of deep-layer soil desiccation and its impact on xylem hydraulic conductivity in dryland tree plantations
Prediction of absolute unsaturated hydraulic conductivity – comparison of four different capillary bundle models
Prediction of the absolute hydraulic conductivity function from soil water retention data
Mixed formulation for an easy and robust numerical computation of sorptivity
Signal contribution of distant areas to cosmic-ray neutron sensors – implications for footprint and sensitivity
Technical note: A sigmoidal soil water retention curve without asymptote that is robust when dry-range data are unreliable
Compaction effects on evaporation and salt precipitation in drying porous media
Evaporation front and its motion
Hysteresis in soil hydraulic conductivity as driven by salinity and sodicity – a modeling framework
HESS Opinions: Unsaturated infiltration – the need for a reconsideration of historical misconceptions
Sigmoidal water retention function with improved behaviour in dry and wet soils
The challenges of an in situ validation of a nonequilibrium model of soil heat and moisture dynamics during fires
Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices
Beyond Perrault's experiments: repeatability, didactics and complexity
Mechanisms of consistently disjunct soil water pools over (pore) space and time
Energy states of soil water – a thermodynamic perspective on soil water dynamics and storage-controlled streamflow generation in different landscapes
Hydrological characterization of cave drip waters in a porous limestone: Golgotha Cave, Western Australia
Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone
Soil water migration in the unsaturated zone of semiarid region in China from isotope evidence
Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time
A thermodynamic formulation of root water uptake
Soil–aquifer phenomena affecting groundwater under vertisols: a review
How effective is river restoration in re-establishing groundwater–surface water interactions? – A case study
Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region
Relations between macropore network characteristics and the degree of preferential solute transport
Impacts of conservation tillage on the hydrological and agronomic performance of Fanya juus in the upper Blue Nile (Abbay) river basin
Averaged water potentials in soil water and groundwater, and their connection to menisci in soil pores, field-scale flow phenomena, and simple groundwater flows
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Nana He, Xiaodong Gao, Dagang Guo, Yabiao Wu, Dong Ge, Lianhao Zhao, Lei Tian, and Xining Zhao
Hydrol. Earth Syst. Sci., 28, 1897–1914, https://doi.org/10.5194/hess-28-1897-2024, https://doi.org/10.5194/hess-28-1897-2024, 2024
Short summary
Short summary
Deep-layer soil desiccation (DSD) can restrict the sustainability of deep-rooted plantations in water-limited areas. Thus, we explored the extreme effects of DSD based on mass data published and measured on the Loess Plateau and found that the permanent wilting point is a reliable indicator of the moisture limitation of DSD, regardless of tree species, with the corresponding maximum root water uptake depth varying among climatic zones. These dimensions increased the risk of planted trees' death.
Andre Peters, Sascha C. Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 4579–4593, https://doi.org/10.5194/hess-27-4579-2023, https://doi.org/10.5194/hess-27-4579-2023, 2023
Short summary
Short summary
While various expressions for the water retention curve are commonly compared, the capillary conductivity model proposed by Mualem is widely used but seldom compared to alternatives. We compare four different capillary bundle models in terms of their ability to fully predict the hydraulic conductivity. The Mualem model outperformed the three other models in terms of predictive accuracy. Our findings suggest that the widespread use of the Mualem model is justified.
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary
Short summary
The soil hydraulic conductivity function is usually predicted from the water retention curve (WRC) with the requirement of at least one measured conductivity data point for scaling the function. We propose a new scheme of absolute hydraulic conductivity prediction from the WRC without the need of measured conductivity data. Testing the new prediction with independent data shows good results. This scheme can be used when insufficient or no conductivity data are available.
Laurent Lassabatere, Pierre-Emmanuel Peyneau, Deniz Yilmaz, Joseph Pollacco, Jesús Fernández-Gálvez, Borja Latorre, David Moret-Fernández, Simone Di Prima, Mehdi Rahmati, Ryan D. Stewart, Majdi Abou Najm, Claude Hammecker, and Rafael Angulo-Jaramillo
Hydrol. Earth Syst. Sci., 27, 895–915, https://doi.org/10.5194/hess-27-895-2023, https://doi.org/10.5194/hess-27-895-2023, 2023
Short summary
Short summary
Sorptivity is one of the most important parameters for quantifying water infiltration into soils. In this study, we propose a mixed formulation that avoids numerical issues and allows for the computation of sorptivity for all types of models chosen for describing the soil hydraulic functions and all initial and final conditions. We show the benefits of using the mixed formulation with regard to modeling water infiltration into soils.
Martin Schrön, Markus Köhli, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 27, 723–738, https://doi.org/10.5194/hess-27-723-2023, https://doi.org/10.5194/hess-27-723-2023, 2023
Short summary
Short summary
This paper presents a new analytical concept to answer long-lasting questions of the cosmic-ray neutron sensing community, such as
what is the influence of a distant area or patches of different land use on the measurement signal?or
is the detector sensitive enough to detect a change of soil moisture (e.g. due to irrigation) in a remote field at a certain distance?The concept may support signal interpretation and sensor calibration, particularly in heterogeneous terrain.
Gerrit Huibert de Rooij
Hydrol. Earth Syst. Sci., 26, 5849–5858, https://doi.org/10.5194/hess-26-5849-2022, https://doi.org/10.5194/hess-26-5849-2022, 2022
Short summary
Short summary
The way soils capture infiltrating water affects crops and natural vegetation as well as groundwater recharge. This retention of soil water is captured by a mathematical function that covers all water contents from very dry to water-saturated. Unfortunately, data in the dry range are often absent or unreliable. I modified an earlier function to be more robust in the absence of dry-range data, and present a computer program to estimate the parameters of the new function.
Nurit Goldberg-Yehuda, Shmuel Assouline, Yair Mau, and Uri Nachshon
Hydrol. Earth Syst. Sci., 26, 2499–2517, https://doi.org/10.5194/hess-26-2499-2022, https://doi.org/10.5194/hess-26-2499-2022, 2022
Short summary
Short summary
In this work the interactions between soil compaction, evaporation, and salt accumulation at the vadose zone are discussed. Changes at the micro and macro scales of the soil physical and hydraulic properties were studied using high-resolution imagining techniques, alongside column experiments, aiming to characterize water flow and evaporation processes at natural, compacted, and tilled soil conditions. In addition, salt accumulation at the soil profile was examined for these setups.
Jiří Mls
Hydrol. Earth Syst. Sci., 26, 397–406, https://doi.org/10.5194/hess-26-397-2022, https://doi.org/10.5194/hess-26-397-2022, 2022
Short summary
Short summary
In the paper the evaporation front is considered the interface that separates the wet part of a porous medium from its dry surroundings, and its exact definition in time and space is given. Subsequently, the law of the front's motion is derived. The general problem governing completely the front's motion is formulated and, for a special case, solved numerically. It is shown that the solution makes it possible to locate the rate of vaporization in time and space.
Isaac Kramer, Yuval Bayer, Taiwo Adeyemo, and Yair Mau
Hydrol. Earth Syst. Sci., 25, 1993–2008, https://doi.org/10.5194/hess-25-1993-2021, https://doi.org/10.5194/hess-25-1993-2021, 2021
Short summary
Short summary
Salinity and sodicity can cause irreversible degradation to soil, threatening agricultural production and food security. To date, very little is known about the degree to which soil degradation can be reversible. We introduce a model for describing this partial reversibility (hysteresis) and lay out the experimental procedures necessary for characterizing the soil in this regard. We must shift our focus from degradation measurements to reversal measurements so that we can maintain healthy soils.
Peter F. Germann
Hydrol. Earth Syst. Sci., 25, 1097–1101, https://doi.org/10.5194/hess-25-1097-2021, https://doi.org/10.5194/hess-25-1097-2021, 2021
Short summary
Short summary
This is the last paper submitted by Peter Germann before he died in December 2020. Peter reviews the development of capillary flow theory since the work of Briggs (1897) and Richards (1931), who raised capillary flow to a soil hydrological dogma. Attempts to correct the dogma led to concepts of non-equilibrium flow, macropore flow, and preferential flow during infiltration. Viscous film flow is proposed as an alternative approach to capillarity-driven flow during unsaturated infiltration.
Gerrit Huibert de Rooij, Juliane Mai, and Raneem Madi
Hydrol. Earth Syst. Sci., 25, 983–1007, https://doi.org/10.5194/hess-25-983-2021, https://doi.org/10.5194/hess-25-983-2021, 2021
Short summary
Short summary
The way soils capture infiltrating water affects crops and natural vegetation and groundwater recharge. This retention of soil water is described by a mathematical function that covers all water contents from very dry to water saturated. We combined two existing lines of research to improve the behaviour of a popular function for very dry and very wet conditions. Our new function could handle a wider range of conditions than earlier curves. We provide fits to a wide range of soils.
William J. Massman
Hydrol. Earth Syst. Sci., 25, 685–709, https://doi.org/10.5194/hess-25-685-2021, https://doi.org/10.5194/hess-25-685-2021, 2021
Short summary
Short summary
Increasing fire frequency and severity now poses a threat to most of the world's wildlands and forested ecosystems and their benefits. The HMV (Heat–Moisture–Vapor) model is a tool to manage fuels to help mitigate the consequences of fire and promote soil and vegetation recovery after fire. The model's performance is surprisingly good, but it also provides insights into the existence of previously unobserved feedbacks and other physical processes that occur during fire.
Joost Buitink, Anne M. Swank, Martine van der Ploeg, Naomi E. Smith, Harm-Jan F. Benninga, Frank van der Bolt, Coleen D. U. Carranza, Gerbrand Koren, Rogier van der Velde, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020, https://doi.org/10.5194/hess-24-6021-2020, 2020
Short summary
Short summary
The amount of water stored in the soil is critical for the productivity of plants. Plant productivity is either limited by the available water or by the available energy. In this study, we infer this transition point by comparing local observations of water stored in the soil with satellite observations of vegetation productivity. We show that the transition point is not constant with soil depth, indicating that plants use water from deeper layers when the soil gets drier.
Stefano Barontini and Matteo Settura
Hydrol. Earth Syst. Sci., 24, 1907–1926, https://doi.org/10.5194/hess-24-1907-2020, https://doi.org/10.5194/hess-24-1907-2020, 2020
Short summary
Short summary
More than 300 years after its first appearance, Perrault's De l'origine des fontaines provokes intriguing stimuli and suggestions. We discuss its epistemological relevance through the lens of the repeatability of the experiments, of the didactic aspects which arise for modern teaching of hydrology, and of the author's attitude in facing the complexity of the hydrological processes. The analysis shows that the birth of modern hydrology and the scientific revolution were closely entwined.
Matthias Sprenger, Pilar Llorens, Carles Cayuela, Francesc Gallart, and Jérôme Latron
Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019, https://doi.org/10.5194/hess-23-2751-2019, 2019
Short summary
Short summary
We find that the stable isotopic compositions of mobile and matrix bound soil water are continuously different over 8 months. Long-term data further show that these isotopic differences result from the refilling of small soil pores by isotopically depleted rains during low soil moisture conditions. Thus, subsurface water is not well mixed, but flow velocities and storage in soils are highly variable; this has important implications for ecohydrological studies and soil hydrological modeling.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Kashif Mahmud, Gregoire Mariethoz, Andy Baker, and Pauline C. Treble
Hydrol. Earth Syst. Sci., 22, 977–988, https://doi.org/10.5194/hess-22-977-2018, https://doi.org/10.5194/hess-22-977-2018, 2018
Short summary
Short summary
This study explores the relationship between drip water and rainfall in a SW Australian karst, where both intra- and interannual hydrological variations are strongly controlled by seasonal variations in recharge. The hydrological behavior of cave drips is examined at daily resolution with respect to mean discharge and the flow variation. We demonstrate that the analysis of the time series produced by cave drip loggers generates useful hydrogeological information that can be applied generally.
Matthias Sprenger, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, https://doi.org/10.5194/hess-21-3839-2017, 2017
Short summary
Short summary
We sampled the isotopic composition in the top 20 cm at four different sites in the Scottish Highlands at 5 cm intervals over 1 year. The relationship between the soil water isotopic fractionation and evapotranspiration showed a hysteresis pattern due to a lag response to onset and offset of the evaporative losses. The isotope data revealed that vegetation had a significant influence on the soil evaporation with evaporation being double from soils beneath Scots pine compared to heather.
Yonggang Yang and Bojie Fu
Hydrol. Earth Syst. Sci., 21, 1757–1767, https://doi.org/10.5194/hess-21-1757-2017, https://doi.org/10.5194/hess-21-1757-2017, 2017
Short summary
Short summary
This paper investigates soil water migration processes in the Loess Plateau using isotopes. The soil water migration is dominated by piston-type flow, but rarely preferential flow. Soil water from the soil lay (20–40 cm) contributed to 6–12% of plant xylem water, while soil water at the depth of 40–60 cm is the largest component (range from 60 to 66 %), soil water below 60 cm depth contributed 8–14 % to plant xylem water, and only 5–8 % is derived from precipitation.
M. Levent Kavvas, Ali Ercan, and James Polsinelli
Hydrol. Earth Syst. Sci., 21, 1547–1557, https://doi.org/10.5194/hess-21-1547-2017, https://doi.org/10.5194/hess-21-1547-2017, 2017
Short summary
Short summary
In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. By the introduction of the Brooks–Corey constitutive relationships, an explicit form of the equations is obtained. The developed governing equations, in their fractional time but integer space forms, show behavior consistent with the previous experimental observations.
Anke Hildebrandt, Axel Kleidon, and Marcel Bechmann
Hydrol. Earth Syst. Sci., 20, 3441–3454, https://doi.org/10.5194/hess-20-3441-2016, https://doi.org/10.5194/hess-20-3441-2016, 2016
Short summary
Short summary
This theoretical paper describes the energy fluxes and dissipation along the flow paths involved in root water uptake, an approach that is rarely taken. We show that this provides useful additional insights for understanding the biotic and abiotic impediments to root water uptake. This approach shall be applied to explore efficient water uptake strategies and help locate the limiting processes in the complex soil–plant–atmosphere system.
D. Kurtzman, S. Baram, and O. Dahan
Hydrol. Earth Syst. Sci., 20, 1–12, https://doi.org/10.5194/hess-20-1-2016, https://doi.org/10.5194/hess-20-1-2016, 2016
Short summary
Short summary
Vertisols are cracking clayey, arable soils that often overlay groundwater reservoirs. The soil cracks enable flow that bypasses soil blocks, which results in both relatively fresh recharge of the underlying groundwater and contamination with reactive contaminants. These special phenomena, as well as unique mechanism of salinization after cultivation and relative resilience to contamination by nitrate typical to groundwater under vertisols, are reviewed in this study.
A.-M. Kurth, C. Weber, and M. Schirmer
Hydrol. Earth Syst. Sci., 19, 2663–2672, https://doi.org/10.5194/hess-19-2663-2015, https://doi.org/10.5194/hess-19-2663-2015, 2015
Short summary
Short summary
This study investigates the effects of river restoration on groundwater–surface water interactions in a losing urban stream. Investigations were performed using Distributed Temperature Sensing (DTS). The results indicate that the highest surface water downwelling occurred at the tip of a gravel island newly installed during river restoration, leading to the conclusion that in this specific setting, river restoration was effective in locally enhancing groundwater–surface water interactions.
F. Ries, J. Lange, S. Schmidt, H. Puhlmann, and M. Sauter
Hydrol. Earth Syst. Sci., 19, 1439–1456, https://doi.org/10.5194/hess-19-1439-2015, https://doi.org/10.5194/hess-19-1439-2015, 2015
Short summary
Short summary
Soil moisture was observed along a strong semi-arid climatic gradient in a Mediterranean karst area. Soil moisture data and soil hydraulic modelling with Hydrus-1D revealed a strong dependency of percolation fluxes with rainfall amounts and intensity during heavy rainfall events. Spatial and temporal extrapolation of the model illustrated the high variability of seasonal percolation amounts among single years and showed strong correlations between soil depth and potential groundwater recharge.
M. Larsbo, J. Koestel, and N. Jarvis
Hydrol. Earth Syst. Sci., 18, 5255–5269, https://doi.org/10.5194/hess-18-5255-2014, https://doi.org/10.5194/hess-18-5255-2014, 2014
Short summary
Short summary
The characteristics of the macropore network determine the potential for fast transport of solutes through soil. Such characteristics computed from 3-dimensional X-ray tomography images were combined with measured solute breakthrough curves and near-saturated hydraulic conductivities. At a given flow rate, smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities resulted in a greater degree of preferential transport.
M. Temesgen, S. Uhlenbrook, B. Simane, P. van der Zaag, Y. Mohamed, J. Wenninger, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 16, 4725–4735, https://doi.org/10.5194/hess-16-4725-2012, https://doi.org/10.5194/hess-16-4725-2012, 2012
G. H. de Rooij
Hydrol. Earth Syst. Sci., 15, 1601–1614, https://doi.org/10.5194/hess-15-1601-2011, https://doi.org/10.5194/hess-15-1601-2011, 2011
Cited articles
Aguzzoni, A., Engel, M., Zanotelli, D., Penna, D., Comiti, F., and Tagliavini, M.: Water uptake dynamics in apple trees assessed by an isotope labeling approach, Agr. Water Manage., 266, 107572, https://doi.org/10.1016/j.agwat.2022.107572, 2022.
Ala-Aho, P., Welker, J. M., Bailey, H., Pedersen, S. H., Kopec, B., Klein, E., Mellat, M., Mustonen, K. R., Noor, K., and Marttila, H.: Arctic Snow Isotope Hydrology: A Comparative Snow-Water Vapor Study, Atmosphere, 12, 150, https://doi.org/10.3390/ATMOS12020150, 2021a.
Ala-Aho, P., Autio, A., Bhattacharjee, J., Isokangas, E., Kujala, K., Marttila, H., Menberu, M., Meriö, L. J., Postila, H., Rauhala, A., Ronkanen, A. K., Rossi, P. M., Saari, M., Haghighi, A. T., and Klove, B.: What conditions favor the influence of seasonally frozen ground on hydrological partitioning? A systematic review, Environ. Res. Lett., 16, 043008, https://doi.org/10.1088/1748-9326/ABE82C, 2021b.
Ala-Aho, P., Muhic, F., and Marttila, H.: Stable water isotopes (18O and 2H) of soil waters and groundwater at Pallas Kenttärova, University of Oulu, https://doi.org/10.23729/f4669605-a553-4149-8fdd-8b7f6860ca33, 2023.
Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019.
Appels, W. M., Bogaart, P. W., and van der Zee, S. E. A. T. M.: Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity, Adv. Water Resour., 34, 303–313, https://doi.org/10.1016/J.ADVWATRES.2010.12.003, 2011.
Aurela, M., Lohila, A., Tuovinen, J. P., Hatakka, J., Penttilä, T., and Laurila, T.: Carbon dioxide and energy flux measurements in four northern-boreal ecosystems at Pallas, Boreal Environ. Res., 20, 455–473, 2015.
Autio, A., Ala-Aho, P., Rossi, P. M., Ronkanen, A. K., Aurela, M., Lohila, A., Korpelainen, P., Kumpula, T., Klöve, B., and Marttila, H.: Groundwater exfiltration pattern determination in the sub-arctic catchment using thermal imaging, stable water isotopes and fully-integrated groundwater-surface water modelling, J. Hydrol., 626, 130342, 2023.
Barbeta, A., Burlett, R., Martín–Gómez, P., Fréjaville, B., Devert, N., Wingate, L., Domec, J. C., and Ogée, J.: Evidence for distinct isotopic compositions of sap and tissue water in tree stems: consequences for plant water source identification, New Phytol., 233, 1121–1132, https://doi.org/10.1111/NPH.17857, 2022.
Beria, H., Larsen, J. R., Ceperley, N. C., Michelon, A., Vennemann, T., and Schaefli, B.: Understanding snow hydrological processes through the lens of stable water isotopes, WIRES Water, November 2017, e1311, https://doi.org/10.1002/wat2.1311, 2018.
Berthold, S., Bentley, L. R., and Hayashi, M.: Integrated hydrogeological and geophysical study of depression-focused groundwater recharge in the Canadian prairies, Water Resour. Res., 40, 6505, https://doi.org/10.1029/2003WR002982, 2004.
Beven, K. and Germann, P.: Macropores and water flow in soils revisited, Water Resour. Res, 49, 3071–3092, https://doi.org/10.1002/WRCR.20156, 2013.
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nat. Clim. Change, 7, 263–267, https://doi.org/10.1038/nclimate3240, 2017.
Blume-Werry, G., Wilson, S. D., Kreyling, J., and Milbau, A.: The hidden season: growing season is 50 % longer below than above ground along an arctic elevation gradient, New Phytol., 209, 978–986, https://doi.org/10.1111/NPH.13655, 2016.
Bogner, C., Mirzaei, M., Ruy, S., and Huwe, B.: Microtopography, water storage and flow patterns in a fine-textured soil under agricultural use, Hydrol. Process., 27, 1797–1806, https://doi.org/10.1002/HYP.9337, 2013.
Bowling, D. R., Schulze, E. S., and Hall, S. J.: Revisiting streamside trees that do not use stream water: can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source?, Ecohydrology, 10, 1–12, https://doi.org/10.1002/eco.1771, 2017.
Brooks, J. R., Barnard, H. R., Coulombe, R., and McDonnell, J. J.: Ecohydrologic separation of water between trees and streams in a Mediterranean climate, Nat. Geosci., 3, 100–104, https://doi.org/10.1038/ngeo722, 2010.
Brooks, P. D., Chorover, J., Fan, Y., Godsey, S. E., Maxwell, R. M., McNamara, J. P., and Tague, C.: Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics, Water Resour. Res., 51, 6973–6987, https://doi.org/10.1002/2015WR017039, 2015.
Cey, E. E. and Rudolph, D. L.: Field study of macropore flow processes using tension infiltration of a dye tracer in partially saturated soils, Hydrol. Process., 23, 1768–1779, https://doi.org/10.1002/hyp.7302, 2009.
Chen, G., Auerswald, K., and Schnyder, H.: 2H and 18O depletion of water close to organic surfaces, Biogeosciences, 13, 3175–3186, https://doi.org/10.5194/bg-13-3175-2016, 2016.
Craig, H.: Isotopic Variations in Meteoric Waters, Science, 133, 1702–1703, https://doi.org/10.1126/SCIENCE.133.3465.1702, 1961.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Darboux, F., Davy, P., Gascuel–Odoux, C., and Huang, C.: Evolution of soil surface roughness and flowpath connectivity in overland flow experiments, Catena, 46, 125–139, https://doi.org/10.1016/S0341-8162(01)00162-X, 2002.
de la Casa, J., Barbeta, A., Rodríguez-Uña, A., Wingate, L., Ogée, J., and Gimeno, T. E.: Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments, Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022, 2022.
Delbart, N., Le Toan, T., Kergoat, L., and Fedotova, V.: Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004), Remote Sens. Environ., 101, 52–62, https://doi.org/10.1016/j.rse.2005.11.012, 2006.
Derby, N. E. and Knighton, R. E.: Field-Scale Preferential Transport of Water and Chloride Tracer by Depression-Focused Recharge, J. Environ. Qual., 30, 194–199, https://doi.org/10.2134/JEQ2001.301194X, 2001.
Diao, H., Schuler, P., Goldsmith, G. R., Siegwolf, R. T. W., Saurer, M., and Lehmann, M. M.: Technical note: On uncertainties in plant water isotopic composition following extraction by cryogenic vacuum distillation, Hydrol. Earth Syst. Sci., 26, 5835–5847, https://doi.org/10.5194/hess-26-5835-2022, 2022.
Dubbert, M. and Werner, C.: Water fluxes mediated by vegetation: emerging isotopic insights at the soil and atmosphere interfaces, New Phytol., 221, 1754–1763, https://doi.org/10.1111/NPH.15547, 2019.
Etana, A., Larsbo, M., Keller, T., Arvidsson, J., Schjønning, P., Forkman, J., and Jarvis, N.: Persistent subsoil compaction and its effects on preferential flow patterns in a loamy till soil, Geoderma, 192, 430–436, https://doi.org/10.1016/J.GEODERMA.2012.08.015, 2013.
Evans, S. L., Flores, A. N., Heilig, A., Kohn, M. J., Marshall, H. P., and McNamara, J. P.: Isotopic evidence for lateral flow and diffusive transport, but not sublimation, in a sloped seasonal snowpack, Idaho, USA, Geophys. Res. Lett., 43, 3298–3306, https://doi.org/10.1002/2015GL067605, 2016.
Fabiani, G., Penna, D., Barbeta, A., and Klaus, J.: Sapwood and heartwood are not isolated compartments: Consequences for isotope ecohydrology, Ecohydrology, 15, e2478, https://doi.org/10.1002/ECO.2478, 2022.
Finkenbiner, C. E., Good, S. P., Renée Brooks, J., Allen, S. T., and Sasidharan, S.: The extent to which soil hydraulics can explain ecohydrological separation, Nat. Commun., 13, 1–8, https://doi.org/10.1038/s41467-022-34215-7, 2022.
Flury, M., Flühler, H., Jury, W. A., and Leuenberger, J.: Susceptibility of soils to preferential flow of water: A field study, Water Resour. Res., 30, 1945–1954, https://doi.org/10.1029/94WR00871, 1994.
Foken, T.: Micrometeorology, Micrometeorology, 1–306, https://doi.org/10.1007/978-3-540-74666-9/COVER, 2008.
Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M., Thonicke, K., Zaehle, S., and Reichstein, M.: Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems, Science, 351, 696–699, https://doi.org/10.1126/science.aac4971, 2016.
Frei, S., Lischeid, G., and Fleckenstein, J. H.: Effects of micro-topography on surface–subsurface exchange and runoff generation in a virtual riparian wetland – A modeling study, Adv. Water Resour., 33, 1388–1401, 1388–1401, https://doi.org/10.1016/J.ADVWATRES.2010.07.006, 2010.
Frei, S., Knorr, K. H., Peiffer, S., and Fleckenstein, J. H.: Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: A virtual modeling experiment, J. Geophys. Res.-Biogeo., 117, 0–12, https://doi.org/10.1029/2012JG002012, 2012.
French, H. and Binley, A.: Snowmelt infiltration: monitoring temporal and spatial variability using time-lapse electrical resistivity, J. Hydrol., 297, 174–186, https://doi.org/10.1016/J.JHYDROL.2004.04.005, 2004.
Goldsmith, G. R., Allen, S. T., Braun, S., Engbersen, N., González-Quijano, C. R., Kirchner, J. W., and Siegwolf, R. T. W.: Spatial variation in throughfall, soil, and plant water isotopes in a temperate forest, Ecohydrology, 12, e2059, https://doi.org/10.1002/ECO.2059, 2019.
Geris, J., Tetzlaff, D., McDonnell, J. J., and Soulsby, C.: Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments, Sci. Total Environ., 595, 486–493, https://doi.org/10.1016/J.SCITOTENV.2017.03.275, 2017.
Gonfiantini, R.: Standards for stable isotope measurements in natural compounds, Nature, 271, 534–536, https://doi.org/10.1038/271534a0, 1978.
Good, S. P., Noone, D., and Bowen, G.: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes, Science, 349, 175–177, https://doi.org/10.1126/science.aaa5931, 2015.
Groisman, P. Y., Karl, T. R., and Knight, R. W.: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures, Science, 263, 198–200, https://doi.org/10.1126/science.263.5144.198, 1994.
Hansen, B.: Estimation of surface runoff and water-covered area during filling of surface microrelief depressions, Hydrol. Process., 14, 1235–1243, https://doi.org/10.1002/(SICI)1099-1085(200005)14:7<1235::AID-HYP38>3.0.CO;2-W, 2000.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Chapter02_FINAL.pdf (last access: 4 October 2024), 2024.
Hassol, S. J.: Impacts of a Warming Arctic – Arctic Climate Impact Assessment, in: iwaa, Cambridge University Press, https://www.amap.no/documents/doc/impacts-of-a-warming-arctic-2004/786 (last access: 4 October 2024), 2004.
Hatami, S. and Nazemi, A.: Compound changes in temperature and snow depth lead to asymmetric and nonlinear responses in landscape freeze–thaw, Sci. Rep., 12, 1–13, https://doi.org/10.1038/s41598-022-06320-6, 2022.
Hayashi, M.: The Cold Vadose Zone: Hydrological and Ecological Significance of Frozen-Soil Processes, Vadose Zone J., 12, 1–8, https://doi.org/10.2136/VZJ2013.03.0064, 2013.
Hayashi, M., Van Der Kamp, G., and Schmidt, R.: Focused infiltration of snowmelt water in partially frozen soil under small depressions, J. Hydrol., 270, 214–229, https://doi.org/10.1016/S0022-1694(02)00287-1, 2003.
Henry, H. A. L.: Climate change and soil freezing dynamics: Historical trends and projected changes, Climatic Change, 87, 421–434, https://doi.org/10.1007/s10584-007-9322-8, 2008.
Hölttä, T., Dominguez Carrasco, M. D. R., Salmon, Y., Aalto, J., Vanhatalo, A., Bäck, J., and Lintunen, A.: Water relations in silver birch during springtime: How is sap pressurised?, Plant Biol., 20, 834–847, https://doi.org/10.1111/PLB.12838, 2018.
Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., and Soulsby, C.: What can flux tracking teach us about water age distribution patterns and their temporal dynamics?, Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, 2013.
Hutson, J. L. and Wagenet, R. J.: A Multiregion Model Describing Water Flow and Solute Transport in Heterogeneous Soils, Soil Sci. Soc. Am. J., 59, 743–751, https://doi.org/10.2136/SSSAJ1995.03615995005900030016X, 1995.
Hyman-Rabeler, K. A., and Loheide, S. P.: Drivers of Variation in Winter and Spring Groundwater Recharge: Impacts of Midwinter Melt Events and Subsequent Freezeback, Water Resour. Res., 59, e2022WR032733, https://doi.org/10.1029/2022WR032733, 2023.
Ireson, A. M., van der Kamp, G., Ferguson, G., Nachshon, U., and Wheater, H. S.: Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges, Hydrogeol. J., 21, 53–66, https://doi.org/10.1007/s10040-012-0916-5, 2013.
Jarvis, N. J.: A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality, Eur. J. Soil Sci., 58, 523–546, https://doi.org/10.1111/j.1365-2389.2007.00915.x, 2007.
Jeong, S. J., Ho, C. H., Gim, H. J., and Brown, M. E.: Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008, Glob. Change Biol., 17, 2385–2399, https://doi.org/10.1111/j.1365-2486.2011.02397.x, 2011.
Johansson, P., Lunkka, J. P., and Sarala, P.: The Glaciation of Finland, Developments in Quaternary Science, 15, 105–116, https://doi.org/10.1016/B978-0-444-53447-7.00009-X, 2011.
Kampf, S., Markus, J., Heath, J., and Moore, C.: Snowmelt runoff and soil moisture dynamics on steep subalpine hillslopes, Hydrol. Process., 29, 712–723, https://doi.org/10.1002/HYP.10179, 2015.
Kendall, K. A., Shanley, J. B., and McDonnell, J. J.: A hydrometric and geochemical approach to test the transmissivity feedback hypothesis during snowmelt, J. Hydrol., 219, 188–205, https://doi.org/10.1016/S0022-1694(99)00059-1, 1999.
Klaus, J., Zehe, E., Elsner, M., Külls, C., and McDonnell, J. J.: Macropore flow of old water revisited: experimental insights from a tile-drained hillslope, Hydrol. Earth Syst. Sci., 17, 103–118, https://doi.org/10.5194/hess-17-103-2013, 2013.
Knighton, J., Kuppel, S., Smith, A., Soulsby, C., Sprenger, M., and Tetzlaff, D.: Using isotopes to incorporate tree water storage and mixing dynamics into a distributed ecohydrologic modelling framework, Ecohydrology, 13, e2201, https://doi.org/10.1002/eco.2201, 2020.
Korkiakoski, M., Määttä, T., Peltoniemi, K., Penttilä, T., and Lohila, A.: Excess soil moisture and fresh carbon input are prerequisites for methane production in podzolic soil, Biogeosciences, 19, 2025–2041, https://doi.org/10.5194/bg-19-2025-2022, 2022.
Kulli, B., Gysi, M., and Flühler, H.: Visualizing soil compaction based on flow pattern analysis, Soil and Tillage Research, 70, 29–40, https://doi.org/10.1016/S0167-1987(02)00121-6, 2003.
Larsbo, M. and Jarvis, N.: Simulating Solute Transport in a Structured Field Soil: Uncertainty in Parameter Identification and Predictions, J. Environ. Qual., 34, 621–634, https://doi.org/10.2134/JEQ2005.0621, 2005.
Laudon, H., Seibert, J., Köhler, S., and Bishop, K.: Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff, Water Resour. Res., 40, 3102, https://doi.org/10.1029/2003WR002455, 2004.
Laudon, H., Spence, C., Buttle, J., Carey, S. K., McDonnell, J. J., McNamara, J. P., Soulsby, C., and Tetzlaff, D.: Save northern high-latitude catchments, Nat. Geosci., 10, 324–325, https://doi.org/10.1038/ngeo2947, 2017.
Li, X.-Y., Ma, Y.-J., Zhang, Z.-H., Peng, H.-Y., Zhang, S.-Y., Li, G.-Y., Li, L., Zone, V., Li, X.-Y., Hu, X., Zhang, Z.-H., Peng, H.-Y., Zhang, S.-Y., Li, G.-Y., Li, L., and Ma, Y.-J.: Shrub Hydropedology: Preferential Water Availability to Deep Soil Layer, Vadose Zone J., 12, 1–12, https://doi.org/10.2136/VZJ2013.01.0006, 2013.
Liu, H. and Lin, H.: Frequency and Control of Subsurface Preferential Flow: From Pedon to Catchment Scales, Soil Sci. Soc. Am. J., 79, 362–377, https://doi.org/10.2136/SSSAJ2014.08.0330, 2015.
Lohila, A., Penttiliä, T., Jortikka, S., Aalto, T., Anttila, P., Asmi, E., Aurela, M., Hatakka, J., Hellén, H., Henttonen, H., Hänninen, P., Kilkki, J., Kyllönen, K., Laurila, T., Lepistö, A., Lihavainen, H., Makkonen, U., Paatero, J., Rask, M., and Sutinen, R.: Preface to the special issue on integrated research of atmosphere, ecosystem and environment at Pallas, Boreal Environ. Res., 20, 431–454, 2015.
Luo, L., Lin, H., and Halleck, P.: Quantifying Soil Structure and Preferential Flow in Intact Soil Using X-ray Computed Tomography, Soil Sci. Soc. Am. J., 72, 1058–1069, https://doi.org/10.2136/SSSAJ2007.0179, 2008.
Määttä, T.: Methane flux changes during irrigation experiment in boreal upland forest soil, Master's thesis, University of Helsinki, faculty of science, department of geosciences and geography, division of geography, https://helda.helsinki.fi/items/daec65cb-4f05-46ea-9474-00a1ff775f71 (last access: 1 October 2024), 2020.
Magh, R. K., Eiferle, C., Burzlaff, T., Dannenmann, M., Rennenberg, H., and Dubbert, M.: Competition for water rather than facilitation in mixed beech-fir forests after drying-wetting cycle, J. Hydrol., 587, 124944, https://doi.org/10.1016/j.jhydrol.2020.124944, 2020.
Manning, G., Fuller, L. G., Eilers, R. G., and Florinsky, I.: Topographic influence on the variability of soil properties within an undulating Manitoba landscape, Can. J. Soil Sci., 81, 439–447, https://doi.org/10.4141/S00-057, 2001.
Martín-Gómez, P., Barbeta, A., Voltas, J., Peñuelas, J., Dennis, K., Palacio, S., Dawson, T. E., and Ferrio, J. P.: Isotope-ratio infrared spectroscopy: A reliable tool for the investigation of plant-water sources?, New Phytol., 207, 914–927, https://doi.org/10.1111/NPH.13376, 2015.
Marttila, H., Lohila, A., Ala–Aho, P., Noor, K., Welker, J. M., Croghan, D., Mustonen, K., Meriö, L. J., Autio, A., Muhic, F., Bailey, H., Aurela, M., Vuorenmaa, J., Penttilä, T., Hyöky, V., Klein, E., Kuzmin, A., Korpelainen, P., Kumpula, T., Rauhala, A., and Kløve, B.: Subarctic catchment water storage and carbon cycling – Leading the way for future studies using integrated datasets at Pallas, Finland, Hydrol. Process., 35, e14350, https://doi.org/10.1002/HYP.14350, 2021.
McDonnell, J. J.: A Rationale for Old Water Discharge Through Macropores in a Steep, Humid Catchment, Water Resour. Res., 26, 2821–2832, https://doi.org/10.1029/WR026I011P02821, 1990.
McDonnell, J. J.: The two water worlds hypothesis: ecohydrological separation of water between streams and trees? WIRES Water, 1, 323–329, https://doi.org/10.1002/wat2.1027, 2014.
Michelon, A., Ceperley, N., Beria, H., Larsen, J., Vennemann, T., and Schaefli, B.: Hydrodynamics of a high Alpine catchment characterized by four natural tracers, Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023, 2023.
Millar, C., Pratt, D., Schneider, D. J., and McDonnell, J. J.: A comparison of extraction systems for plant water stable isotope analysis, Rapid Commun. Mass Sp., 32, 1031–1044, https://doi.org/10.1002/RCM.8136, 2018.
Mioduszewski, J. R., Rennermalm, A. K., Robinson, D. A., and Mote, T. L.: Attribution of snowmelt onset in Northern Canada, J. Geophys. Res.-Atmos., 119, 9638–9653, https://doi.org/10.1002/2013JD021024, 2014.
Mohammed, A. A., Kurylyk, B. L., Cey, E. E., and Hayashi, M.: Snowmelt Infiltration and Macropore Flow in Frozen Soils: Overview, Knowledge Gaps, and a Conceptual Framework, Vadose Zone J., 17, 1–1, https://doi.org/10.2136/VZJ2018.04.0084, 2018.
Mueller, M. H., Alaoui, A., Kuells, C., Leistert, H., Meusburger, K., Stumpp, C., Weiler, M., and Alewell, C.: Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water, J. Hydrol., 519, 340–352, https://doi.org/10.1016/j.jhydrol.2014.07.031, 2014.
Muhic, F., Ala-Aho, P., Noor, K., Welker, J. M., Klöve, B., and Marttila, H.: Flushing or mixing? Stable water isotopes reveal differences in arctic forest and peatland soil water seasonality, Hydrol. Process., 37, e14811, https://doi.org/10.1002/hyp.14811, 2023.
Nehemy, M. F., Benettin, P., Allen, S. T., Steppe, K., Rinaldo, A., Lehmann, M. M., and McDonnell, J. J.: Phloem water isotopically different to xylem water: Potential causes and implications for ecohydrological tracing, Ecohydrology, 15, e2417, https://doi.org/10.1002/ECO.2417, 2022a.
Nehemy, M. F., Maillet, J., Perron, N., Pappas, C., Sonnentag, O., Baltzer, J. L., Laroque, C. P., and McDonnell, J. J.: Snowmelt Water Use at Transpiration Onset: Phenology, Isotope Tracing, and Tree Water Transit Time, Water Resour. Res., 58, e2022WR032344, https://doi.org/10.1029/2022WR032344, 2022b.
Newman, B. D., Wilcox, B. P., and Graham, R. C.: Snowmelt-driven macropore flow and soil saturation in a semiarid forest, Hydrol. Process., 18, 1035–1042, https://doi.org/10.1002/HYP.5521, 2004.
Noor, K., Marttila, H., Klöve, B., Welker, J. M., and Ala–aho, P.: The Spatiotemporal Variability of Snowpack and Snowmelt Water 18O and 2H Isotopes in a Subarctic Catchment, Water Resour. Res., 59, e2022WR033101, https://doi.org/10.1029/2022WR033101, 2023.
Oerter E. J. and Bowen G. J.: Spatio-temporal heterogeneity in soil water stable isotopic composition and its ecohydrologic implications in semiarid ecosystems, Hydrol. Process., 33, 1724–1738, https://doi.org/10.1002/hyp.13434, 2019.
Oshun, J., Dietrich, W. E., Dawson, T. E., and Fung, I.: Dynamic, structured heterogeneity of water isotopes inside hillslopes, Water Resour. Res., 52, 164–189, https://doi.org/10.1002/2015WR017485, 2016.
Pau, S., Wolkovich, E. M., Cook, B. I., Davies, T. J., Kraft, N. J. B., Bolmgren, K., Betancourt, J. L., and Cleland, E. E.: Predicting phenology by integrating ecology, evolution and climate science, Glob. Change Biol., 17, 3633–3643, https://doi.org/10.1111/j.1365-2486.2011.02515.x, 2011.
Penna, D., Borga, M., Norbiato, D., and Dalla Fontana, G.: Hillslope scale soil moisture variability in a steep alpine terrain, J. Hydrol., 364, 311–327, https://doi.org/10.1016/J.JHYDROL.2008.11.009, 2009.
Post, E., Forchhammer, M. C., Bret–Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., Høye, T. T., Ims, R. A., Jeppesen, E., Klein, D. R., Madsen, J., McGuire, A. D., Rysgaard, S., Schindler, D. E., Stirling, I., Tamstorf, M. P., Tyler, N. J. C., van der Wal, R., Welker, J., Wookey, P. A., Schmidt, N. M., and Aastrup, P.: Ecological dynamics across the arctic associated with recent climate change, Science, 325, 1355–1358, https://doi.org/10.1126/science.1173113, 2009.
Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J., Salminen, M., Ikonen, J., Takala, M., Cohen, J., Smolander, T., and Norberg, J.: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018, Nature, 581, 294–298, https://doi.org/10.1038/S41586-020-2258-0, 2020.
Rothfuss, Y., Merz, S., Vanderborght, J., Hermes, N., Weuthen, A., Pohlmeier, A., Vereecken, H., and Brüggemann, N.: Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column, Hydrol. Earth Syst. Sci., 19, 4067–4080, https://doi.org/10.5194/hess-19-4067-2015, 2015.
Rouxel, M., Molénat, J., Ruiz, L., Legout, C., Faucheux, M., and Gascuel-Odoux, C.: Seasonal and spatial variation in groundwater quality along the hillslope of an agricultural research catchment (Western France), Hydrol. Process., 25, 831–841, https://doi.org/10.1002/HYP.7862, 2011.
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Isotopic Patterns in Modern Global Precipitation, in: Climate Change in Continental Isotopic Records Geophysical Monograph, vol. 78, 1–36, https://doi.org/10.1029/gm078p0001, 2013.
Scherrer, S., Naef, F., Faeh, A. O., and Cordery, I.: Formation of runoff at the hillslope scale during intense precipitation, Hydrol. Earth Syst. Sci., 11, 907–922, https://doi.org/10.5194/hess-11-907-2007, 2007.
Schlüter, S., Vanderborght, J., and Vogel, H. J.: Hydraulic non-equilibrium during infiltration induced by structural connectivity, Adv. Water Resour., 44, 101–112, https://doi.org/10.1016/J.ADVWATRES.2012.05.002, 2012.
Seeger, S. and Weiler, M.: Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling, Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, 2021.
Seeger, S. and Weiler, M.: Dye-tracer-aided investigation of xylem water transport velocity distributions, Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023, 2023.
Shen, M., Tang, Y., Chen, J., Yang, X., Wang, C., Cui, X., Yang, Y., Han, L., Li, L., Du, J., Zhang, G., and Cong, N.: Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere, PLOS ONE, 9, e88178, https://doi.org/10.1371/JOURNAL.PONE.0088178, 2014.
Šimůnek, J., Jarvis, N. J., Van Genuchten, M. T., and Gärdenäs, A.: Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone, J. Hydrol., 272, 14–35, https://doi.org/10.1016/S0022-1694(02)00252-4, 2003.
Smith, T. J., Mcnamara, J. P., Flores, A. N., Gribb, M. M., Aishlin, P. S., and Benner, S. G.: Small soil storage capacity limits benefit of winter snowpack to upland vegetation, Hydrol. Process., 25, 3858–3865, https://doi.org/10.1002/HYP.8340, 2011.
Sněhota, M., Císlerová, M., Amin, M. H. G., and Hall, L. D.: Tracing the Entrapped Air in Heterogeneous Soil by Means of Magnetic Resonance Imaging, Vadose Zone J., 9, 373–384, https://doi.org/10.2136/VZJ2009.0103, 2010.
Sprenger, M. and Allen, S. T.: What Ecohydrologic Separation Is and Where We Can Go With It, Water Resour. Res., 56, e2020WR027238, https://doi.org/10.1029/2020WR027238, 2020.
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.: Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes, Rev. Geophys., 54, 674–704, https://doi.org/10.1002/2015RG000515, 2016.
Sprenger, M., Tetzlaff, D., and Soulsby, C.: Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone, Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, 2017.
Sprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., Leistert, H., Mitchell, C. P. J., Snelgrove, J., Weiler, M., and Soulsby, C.: Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water, Vadose Zone J., 17, 1–18, https://doi.org/10.2136/VZJ2017.08.0149, 2018a.
Sprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., and Soulsby, C.: Water ages in the critical zone of long-term experimental sites in northern latitudes, Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, 2018b.
Sprenger, M., Llorens, P., Cayuela, C., Gallart, F., and Latron, J.: Mechanisms of consistently disjunct soil water pools over (pore) space and time, Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019, 2019.
Stiegler, C., Lund, M., Christensen, T. R., Mastepanov, M., and Lindroth, A.: Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem, The Cryosphere, 10, 1395–1413, https://doi.org/10.5194/tc-10-1395-2016, 2016.
Stumpp, C. and Hendry, M. J.: Spatial and temporal dynamics of water flow and solute transport in a heterogeneous glacial till: The application of high-resolution profiles of δ18O and δ2H in pore waters, J. Hydrol., 438–439, 203–214, https://doi.org/10.1016/J.JHYDROL.2012.03.024, 2012.
Sutinen, R., Äikää, O., Piekkari, M., and Hänninen, P.: Snowmelt infiltration through partially frozen soil in Finnish Lapland, Geophysica, 45, 27–39, 2009a.
Sutinen, R., Vajda, A., Hänninen, P., and Sutinen, M.–L.: Significance of Snowpack for Root-zone Water and Temperature Cycles in Subarctic Lapland, Arctic Alpine Res., 41, 373–380, https://doi.org/10.1657/1938-4246-41.3.373, 2009b.
Tetzlaff, D., Buttle, J., Carey, S. K., Mcguire, K., Laudon, H., and Soulsby, C.: Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: A review, Hydrol. Process., 29, 3475–3490, https://doi.org/10.1002/hyp.10412, 2015.
Treydte, K., Lehmann, M. M., Wyczesany, T., and Pfautsch, S.: Radial and axial water movement in adult trees recorded by stable isotope tracing, Tree Physiol., 41, 2248–2261, https://doi.org/10.1093/TREEPHYS/TPAB080, 2021.
Tromp-Van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res., 42, 2411, https://doi.org/10.1029/2004WR003800, 2006.
Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schweingruber, F. H., and Silkin, P. P.: Influence of snowfall and melt timing on tree growth in subarctic Eurasia, Nature, 400, 149–151, https://doi.org/10.1038/22087, 1999.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Vereecken, H., Huisman, J. A., Hendricks Franssen, H. J., Brüggemann, N., Bogena, H. R., Kollet, S., Javaux, M., Van Der Kruk, J., and Vanderborght, J.: Soil hydrology: Recent methodological advances, challenges, and perspectives, Water Resour. Res., 51, 2616–2633, https://doi.org/10.1002/2014WR016852, 2015.
Wassenaar, L. I., Hendry, M. J., Chostner, V. L., and Lis, G. P.: High resolution pore water δ2H and δ18O measurements by H2O(liquid)-H2O (vapor) equilibration laser spectroscopy, Environmental Science and Technology, 42, 9262–9267, https://doi.org/10.1021/es802065s, 2008.
Weiler, M.: An infiltration model based on flow variability in macropores: development, sensitivity analysis and applications, J. Hydrol., 310, 294–315, https://doi.org/10.1016/J.JHYDROL.2005.01.010, 2005.
Weiler, M. and Naef, F.: An experimental tracer study of the role of macropores in infiltration in grassland soils, Hydrol. Process., 17, 477–493, https://doi.org/10.1002/HYP.1136, 2003.
West, A. G., Patrickson, S. J., and Ehleringer, J. R.: Water extraction times for plant and soil materials used in stable isotope analysis, Rapid Commun. Mass Sp., 20, 1317–1321, https://doi.org/10.1002/RCM.2456, 2006.
Xiao, X., Zhang, F., Li, X., Wang, G., Zeng, C., and Shi, X.: Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope, Vadose Zone J., 19, e20022, https://doi.org/10.1002/VZJ2.20022, 2020.
Xu, S., Chen, M., Feng, T., Zhan, L., Zhou, L., and Yu, G.: Use ggbreak to effectively utilize plotting space to deal with large datasets and outliers, Frontiers in Genetics, 12, 774846, https://doi.org/10.3389/fgene.2021.774846, 2021.
Short summary
The snowmelt event governs the hydrological cycle of sub-arctic areas. In this study, we conducted a tracer experiment on a forested hilltop in Lapland to identify how high-volume infiltration events modify the soil water storage. We found that a strong tracer signal remained in deeper soil layers after the experiment and over the winter, but it got fully displaced during the snowmelt. We propose a conceptual infiltration model that explains how the snowmelt homogenizes the soil water storage.
The snowmelt event governs the hydrological cycle of sub-arctic areas. In this study, we...