Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-577-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-577-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A robust gap-filling approach for European Space Agency Climate Change Initiative (ESA CCI) soil moisture integrating satellite observations, model-driven knowledge, and spatiotemporal machine learning
Kai Liu
Aerospace Information Research Institute, Chinese Academy of Sciences,
Beijing 100094, China
Institute at Brown for Environment and Society, Brown University,
Providence, RI 02912, USA
Shudong Wang
CORRESPONDING AUTHOR
Aerospace Information Research Institute, Chinese Academy of Sciences,
Beijing 100094, China
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters (CIC-FEMD), Nanjing University of Information
Science & Technology, Nanjing 210044, China
Hongyan Zhang
Aerospace Information Research Institute, Chinese Academy of Sciences,
Beijing 100094, China
Related authors
Kai Liu, Hongyan Zhang, Yong Bo, Dehui Li, Long Li, Hang Li, Shudong Wang, and Xueke Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-129, https://doi.org/10.5194/hess-2024-129, 2024
Manuscript not accepted for further review
Short summary
Short summary
Our framework brings together remote sensing, machine learning, and numerical modeling to enhance soil moisture records. We merge outputs from various machine learning algorithms to ensure the model reliability. The ability of our approach in capturing drought dynamics is noticeable, making it invaluable in arid and semi-arid regions globally, such as northern China and the northern-central United States, where drought susceptibility is high.
Mukund Gupta, Heather Regan, Young Hyun Koo, Sean Minhui Tashi Chua, Xueke Li, and Petra Heil
EGUsphere, https://doi.org/10.5194/egusphere-2024-1329, https://doi.org/10.5194/egusphere-2024-1329, 2024
Short summary
Short summary
The sea ice cover is composed of floes, whose shapes set the material properties of the pack. Here, we use a satellite product (ICESat-2) to investigate these floe shapes within the Weddell Sea. We find that floes tend to become smaller during the melt season, while their thickness distribution exhibits different behavior between the western and southern regions of the pack. These metrics will help calibrate models, and improve our understanding of sea ice physics across scales.
Kai Liu, Hongyan Zhang, Yong Bo, Dehui Li, Long Li, Hang Li, Shudong Wang, and Xueke Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-129, https://doi.org/10.5194/hess-2024-129, 2024
Manuscript not accepted for further review
Short summary
Short summary
Our framework brings together remote sensing, machine learning, and numerical modeling to enhance soil moisture records. We merge outputs from various machine learning algorithms to ensure the model reliability. The ability of our approach in capturing drought dynamics is noticeable, making it invaluable in arid and semi-arid regions globally, such as northern China and the northern-central United States, where drought susceptibility is high.
Xin Long, Xuexi Tie, Jiamao Zhou, Wenting Dai, Xueke Li, Tian Feng, Guohui Li, Junji Cao, and Zhisheng An
Atmos. Chem. Phys., 19, 11185–11197, https://doi.org/10.5194/acp-19-11185-2019, https://doi.org/10.5194/acp-19-11185-2019, 2019
Short summary
Short summary
China is undergoing ever-increasing demand for electricity, and launched the Green Light Program (GLP), which is an effective reduction of the coal consumption for power generation. The estimated potential coal saving induced by the GLP can reach a massive value of 120–323 million tons. There was a massive resultant potential emission reduction of air pollutants, which is inherently connected to the haze formation, because the NOx and SO2 are important precursors for the formation of particles.
Related subject area
Subject: Vadose Zone Hydrology | Techniques and Approaches: Remote Sensing and GIS
Exploring the combined use of SMAP and Sentinel-1 data for downscaling soil moisture beyond the 1 km scale
An inverse dielectric mixing model at 50 MHz that considers soil organic carbon
Advances in soil moisture retrieval from multispectral remote sensing using unoccupied aircraft systems and machine learning techniques
Parameter optimisation for a better representation of drought by LSMs: inverse modelling vs. sequential data assimilation
Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS
Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning
Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany
Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals
Influence of cracking clays on satellite estimated and model simulated soil moisture
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
Chang-Hwan Park, Aaron Berg, Michael H. Cosh, Andreas Colliander, Andreas Behrendt, Hida Manns, Jinkyu Hong, Johan Lee, Runze Zhang, and Volker Wulfmeyer
Hydrol. Earth Syst. Sci., 25, 6407–6420, https://doi.org/10.5194/hess-25-6407-2021, https://doi.org/10.5194/hess-25-6407-2021, 2021
Short summary
Short summary
In this study, we proposed an inversion of the dielectric mixing model for a 50 Hz soil sensor for agricultural organic soil. This model can reflect the variability of soil organic matter (SOM) in wilting point and porosity, which play a critical role in improving the accuracy of SM estimation, using a dielectric-based soil sensor. The results of statistical analyses demonstrated a higher performance of the new model than the factory setting probe algorithm.
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021, https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Short summary
We took aerial photos of a grassland area using an unoccupied aerial vehicle and used the images to estimate soil moisture via machine learning. We were able to estimate soil moisture with high accuracy. Furthermore, by analyzing the machine learning models we developed, we learned how different factors drive the distribution of moisture across the landscape. Among the factors, rainfall, evapotranspiration, and topography were most important in controlling surface soil moisture distribution.
Hélène Dewaele, Simon Munier, Clément Albergel, Carole Planque, Nabil Laanaia, Dominique Carrer, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4861–4878, https://doi.org/10.5194/hess-21-4861-2017, https://doi.org/10.5194/hess-21-4861-2017, 2017
Short summary
Short summary
Soil maximum available water content (MaxAWC) is a key parameter in land surface models. Being difficult to measure, this parameter is usually unavailable. A 15-year time series of satellite-derived observations of leaf area index (LAI) is used to retrieve MaxAWC for rainfed straw cereals over France. Disaggregated LAI is sequentially assimilated into the ISBA LSM. MaxAWC is estimated minimising LAI analyses increments. Annual maximum LAI observations correlate with the MaxAWC estimates.
Kenneth J. Tobin, Roberto Torres, Wade T. Crow, and Marvin E. Bennett
Hydrol. Earth Syst. Sci., 21, 4403–4417, https://doi.org/10.5194/hess-21-4403-2017, https://doi.org/10.5194/hess-21-4403-2017, 2017
Short summary
Short summary
This study applied the exponential filter to produce an estimate of root-zone soil moisture at 20 to 25 cm depths. Four types of microwave, surface satellite soil moisture were used. The study focused on the continental United States, and in situ data were used from the International Soil Moisture Network for comparison. This study spans almost two decades (1997 to 2014). Root mean square error was close to 0.04, which is the baseline value for accuracy designated for many satellite missions.
Michal Gallay, Zdenko Hochmuth, Ján Kaňuk, and Jaroslav Hofierka
Hydrol. Earth Syst. Sci., 20, 1827–1849, https://doi.org/10.5194/hess-20-1827-2016, https://doi.org/10.5194/hess-20-1827-2016, 2016
Short summary
Short summary
This paper presents a novel approach that provides evidence of
environmental conditions during the formation of a cave inferred from
measuring the geometry of the cave surface. We focused on winding
channels with associated cave landforms carved high up in the cave
ceiling inaccessible to direct inspection by speleologists. This was
possible by coupling 3-D laser scanning of the cave and analyzing the
cave morphology by the tools used in 3-D computer graphics and digital
terrain analysis.
F. Schlenz, J. T. dall'Amico, W. Mauser, and A. Loew
Hydrol. Earth Syst. Sci., 16, 3517–3533, https://doi.org/10.5194/hess-16-3517-2012, https://doi.org/10.5194/hess-16-3517-2012, 2012
Y. Y. Liu, R. M. Parinussa, W. A. Dorigo, R. A. M. De Jeu, W. Wagner, A. I. J. M. van Dijk, M. F. McCabe, and J. P. Evans
Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, https://doi.org/10.5194/hess-15-425-2011, 2011
Y. Y. Liu, J. P. Evans, M. F. McCabe, R. A. M. de Jeu, A. I. J. M. van Dijk, and H. Su
Hydrol. Earth Syst. Sci., 14, 979–990, https://doi.org/10.5194/hess-14-979-2010, https://doi.org/10.5194/hess-14-979-2010, 2010
Cited articles
Almendra-Martín, L., Martínez-Fernández, J., Piles, M., and
González-Zamora, Á.: Comparison of gap-filling techniques applied to
the CCI soil moisture database in Southern Europe,
Remote Sens. Environ., 258, 112377, https://doi.org/10.1016/j.rse.2021.112377, 2021.
Amani, M., Salehi, B., Mahdavi, S., Masjedi, A., and Dehnavi, S.:
Temperature-Vegetation-soil Moisture Dryness Index (TVMDI), Remote Sens. Environ., 197, 1–14, https://doi.org/10.1016/j.rse.2017.05.026, 2017.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Belgiu, M. and Drãguþ, L.: Random forest in remote sensing: A review
of applications and future directions,
ISPRS J. Photogramm., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011,
2016.
Bessenbacher, V., Gudmundsson, L., and Seneviratne, S. I.: Capturing future soil-moisture droughts from irregularly distributed ground observations, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-8714, https://doi.org/10.5194/egusphere-egu22-8714, 2022a.
Bessenbacher, V., Seneviratne, S. I., and Gudmundsson, L.: CLIMFILL v0.9: a framework for intelligently gap filling Earth observations, Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, 2022b.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Chen, B., Xu, G., Coops, N. C., Ciais, P., Innes, J. L., Wang, G., Myneni,
R. B., Wang, T., Krzyzanowski, J., Li, Q., Cao, L., and Liu, Y.: Changes in
vegetation photosynthetic activity trends across the Asia–Pacific region
over the last three decades, Remote Sens. Environ., 144, 28–41,
https://doi.org/10.1016/j.rse.2013.12.018, 2014.
Chen, Y., Yang, K., Qin, J., Zhao, L., Tang, W., and Han, M.: Evaluation of
AMSR-E retrievals and GLDAS simulations against observations of a soil
moisture network on the central Tibetan Plateau,
J. Geophys. Res.-Atmos., 118, 4466–4475, https://doi.org/10.1002/jgrd.50301,
2013.
Cristea, N. C., Breckheimer, I., Raleigh, M. S., HilleRisLambers, J., and
Lundquist, J. D.: An evaluation of terrain-based downscaling of fractional
snow covered area data sets based on LiDAR-derived snow data and
orthoimagery, Water Resour. Res., 53, 6802–6820,
https://doi.org/10.1002/2017WR020799, 2017.
Cui, Y., Yang, X., Chen, X., Fan, W., Zeng, C., Xiong, W., and Hong, Y.: A
two-step fusion framework for quality improvement of a remotely sensed soil
moisture product: A case study for the ECV product over the Tibetan Plateau,
J. Hydrol., 587, 124993,
https://doi.org/10.1016/j.jhydrol.2020.124993, 2020.
Cui, Y., Zeng, C., Zhou, J., Xie, H., Wan, W., Hu, L., Xiong, W., Chen, X.,
Fan, W., and Hong, Y.: A spatio-temporal continuous soil moisture dataset
over the Tibet Plateau from 2002 to 2015, Sci. Data, 6, 247,
https://doi.org/10.1038/s41597-019-0228-x, 2019.
Dente, L., Vekerdy, Z., Wen, J., and Su, Z.: Maqu network for validation of
satellite-derived soil moisture products,
Int. J. Appl. Earth Obs., 17, 55–65,
https://doi.org/10.1016/j.jag.2011.11.004, 2012.
Detto, M., Montaldo, N., Albertson, J. D., Mancini, M., and Katul, G.: Soil
moisture and vegetation controls on evapotranspiration in a heterogeneous
Mediterranean ecosystem on Sardinia, Italy, Water Resour. Res., 42, W08419, https://doi.org/10.1029/2005WR004693, 2006.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D.,
Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y.,
Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C.,
Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and
Lecomte, P.: ESA CCI Soil Moisture for improved Earth system understanding:
State-of-the art and future directions, Remote Sens. Environ., 203,
185–215, https://doi.org/10.1016/j.rse.2017.07.001, 2017.
Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a decade, Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021.
Dorigo, W. A., Gruber, A., De Jeu, R. A. M., Wagner, W., Stacke, T., Loew,
A., Albergel, C., Brocca, L., Chung, D., Parinussa, R. M., and Kidd, R.:
Evaluation of the ESA CCI soil moisture product using ground-based
observations, Remote Sens. Environ., 162, 380–395,
https://doi.org/10.1016/j.rse.2014.07.023, 2015.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011.
Duan, Z. and Bastiaanssen, W. G. M.: First results from Version 7 TRMM 3B43
precipitation product in combination with a new downscaling–calibration
procedure, Remote Sens. Environ., 131, 1–13,
https://doi.org/10.1016/j.rse.2012.12.002, 2013.
ElSaadani, M., Habib, E., Abdelhameed, A. M., and Bayoumi, M.: Assessment of
a Spatiotemporal Deep Learning Approach for Soil Moisture Prediction and
Filling the Gaps in Between Soil Moisture Observations,
Fr. Art. Int., 4, 636234, https://doi.org/10.3389/frai.2021.636234, 2021.
Entekhabi, D., Njoku, E. G., Neill, P. E. O., Kellogg, K. H., Crow, W. T.,
Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J.,
Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C.,
Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman,
S. W., Tsang, L., and Zyl, J. V.: The Soil Moisture Active Passive (SMAP)
Mission, P. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918,
2010.
Ford, T. W. and Quiring, S. M.: Comparison and application of multiple
methods for temporal interpolation of daily soil moisture, International
J. Climatol., 34, 2604–2621, https://doi.org/10.1002/joc.3862,
2014.
Fu, G., Crosbie, R. S., Barron, O., Charles, S. P., Dawes, W., Shi, X., Van
Niel, T., and Li, C.: Attributing variations of temporal and spatial
groundwater recharge: A statistical analysis of climatic and non-climatic
factors, J. Hydrol., 568, 816–834,
https://doi.org/10.1016/j.jhydrol.2018.11.022, 2019.
Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019, 2019.
Guisan, A., Weiss, S. B., and Weiss, A. D.: GLM versus CCA spatial modeling
of plant species distribution, Plant Ecol., 143, 107–122, https://doi.org/10.1023/A:1009841519580, 1999.
Gunnarsson, A., Gardarsson, S. M., Pálsson, F., Jóhannesson, T., and Sveinsson, Ó. G. B.: Annual and inter-annual variability and trends of albedo of Icelandic glaciers, The Cryosphere, 15, 547–570, https://doi.org/10.5194/tc-15-547-2021, 2021.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first
high-resolution meteorological forcing dataset for land process studies over
China, Sci. Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y, 2020.
Hu, L., Monaghan, A., Voogt, J. A., and Barlage, M.: A first satellite-based
observational assessment of urban thermal anisotropy,
Remote Sens. Environ., 181, 111–121, https://doi.org/10.1016/j.rse.2016.03.043, 2016.
Institute of Tibetan Plateau Research, CAS: Chinese regional ground meteorological dataset, National Tibetan Plateau Data Center [data set], http://data.tpdc.ac.cn (last access: 15 April 2021), 2023.
Jing, W., Zhang, P., and Zhao, X.: Reconstructing Monthly ECV Global Soil
Moisture with an Improved Spatial Resolution, Water Resour. Manage.,
32, 2523–2537, https://doi.org/10.1007/s11269-018-1944-2, 2018.
Karbalaye Ghorbanpour, A., Hessels, T., Moghim, S., and Afshar, A.:
Comparison and assessment of spatial downscaling methods for enhancing the
accuracy of satellite-based precipitation over Lake Urmia Basin, J. Hydrol., 596, 126055, https://doi.org/10.1016/j.jhydrol.2021.126055, 2021.
Kerr, Y. H., Waldteufel, P., Wigneron, J., Martinuzzi, J., Font, J., and
Berger, M.: Soil moisture retrieval from space: the Soil Moisture and Ocean
Salinity (SMOS) mission, IEEE T. Geosci. Remote,
39, 1729–1735, https://doi.org/10.1109/36.942551, 2001.
Leng, P., Li, Z.-L., Duan, S.-B., Gao, M.-F., and Huo, H.-Y.: A practical
approach for deriving all-weather soil moisture content using combined
satellite and meteorological data, ISPRS J. Photogramm., 131, 40–51, https://doi.org/10.1016/j.isprsjprs.2017.07.013,
2017.
Li, B., Liang, S., Liu, X., Ma, H., Chen, Y., Liang, T., and He, T.:
Estimation of all-sky 1 km land surface temperature over the conterminous
United States, Remote Sens. Environ., 266, 112707,
https://doi.org/10.1016/j.rse.2021.112707, 2021a.
Li, L., Dai, Y., Shangguan, W., Wei, N., Wei, Z., and Gupta, S.: Multistep
Forecasting of Soil Moisture Using Spatiotemporal Deep Encoder–Decoder
Networks, J. Hydrometeorol., 23, 337–350, https://doi.org/10.1175/jhm-d-21-0131.1,
2022a.
Li, L., Dai, Y., Shangguan, W., Wei, Z., Wei, N., and Li, Q.:
Causality-Structured Deep Learning for Soil Moisture Predictions, J. Hydrometeorol., 23, 1315–1331, https://doi.org/10.1175/jhm-d-21-0206.1, 2022b.
Li, Q., Li, Z., Shangguan, W., Wang, X., Li, L., and Yu, F.: Improving soil
moisture prediction using a novel encoder-decoder model with residual
learning, Comput. Electron. Agr., 195, 106816,
https://doi.org/10.1016/j.compag.2022.106816, 2022c.
Li, Q., Wang, Z., Shangguan, W., Li, L., Yao, Y., and Yu, F.: Improved daily
SMAP satellite soil moisture prediction over China using deep learning model
with transfer learning, J. Hydrol., 600, 126698,
https://doi.org/10.1016/j.jhydrol.2021.126698, 2021b.
Li, X., Liu, K., and Tian, J.: Variability, predictability, and uncertainty
in global aerosols inferred from gap-filled satellite observations and an
econometric modeling approach, Remote Sens. Environ., 261, 112501,
https://doi.org/10.1016/j.rse.2021.112501, 2021c.
Li, X., Zhang, C., Li, W., and Liu, K.: Evaluating the Use of DMSP/OLS
Nighttime Light Imagery in Predicting PM2.5 Concentrations in the
Northeastern United States, Remote Sens., 9, 620, https://doi.org/10.3390/rs9060620, 2017.
Li, Y., Piao, S., Li, L. Z. X., Chen, A., Wang, X., Ciais, P., Huang, L.,
Lian, X., Peng, S., Zeng, Z., Wang, K., and Zhou, L.: Divergent hydrological
response to large-scale afforestation and vegetation greening in China,
Sci. Adv., 4, eaar4182, https://doi.org/10.1126/sciadv.aar4182, 2018.
Liu, K., Li, X., and Long, X.: Trends in groundwater changes driven by
precipitation and anthropogenic activities on the southeast side of the Hu
Line, Environ. Res. Lett., 16, 094032, https://doi.org/10.1088/1748-9326/ac1ed8,
2021a.
Liu, K., Li, X., and Wang, S.: Characterizing the spatiotemporal response of
runoff to impervious surface dynamics across three highly urbanized cities
in southern China from 2000 to 2017, Int. J. Appl. Earth Obs., 100, 102331,
https://doi.org/10.1016/j.jag.2021.102331, 2021b.
Liu, K., Su, H., Li, X., and Chen, S.: Development of a 250-m Downscaled
Land Surface Temperature Data Set and Its Application to Improving Remotely
Sensed Evapotranspiration Over Large Landscapes in Northern China, IEEE T. Geosci. Remote, 60, 1–12, https://doi.org/10.1109/TGRS.2020.3037168, 2020a.
Liu, K., Wang, S., Li, X., and Wu, T.: Spatially Disaggregating Satellite
Land Surface Temperature With a Nonlinear Model Across Agricultural Areas,
J. Geophys. Res.-Biogeo., 124, 3232–3251,
https://doi.org/10.1029/2019JG005227, 2019.
Liu, Y., Yao, L., Jing, W., Di, L., Yang, J., and Li, Y.: Comparison of two
satellite-based soil moisture reconstruction algorithms: A case study in the
state of Oklahoma, USA, J. Hydrol., 590, 125406,
https://doi.org/10.1016/j.jhydrol.2020.125406, 2020b.
Llamas, R. M., Guevara, M., Rorabaugh, D., Taufer, M., and Vargas, R.:
Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based on
Geostatistical Techniques and Multiple Regression, Remote Sens., 12, 665, https://doi.org/10.3390/rs12040665, 2020.
Long, D., Bai, L., Yan, L., Zhang, C., Yang, W., Lei, H., Quan, J., Meng,
X., and Shi, C.: Generation of spatially complete and daily continuous
surface soil moisture of high spatial resolution,
Remote Sens. Environ., 233, 111364, https://doi.org/10.1016/j.rse.2019.111364, 2019.
Long, D., Yan, L., Bai, L., Zhang, C., Li, X., Lei, H., Yang, H., Tian, F.,
Zeng, C., Meng, X., and Shi, C.: Generation of MODIS-like land surface
temperatures under all-weather conditions based on a data fusion approach,
Remote Sens. Environ., 246, 111863,
https://doi.org/10.1016/j.rse.2020.111863, 2020.
Mao, H., Kathuria, D., Duffield, N., and Mohanty, B. P.: Gap Filling of
High-Resolution Soil Moisture for SMAP/Sentinel-1: A Two-Layer Mach. Learn.-Based Framework, Water Resour. Res., 55, 6986–7009,
https://doi.org/10.1029/2019WR024902, 2019.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Mason, P. J., Zillman, J. W., Simmons, A., Lindstrom, E. J., Harrison, D. E., Dolman, H., Bojinski, S., Fischer, A., Latham, J., Rasmussen, J., Arkin, P., Armstrong, R., Braathen, G., Brouchkov, A., DeWayne Cecil, L., Digiacomo, P. M., Drinkwater, M. R., Goldammer, J. G., Goldberg, M. D., Goodison, B., Haeberli, W., Hilsenrath, E., Jones, P., Kajfez-Bogataj, L., Kent, E. C., Kundzewicz, Z. W., Lafeuille, J., Levelt, P. F., Looser, U., Ogallo, L. A., Ondras, M., Peterson, T. C., Pinty, B., Quegan, S., Saunders, R., Schmetz, J., Song, L., Stammer, D., Steffen, K., Tanner, M., Tansey, K., Trenberth, K. E., Verstraete, M. M., Visbeck, M., Vuglinsky, V., Westermeyer, W., and Wooster, M.: Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update) (WMO-TD, 1523), Geneva, Switzerland, WMO, IOC, UNEP, ICSU 180 pp., 2010.
Meng, X., Mao, K., Meng, F., Shi, J., Zeng, J., Shen, X., Cui, Y., Jiang, L., and Guo, Z.: A fine-resolution soil moisture dataset for China in 2002–2018, Earth Syst. Sci. Data, 13, 3239–3261, https://doi.org/10.5194/essd-13-3239-2021, 2021.
Merlin, O., Jacob, F., Wigneron, J., Walker, J., and Chehbouni, G.:
Multidimensional Disaggregation of Land Surface Temperature Using
High-Resolution Red, Near-Infrared, Shortwave-Infrared, and Microwave-L
Bands, IEEE T. Geosci. Remote, 50, 1864–1880, https://doi.org/10.1109/TGRS.2011.2169802, 2012.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Otkin, J. A., Anderson, M. C., Hain, C., Svoboda, M., Johnson, D., Mueller,
R., Tadesse, T., Wardlow, B., and Brown, J.: Assessing the evolution of soil
moisture and vegetation conditions during the 2012 United States flash
drought, Agr. Forest Meteorol., 218–219, 230–242,
https://doi.org/10.1016/j.agrformet.2015.12.065, 2016.
Prihodko, L., Denning, A. S., Hanan, N. P., Baker, I., and Davis, K.:
Sensitivity, uncertainty and time dependence of parameters in a complex land
surface model, Agr. Forest Meteorol., 148, 268–287,
https://doi.org/10.1016/j.agrformet.2007.08.006, 2008.
Ramoelo, A., Cho, M. A., Mathieu, R., Madonsela, S., van de Kerchove, R.,
Kaszta, Z., and Wolff, E.: Monitoring grass nutrients and biomass as
indicators of rangeland quality and quantity using random forest modelling
and WorldView-2 data, Int. J. Appl. Earth Obs., 43, 43–54, https://doi.org/10.1016/j.jag.2014.12.010, 2015.
Reichle, R. H., Koster, R. D., De Lannoy, G. J. M., Forman, B. A., Liu, Q.,
Mahanama, S. P. P., and Touré, A.: Assessment and Enhancement of MERRA
Land Surface Hydrology Estimates, J. Climate, 24, 6322–6338, https://doi.org/10.1175/jcli-d-10-05033.1, 2011.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Schaake, J. C., Duan, Q., Koren, V., Mitchell, K. E., Houser, P. R., Wood,
E. F., Robock, A., Lettenmaier, D. P., Lohmann, D., Cosgrove, B., Sheffield,
J., Luo, L., Higgins, R. W., Pinker, R. T., and Tarpley, J. D.: An
intercomparison of soil moisture fields in the North American Land Data
Assimilation System (NLDAS), J. Geophys. Res.-Atmos.,
109, D01S90, https://doi.org/10.1029/2002JD003309, 2004.
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and Freitas, N. d.:
Taking the Human Out of the Loop: A Review of Bayesian Optimization,
P. IEEE, 104, 148–175, https://doi.org/10.1109/JPROC.2015.2494218, 2016.
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.:
Mapping the global depth to bedrock for land surface modeling,
J. Adv. Model Earth Sy., 9, 65–88,
https://doi.org/10.1002/2016MS000686, 2017.
Sismanidis, P., Bechtel, B., Keramitsoglou, I., Göttsche, F., and
Kiranoudis, C. T.: Satellite-derived quantification of the diurnal and
annual dynamics of land surface temperature, Remote Sens. Environ.,
265, 112642, https://doi.org/10.1016/j.rse.2021.112642, 2021.
Song, P., Zhang, Y., and Tian, J.: Improving Surface Soil Moisture Estimates
in Humid Regions by an Enhanced Remote Sensing Technique,
Geophys. Res. Lett., 48, e2020GL091459, https://doi.org/10.1029/2020GL091459,
2021.
Stroud, J. R., Müller, P., and Sansó, B.: Dynamic models for
spatiotemporal data, J. R. Stat. Soc. B, 63, 673–689,
https://doi.org/10.1111/1467-9868.00305, 2001.
Su, Z., de Rosnay, P., Wen, J., Wang, L., and Zeng, Y.: Evaluation of
ECMWF's soil moisture analyses using observations on the Tibetan Plateau,
J. Geophys. Res.-Atmos., 118, 5304–5318,
https://doi.org/10.1002/jgrd.50468, 2013.
Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and
Feuston, B. P.: Random Forest: A Classification and Regression Tool for
Compound Classification and QSAR Modeling,
J. Chem. Inf. Comp. Sci., 43, 1947–1958, https://doi.org/10.1021/ci034160g, 2003.
Uebbing, B., Forootan, E., Braakmann-Folgmann, A., and Kusche, J.: Inverting
surface soil moisture information from satellite altimetry over arid and
semi-arid regions, Remote Sens. Environ., 196, 205–223,
https://doi.org/10.1016/j.rse.2017.05.004, 2017.
van Zyl, J. J.: The Shuttle Radar Topography Mission (SRTM): a breakthrough
in remote sensing of topography, Acta Astronaut., 48, 559–565,
https://doi.org/10.1016/S0094-5765(01)00020-0, 2001.
Wanders, N., Karssenberg, D., de Roo, A., de Jong, S. M., and Bierkens, M. F. P.: The suitability of remotely sensed soil moisture for improving operational flood forecasting, Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, 2014.
Wang, A., Lettenmaier, D. P., and Sheffield, J.: Soil Moisture Drought in
China, 1950–2006, J. Climate, 24, 3257–3271, https://doi.org/10.1175/2011jcli3733.1, 2011.
Wang, C., Xie, Q., Gu, X., Yu, T., Meng, Q., Zhou, X., Han, L., and Zhan,
Y.: Soil moisture estimation using Bayesian Maximum Entropy algorithm from
FY3-B, MODIS and ASTER GDEM remote-sensing data in a maize region of HeBei
province, China, Int. J. Remote Sens., 41, 7018–7041, https://doi.org/10.1080/01431161.2020.1752953, 2020.
Wang, K., Wang, P., Liu, J., Sparrow, M., Haginoya, S., and Zhou, X.:
Variation of surface albedo and soil thermal parameters with soil moisture
content at a semi-desert site on the western Tibetan Plateau,
Bound.-Lay. Meteorol., 116, 117–129, https://doi.org/10.1007/s10546-004-7403-z, 2005.
Wei, F., Wang, S., Fu, B., Brandt, M., Pan, N., Wang, C., and Fensholt, R.:
Nonlinear dynamics of fires in Africa over recent decades controlled by
precipitation, Glob. Change Biol., 26, 4495–4505,
https://doi.org/10.1111/gcb.15190, 2020.
Wei, Z., Meng, Y., Zhang, W., Peng, J., and Meng, L.: Downscaling SMAP soil
moisture estimation with gradient boosting decision tree regression over the
Tibetan Plateau, Remote Sens. Environ., 225, 30–44,
https://doi.org/10.1016/j.rse.2019.02.022, 2019.
Yao, X., Fu, B., Lü, Y., Sun, F., Wang, S., and Liu, M.: Comparison of
Four Spatial Interpolation Methods for Estimating Soil Moisture in a Complex
Terrain Catchment, PLOS ONE, 8, e54660, https://doi.org/10.1371/journal.pone.0054660, 2013.
Zhang, L., Liu, Y., Ren, L., Teuling, A. J., Zhang, X., Jiang, S., Yang, X.,
Wei, L., Zhong, F., and Zheng, L.: Reconstruction of ESA CCI
satellite-derived soil moisture using an artificial neural network
technology, Sci. Total Environ., 782, 146602,
https://doi.org/10.1016/j.scitotenv.2021.146602, 2021a.
Zhang, Q., Yuan, Q., Li, J., Wang, Y., Sun, F., and Zhang, L.: Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019, Earth Syst. Sci. Data, 13, 1385–1401, https://doi.org/10.5194/essd-13-1385-2021, 2021b.
Zhang, R., Di, B., Luo, Y., Deng, X., Grieneisen, M. L., Wang, Z., Yao, G.,
and Zhan, Y.: A nonparametric approach to filling gaps in
satellite-retrieved aerosol optical depth for estimating ambient PM2.5
levels, Environ. Pollut., 243, 998–1007,
https://doi.org/10.1016/j.envpol.2018.09.052, 2018.
Zhang, X., Zhou, J., Liang, S., and Wang, D.: A practical reanalysis data
and thermal infrared remote sensing data merging (RTM) method for
reconstruction of a 1 km all-weather land surface temperature, Remote Sens. Environ., 260, 112437,
https://doi.org/10.1016/j.rse.2021.112437, 2021c.
Zhang, X., Chen, B., Zhao, H., Fan, H., and Zhu, D.: Soil Moisture Retrieval
over a Semiarid Area by Means of PCA Dimensionality Reduction, Canadian
J. Remote Sens., 42, 136–144, https://doi.org/10.1080/07038992.2016.1175928, 2016.
Zhao, K., Wulder, M. A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman,
E., Mallick, B., Zhang, X., and Brown, M.: Detecting change-point, trend,
and seasonality in satellite time series data to track abrupt changes and
nonlinear dynamics: A Bayesian ensemble algorithm, Remote Sens.
Environ., 232, 111181, https://doi.org/10.1016/j.rse.2019.04.034, 2019a.
Zhao, W., Duan, S.-B., Li, A., and Yin, G.: A practical method for reducing
terrain effect on land surface temperature using random forest regression,
Remote Sens. Environ., 221, 635–649,
https://doi.org/10.1016/j.rse.2018.12.008, 2019b.
Zhao, W., Sánchez, N., Lu, H., and Li, A.: A spatial downscaling
approach for the SMAP passive surface soil moisture product using random
forest regression, J. Hydrol., 563, 1009–1024,
https://doi.org/10.1016/j.jhydrol.2018.06.081, 2018.
Zhu, X., Liu, D., and Chen, J.: A new geostatistical approach for filling
gaps in Landsat ETM+ SLC-off images, Remote Sens. Environ., 124,
49–60, https://doi.org/10.1016/j.rse.2012.04.019, 2012.
Short summary
Remote sensing has opened opportunities for mapping spatiotemporally continuous soil moisture, but it is hampered by data gaps. We propose a robust gap-filling approach to reconstruct daily satellite soil moisture. The merit of our approach is to integrate satellite observations, model-driven knowledge, and spatiotemporal machine learning. We also apply the developed approach to long-term datasets. Our study provides a potential avenue for hydrological applications.
Remote sensing has opened opportunities for mapping spatiotemporally continuous soil moisture,...