Articles | Volume 28, issue 14
https://doi.org/10.5194/hess-28-3367-2024
https://doi.org/10.5194/hess-28-3367-2024
Research article
 | 
29 Jul 2024
Research article |  | 29 Jul 2024

Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil

Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe

Related authors

The role of the tropical carbon balance in determining the large atmospheric CO2 growth rate in 2023
Liang Feng, Paul I. Palmer, Luke Smallman, Jingfeng Xiao, Paolo Cristofanelli, Ove Hermansen, John Lee, Casper Labuschagne, Simonetta Montaguti, Steffen M. Noe, Stephen M. Platt, Xinrong Ren, Martin Steinbacher, and Irène Xueref-Remy
Atmos. Chem. Phys., 25, 13053–13076, https://doi.org/10.5194/acp-25-13053-2025,https://doi.org/10.5194/acp-25-13053-2025, 2025
Short summary
Potential of carbon uptake and local aerosol production in boreal and hemi-boreal ecosystems across Finland and in Estonia
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025,https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
A bottom-up emission estimate for the 2022 Nord Stream gas leak: derivation, simulations, and evaluation
Rostislav Kouznetsov, Risto Hänninen, Andreas Uppstu, Evgeny Kadantsev, Yalda Fatahi, Marje Prank, Dmitrii Kouznetsov, Steffen Manfred Noe, Heikki Junninen, and Mikhail Sofiev
Atmos. Chem. Phys., 24, 4675–4691, https://doi.org/10.5194/acp-24-4675-2024,https://doi.org/10.5194/acp-24-4675-2024, 2024
Short summary
Comparison of particle number size distribution trends in ground measurements and climate models
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022,https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Eddy-covariance carbon fluxes of a heterogeneous forest: one tower - two heights
Alisa Krasnova, Dmitrii Krasnov, Hans Peter Ernst Cordey, and Steffen M. Noe
EGUsphere, https://doi.org/10.5194/egusphere-2022-384,https://doi.org/10.5194/egusphere-2022-384, 2022
Preprint archived
Short summary

Cited articles

AGUASPARANÁ: Manual técnico de outorgas, i Edn., Estado do Paraná, https://www.iat.pr.gov.br/sites/agua-terra/arquivos_restritos/files/documento/2020-10/manual_outorgas_suderhsa_2006.pdf (last access: 17 July 2024), 2010. a
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, Food and Agriculture Organization of the United Nations, Rome, ISBN 9251042195, 1998. a
Almagro, A., Oliveira, P. T. S., Neto, A. A. M., Roy, T., and Troch, P.: CABra: a novel large-sample dataset for Brazilian catchments, Hydrol. Earth Syst. Sci., 25, 3105–3135, https://doi.org/10.5194/hess-25-3105-2021, 2021. a
Arsenault, R., Breton-Dufour, M., Poulin, A., Dallaire, G., and Romero-Lopez, R.: Streamflow prediction in ungauged basins: analysis of regionalization methods in a hydrologically heterogeneous region of Mexico, Hydrolog. Sci. J., 64, 1297–1311, https://doi.org/10.1080/02626667.2019.1639716, 2019. a, b, c, d
Auler, A. and Farrant, A.: A brief introduction to karst and caves in Brazil, Proceedings of the University of Bristol Spelaeological Society, 20, 187–200, 1996. a, b
Download
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Share