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Abstract. Spatiotemporally continuous soil moisture (SM)
data are increasingly in demand for ecological and hydrolog-
ical research. Satellite remote sensing has potential for map-
ping SM, but the continuity of satellite-derived SM is ham-
pered by data gaps resulting from inadequate satellite cov-
erage, snow cover, frozen soil, radio-frequency interference,
and so on. Therefore, we propose a new gap-filling approach
to reconstruct daily SM time series using the European Space
Agency Climate Change Initiative (ESA CCI). The devel-
oped approach integrates satellite observations, model-driven
knowledge, and a machine learning algorithm that leverages
both spatial and temporal domains. Taking SM in China as
an example, the reconstructed SM showed high accuracy
when validated against multiple sets of in situ measurements,
with a root mean square error (RMSE) and a mean abso-
lute error (MAE) of 0.09–0.14 and 0.07–0.13 cm3 cm−3, re-
spectively. Further evaluation with a 10-fold cross-validation
revealed median values of the coefficient of determination
(R2), RMSE, and MAE of 0.56, 0.025, and 0.019 cm3 cm−3,
respectively. The reconstructive performance was noticeably
reduced both when excluding one explanatory variable and
keeping the other variables unchanged and when removing
the spatiotemporal domain strategy or the residual calibra-
tion procedure. In comparison with gap-filled SM data based
on a satellite-derived diurnal temperature range (DTR), the
gap-filled SM data from bias-corrected model-derived DTRs
exhibited relatively lower accuracy but higher spatial cov-

erage. Application of our gap-filling approach to long-term
SM datasets (2005–2015) produced a promising result (R2

=

0.72). A more accurate trend was achieved relative to that of
the original CCI SM when assessed with in situ measure-
ments (i.e., 0.49 versus 0.28, respectively, in terms of R2).
Our findings indicate the feasibility of integrating satellite
observations, model-driven knowledge, and spatiotemporal
machine learning to fill gaps in short- and long-term SM time
series, thereby providing a potential avenue for applications
to similar studies.

1 Introduction

As an essential component of land–atmosphere interactions,
soil moisture (SM) substantially impacts the energy, water,
and carbon cycles. It plays important roles in hydrological,
environmental, and agricultural applications such as evapo-
transpiration (ET) estimation (Detto et al., 2006), drought as-
sessment (Wang et al., 2011), and flood forecasting (Wanders
et al., 2014). SM has been declared by the Global Climate
Observing System (GCOS) and the United Nations Frame-
work Convention on Climate Change (UNFCCC) as one of
the 50 vital variables in terrestrial domains (Mason et al.,
2010). Availability of spatially and temporally continuous
daily all-weather SM data could facilitate improved under-
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standing of ecological and hydrological processes; therefore,
provision of a reliable SM dataset is urgently demanded.

Various methods are available for collecting SM data. In
situ measurements can capture the temporal variability of
SM at the station scale, and many networks designed for
such in situ observations have been installed regionally, na-
tionally, and globally, e.g., the crop growth and farmland
SM database in China, the North American Soil Moisture
Database in North America, and the International Soil Mois-
ture Network (ISMN) (Schaake et al., 2004; Dorigo et al.,
2011, 2021). Nevertheless, owing to the limited number of
ground stations, obtaining spatially continuous SM measure-
ments across large-scale regions remains a challenge. In ad-
dition to ground-based observations, SM can be simulated
using numerical models. The Global Land Data Assimila-
tion System (GLDAS) and the European Centre for Medium-
Range Weather Forecasts (ECMWF) fifth-generation global
atmospheric reanalysis (ERA-5) can model the soil moisture
values that have sufficient spatial coverage (Chen et al., 2013;
Reichle et al., 2011). However, such model simulations tend
to be sensitive to uncertainties related to model structure,
forcing, and parameterization (Prihodko et al., 2008; Dorigo
et al., 2017).

Satellite observation is considered a powerful technique
for retrieving surface SM data, especially given recent im-
provements in sensor technology. Some SM-dedicated satel-
lites, e.g., the Advanced Microwave Scanning Radiometer-
Earth Observation System (AMSR-E) and the Advanced
Scatterometer (ASCAT), have used the higher C-band and X-
band microwave frequencies to collect SM signals. Despite
the sensitivity of satellite-derived SM data to atmospheric
variability and vegetation coverage, satellites operating with
lower L-band radiometers, such as Soil Moisture and Ocean
Salinity (SMOS) (Kerr et al., 2001) and Soil Moisture Active
and Passive (SMAP) (Entekhabi et al., 2010), have exhibited
great potential for collecting SM data because of the strong
capacity of wavelengths in the L-band frequency range to
penetrate vegetation. A case worth noting is that the Euro-
pean Space Agency Climate Change Initiative (ESA CCI)
has generated one set of a global SM dataset (Gruber et al.,
2019; Dorigo et al., 2017). This CCI SM product blends a se-
ries of SM products from active–passive microwave satellite
sensors, giving it one complete and consistent observational
SM record. Previous studies have revealed reasonable corre-
lation between the CCI SM dataset and in situ measurements
obtained over different regions (Dorigo et al., 2015).

The gap issues that remain in current satellite-based SM
products relate to various factors such as snow cover, frozen
soil, radio-frequency interference, and orbital changes in the
satellite sensors (Dorigo et al., 2017). Considerable effort has
been dedicated to filling missing values in satellite-derived
SM datasets. Traditional interpolation approaches that are
applied to fill gaps rely on the spatial or temporal patterns
of the target variable, such as inverse distance weighting
and cokriging (Yao et al., 2013; Ford and Quiring, 2014).

Other studies (Leng et al., 2017; Llamas et al., 2020; Meng
et al., 2021) have focused on the use of statistical meth-
ods that mainly depend on the statistical and physical rela-
tionships between target variables and explanatory variables.
Only recently have machine learning strategies been intro-
duced to the problem of gap filling in relation to satellite-
derived datasets (Zhang et al., 2021a, b; Bessenbacher et al.,
2022b). Such methods have the capacity to depict complex
relationships of target variables and explanatory variables.
For instance, Elsaadani et al. (2021) assessed the spatiotem-
poral deep learning method for filling the gaps in soil mois-
ture observations, and Li et al. (2021b, 2022c) further im-
proved satellite soil moisture prediction using the deep learn-
ing model. In comparison with statistical-based models, ma-
chine learning models might be more flexible and robust, es-
pecially with regard to complex scenes and extended cover-
age (Reichstein et al., 2019).

Most SM gap-filling studies rely on explanatory variables
that are required in describing SM dynamics. In addition
to satellite-derived vegetation indexes (e.g., normalized dif-
ference vegetation index, NDVI, and enhanced vegetation
index, EVI), surface albedo, and land surface temperature
(LST), various climatic and geographical factors have been
employed in such studies (Almendra-Martín et al., 2021;
Cui et al., 2019; Jing et al., 2018). Nevertheless, although
appropriate for use in certain regions, most of those vari-
ables are less suitable for use in heterogeneous regions and
for extended coverage. For example, previous studies (Song
et al., 2021; Liu et al., 2020b) that focused on the NDVI
and LST tended to achieve better performance in depicting
SM in arid and semi-arid regions but produced unsatisfac-
tory performance in humid areas. Moreover, satellite-derived
variables (e.g., optical and thermal infrared parameters) are
likely to be impacted by cloud conditions. Accordingly, re-
searchers have attempted to explore effective information for
promoting model establishment and application. Some stud-
ies used the feature transform approach to extract distinct sig-
nals for driving models. Principal component analysis (PCA)
and wavelet decomposition have been employed to recon-
struct SM and other satellite-based parameters (Uebbing et
al., 2017; Almendra-Martín et al., 2021). Despite reasonable
model performance achieved in humid and semi-arid regions
(Zhang et al., 2016; Almendra-Martín et al., 2021), some
studies found no substantial improvement in model perfor-
mance in areas of cropland in semi-humid regions when us-
ing the PCA (Wang et al., 2020). Soil moisture from GLDAS,
ERA-5, the China Meteorological Administration Land Data
Assimilation System (CLDAS), and the Fengyun Microwave
Radiation Imager is considered (Long et al., 2019; Cui et
al., 2020). The gap-filling models integrating these unique
dataset sources are able to describe SM dynamics, but uncer-
tainties remain in relation to humid regions and areas subject
to the freezing–thawing process (Song et al., 2021; Cui et
al., 2019). Overall, progress regarding the availability of ex-
planatory variables for use in models for reconstruction of

Hydrol. Earth Syst. Sci., 27, 577–598, 2023 https://doi.org/10.5194/hess-27-577-2023



K. Liu et al.: A robust gap-filling approach for ESA CCI soil moisture integrating satellite observations 579

SM is inadequate, and this is especially critical for machine
learning gap-filling models that are sensitive to the structure
of the input sequences (Mao et al., 2019).

Although earlier studies focused on completing SM
datasets, most partially addressed a specific case of satel-
lite observations but failed to consider larger continental re-
gions. Almendra-Martín et al. (2021) and Liu et al. (2020b)
applied reconstruction algorithms to the CCI SM product in
regional Europe and Oklahoma, USA, respectively, and Cui
et al. (2019) continuously promote this approach in the Ti-
betan Plateau. Such models rely on machine learning algo-
rithms and a variety of satellite-based variables. Furthermore,
research on the challenging case of SM time series at the
daily scale (Zhang et al., 2021b; Long et al., 2019), which
is fundamental to the exploration of SM dynamics, and the
quantification of the associated impact on the contribution to
climate change and the water cycle is limited (Bessenbacher
et al., 2022a).

Here, we propose a robust gap-filling methodology for re-
construction of a spatially continuous daily ESA CCI SM
dataset, primarily based on satellite observations, model-
driven knowledge, and one spatiotemporal random forest al-
gorithm. Our model was tested by application to continental
China, which has suitable variability in terms of landscape
and climatic conditions. Specifically, the feasibility and merit
of the developed model were demonstrated by the follow-
ing: (1) evaluation of the gap-filled results using in situ mea-
surements, holdout cross-validation, and comparison against
those of other models and (2) examination of model uncer-
tainty in terms of the filtered explanatory variables and con-
sideration of the extension of the proposed model to one
long-term period.

2 Study region

China is located from 3◦51′ to 53◦33′ N and from 73◦33′ to
135◦05′ E, covering an area of approximately 9.6× 106 km6

(Fig. 1). A variety of terrain types is presented across China,
including plain, basin, plateau, mountain and hill. These
diverse terrains inevitably result in noticeable spatial dif-
ferences in precipitation and temperature, accompanying
the elevation decreasing from west to east. Seven climate
zones can be identified in China, including arid, semi-arid,
arid/semi-wet, wet/semi-arid, wet, moist, and over-wet cli-
mates. The identification of this zoning system is based on a
China’s humidity index map produced by the National Earth
System Science Data Center, National Science & Technol-
ogy Infrastructure of China (http://www.geodata.cn, last ac-
cess: 10 June 2021).

3 Materials and methods

The object of this study was to reconstruct CCI SM data gaps
to produce spatially continuous data records. The basic prin-

ciple of the proposed gap-filling approach is to efficiently
determine the correlation between SM records and the cor-
responding explanatory variables, which can be expressed as
follows:

SM= f (V 1,V 2,V 3. . .V k)+ ε, (1)

V i ∈ R
N,T , (2)

where SM is the soil moisture, V i are the corresponding ex-
planatory vectors, and k is the number of input variables. V i

can be a vector, and the sample number is determined in the
spatial domain (N ) and temporal domain (T ). f is one func-
tion that can be either linear or nonlinear. ε represents the
model residual. In a machine learning ensemble, f represents
a black box model that does not have one specific form.

The proposed methodology involves three core steps:
(i) using a regression subset selection approach and a vari-
able correction procedure to filter explanatory variables from
the satellite observations and model-driven knowledge and
to correct the systematic variable bias between them (Fig. 2
Part 1, red text); (ii) training a machine learning algorithm
to determine the SM–explanatory variable correlation based
on the selected optimal parameters and the available pixels
identified with a spatiotemporal window search strategy and
then applying the established correlation to retrieve the un-
available SM pixels (Fig. 2 Part 2, red text); (iii) conducting
geographically weighted regression and Gaussian filtering to
calibrate the model-derived residuals (Fig. 2 Part 2, red text).

3.1 Dataset processing

The dataset used includes the satellite product, reanalysis
dataset, land surface model outputs, and in situ measure-
ments (Tables 1 and S1). Details about these datasets are de-
scribed in the following sections.

3.1.1 Satellite product

The ESA CCI SM dataset is provided by the Climate Change
Initiative program of the European Space Agency. This prod-
uct is primarily composed of three types of daily dataset
sources, i.e., active, passive, and active–passive combined
microwave products (Dorigo et al., 2017). Despite the wide
spatiotemporal coverage of CCI SM, the data gap remains
a major challenge that hampers its further application. Here,
we select the daily combined microwave products version 4.5
with a spatial resolution of 0.25◦. The inconsistent data in the
CCI combined SM are filtered using the quality flag variable.

A variety of Moderate Resolution Imaging Spectro-
radiometer (MODIS) products are collected, including
the daily LST (MYD11C1), the 16 d composite albedo
(MCD43C3) and vegetation indices, i.e., NDVI and EVI, and
the 8 d composite leaf area index (LAI) (MCD15A2H). All
these datasets are collected at MODIS 6 collection. We calcu-
late the diurnal temperature range (DTR) by subtracting the
nighttime LST from the daytime LST. The NDVI and EVI
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Figure 1. Study region and the selected in situ soil moisture sites. The figure in the upper-left corner shows the digital elevation model
(DEM) information. The detailed distribution of dense in situ measurements in the Maqu network is shown in the figure on the far right. Two
regional areas for uncertainty analysis (i.e., northern China, NC, and southern China, SC) are bordered by the rectangles.

Figure 2. Schematic of the overall procedure.

are averagely obtained from the two products: MOD13C1
and MYD13C1. All the selected products are screened out
using the quality variables to maintain only the available pix-
els with good quality. We also collect the 0.05◦ annual land
cover product (MCD12Q1) for quality control of CCI SM.

We use the digital elevation model (DEM) dataset
provided by NASA’s Shuttle Radar Topography Mission
(SRTM) (Van Zyl, 2001) to retrieve several relevant topo-
graphic metrics, including slope, aspect, and the topographic
position index (TPI) (Guisan et al., 1999). The TPI is calcu-
lated by subtracting the focal grid elevation from the mean el-
evation of the eight surrounding grids. The TPI is potentially

correlated better with surface variables such as snow depth
and SM in comparison with the DEM (Cristea et al., 2017).
Positive (negative) TPI values mean that the target grid is
higher (lower) than the average of its surroundings.

Considering the low accuracy of satellite SM for snow-
covered pixels, pixels that have both daytime LST lower than
0 ◦C and albedo higher than 0.3 are removed (Cui et al.,
2020). We also remove pixels for which a water body ac-
counts for more than 20 % of the total area. To overcome
the spatial resolution differences among the diverse products
available, all the datasets are resampled to 0.25◦ spatial res-
olution by averaging the pixel values.
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Table 1. Summary of the dataset used for the proposed model. The other dataset for the preliminary analysis but not the final utilization of
the model is exhibited in Table S1 in the Supplement.

ID Variables Source Resolution
(spatial/temporal)

1 Soil moisture ESA CCI 0.25◦/daily

2 Surface albedo MCD43C3 0.05◦/16 d

3 NDVI MOD13C1, MYD13C1 0.05◦/16 d

4 Land surface temperature (LST) MYD11C1 1 km/instantaneous

5 Precipitation China Meteorological Forcing Dataset 0.1◦/3-hourly

6 Potential evapotranspiration (PET) GLEAM 0.25◦/daily

7 Soil moisture ERA-5 0.25◦/hourly

8 Land cover classification MCD12Q1 500/annual

9 Digital elevation model (DEM) SRTM 90 m

10 Surface temperature Noah simulations from previous work 1 km/3-hourly

11 Surface temperature ERA-5 0.25◦/hourly

12 Surface temperature GLDAS 0.25◦/3-hourly

13 Soil moisture GLDAS 0.25◦/3-hourly

14 Soil moisture GLEAM 0.25◦/daily

15 In situ soil moisture China Watershed Allied Telemetry
Experimental Research (WATER)

Daily

16 In situ soil moisture Chinese Ecosystem Research Network (CERN) 5 d

17 In situ soil moisture Tibetan Plateau observatory of plateau scale soil moisture and soil
temperature (Tibet-Obs)

Daily

18 In situ soil moisture China’s agrometeorological observation network 10-daily

3.1.2 Reanalysis dataset and land surface model
outputs

We collect the soil moisture data from ERA-5, a global atmo-
spheric reanalysis dataset released by the ECMWF (Balsamo
et al., 2015). The data assimilation system used for ERA-
5 is the ECMWF Integrated Forecast System (IFS), and the
meteorological forcing for retrieving soil moisture is from
the ERA atmospheric reanalysis. Here we select the daily-
averaged SM from the first soil layer (0–7 cm) to match with
satellite CCI SM.

Daily potential evapotranspiration (PET) and surface soil
moisture (0–15 cm) are collected from the Global Land-
surface Evaporation Amsterdam Methodology (GLEAM)
dataset. GLEAM is based on a general land surface model
that focuses on soil moisture and evapotranspiration (Mi-
ralles et al., 2011). PET in GLEAM is calculated with
the Priestley–Taylor formula based on multiple reanalysis
datasets, while the soil moisture is calculated with a soil-
water module based on the water cycle balance.

Four meteorological variables, i.e., precipitation, air tem-
perature, solar radiation, and wind, are obtained from the
China Meteorological Forcing Dataset. This dataset is gen-
erated through fusion of in situ station data, remote sensing
products, and reanalysis datasets (He et al., 2020). Consider-
ing the lag effect of precipitation on surface water dynamics,
we use the 5 d antecedent precipitation (AP) to replace the
daily precipitation (Wei et al., 2020).

Three surface temperature sources are additionally col-
lected for uncertainty analysis. Two sources are collected
from the ERA-5 and GLDAS ensemble models. Consider-
ing the model uncertainties caused by regional surface char-
acteristics and climatic conditions, we simulate surface tem-
perature and surface SM (0–10 cm) by implementing a Noah
model that is forced with meteorological variables from the
Chinese regional ground meteorological dataset and the sur-
face condition parameters from MODIS. This dataset was
previously used in our work (Liu et al., 2020a, 2021b).
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3.1.3 In situ measurements

A variety of spatially sparse in situ soil moisture measure-
ments is collected to evaluate the accuracy of gap-filled SM.
We collect in situ soil moisture observations at 39 sites ob-
tained from the China Watershed Allied Telemetry Experi-
mental Research (WATER) project and the Chinese Ecosys-
tem Research Network (CERN). These validation stations
are set up in a relatively large homogeneous area dominated
by vegetation covers (cropland, woodland, and grassland) or
desert lands. In addition, 657 in situ soil moisture measure-
ments covered by cropland are collected from the Chinese
agrometeorological and ecological observation network.

We also collect the dense in situ measurements at the
Maqu soil moisture monitoring network. The Maqu net-
work (33◦30′–34◦15′ N, 101◦38′–102◦45′ E) is located on
the northeastern border of the Tibetan Plateau (Fig. 1) (Dente
et al., 2012). In this network, 20 sites are distributed over a
uniform grassland cover located in the large valley of the Yel-
low River. The Maqu network has demonstrated capability in
monitoring the spatial and temporal SM variability with high
accuracy (Su et al., 2013; Wei et al., 2019). The locations
and detailed information of all available sites are displayed
in Fig. 1 and Table S2.

3.1.4 Filter explanatory variables

Explanatory variables related to atmospheric, geophysical,
ecological, and hydrological variables are conducive to cap-
turing SM variability. The significance percentage produced
by the regression subset selection model (Fu et al., 2019; Liu
et al., 2021a) is employed to measure the impacting proba-
bility of the explanatory variables, where a high significance
percentage indicates capability in depicting SM (details in
Sect. S1 in the Supplement). We conducted the subset se-
lection model analysis based on a dataset from 2005 to 2015,
and 15 variables were selected as input parameters, including
7 surface environmental variables, i.e., albedo, NDVI, EVI,
LAI, DTR, PET, and ERA SM, 3 elevation variables, i.e.,
TPI, aspect, and slope, and 3 climatic variables, i.e., AP, air
temperature, wind, and two geographical factors, i.e., latitude
and longitude. All the variables are available from datasets at
the continental scale. Gaps present in these variables were
not considered further to avoid introducing additional errors.

As illustrated in Fig. 3a, albedo, NDVI, EVI, LAI, DTR,
AP, PET, ERA SM, TPI, and air temperature have the high-
est significance percentage in terms of correlation with CCI
SM. We excluded aspect, slope, wind, latitude, and longitude
owing to their low correlations with SM. The EVI, NDVI,
and air temperature were also not considered in further appli-
cation because the EVI and LAI are closely correlated with
NDVI, and air temperature is strongly correlated with DTR.
All the selected covariates are physically meaningful in de-
picting SM. Specifically, the atmospheric variables (i.e., pre-
cipitation and PET) are suitable for capturing the temporal

dynamics of SM, and the topographic variables are included
both to depict the orographic effects and to recapture the spa-
tial pattern of SM. DTR exhibits correlation with SM owing
to its capacity to take account of land–atmosphere coupling.
ERA SM was also included to reproduce satellite SM.

To verify the results based on the regression subset selec-
tion model, we employed the permutation feature importance
to measure the relative importance of each predictor vari-
able. Consistent patterns between the significance percentage
and permutation importance further indicate the feasibility of
the selected variables in modeling SM. Additionally, because
these variables are derived from optical remote sensing, re-
analysis datasets, and land surface model products, they have
potential for extension to large regions owing to their high
availability (Fig. 3b).

3.1.5 Variable correction

Systematic biases are unavoidable in reanalysis datasets and
land surface model outputs, and these biases can be propa-
gated in dynamic modeling. Accordingly, bias correction is
required prior to the gap-filling procedure to ensure a con-
sistent simulated output. Specifically, to make the modeled
values (i.e., ERA SM) comparable with the satellite obser-
vations (i.e., ESA CCI SM), we used a correction proce-
dure that primarily combines a variance scaling algorithm
and a linear scaling algorithm (Long et al., 2020; Zhang et
al., 2021c). The used procedure can be illustrated with the
following equations:

SMc1 = SMERA (tav)−µ(SMERA (tav))+

µ(SMESA (tav)) ,

SMc = µ(SMc1)+ (SMc1−µ(SMc1))

×σ (SMESA (tav))/σ (SMc1−µ(SMc1)) ,

(3)

where SMERA is the raw ERA SM time series of the target
grid pixel, tav is the time series in which pixels of the object
grid are available, SMESA is the ESA SM of the grid, and µ
and σ are the mean value and the standard deviation, respec-
tively. SMc is the corrected ERA SM that is assumed to have
a spatial pattern (i.e., consistent means and standard devia-
tions) with the CCI SM. In our study, a dataset comprising
time series from 2005 to 2015 was used to conduct the cor-
rection procedure to guarantee sufficient samples. Examples
illustrating the performance of the ERA SM correction can
be found in Fig. S1. Despite being conducted on SM, this
calibration procedure could be applied to other parameters
(e.g., DTR) when replaced with numerical model outputs.

3.2 Model implementation

3.2.1 Machine learning regression

Despite being easy to implement and requiring fewer com-
putational resources, traditional regression-based methods
such as generalized linear models and multivariate regres-
sion splines generally insufficiently consider the probability
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Figure 3. Correlation and availability of the dataset used. (a) Significance percentage and permutation importance of the selected variables
in correlation with CCI SM. (b) Availability of the selected variables.

density functions in assessing model performance. Machine
learning approaches could be much more flexible than con-
ventional parametric models owing to their ability to handle
nonlinear relationships and complex interactions. Among the
various machine learning models, the random forest (RF) al-
gorithm, acting as an enhanced decision tree model, is an ef-
fective and powerful tool in interpreting Earth variables (Bel-
giu and Dragut, 2016). As illustrated in Fig. 4a, RF is a hier-
archical tree diagram that is based on a nonparametric strat-
egy and has the capacity to add a variety of parameter layers
to the model (Breiman, 2001). This decision tree model is
composed of many nodes and edges within each tree struc-
ture, mainly including two types of nodes: split nodes and
leaf nodes. The split node is related to a test function that is
employed to split the input data, whereas the leaf node is as-
sociated with the final decision. Unlike the standard decision
tree model that relied on the whole dataset, RF trains each
tree on bootstrap resamples. This model only considers the
randomly selected variables rather than the total variables.
By this means, the outcome is decided by a majority voting
or averaging strategy.

In this study, the RF model is implemented using the
“RF Regressor” function from the Python library (Shahri-
ari et al., 2016). Specifically, the built-in functions are
used to assess the importance of each covariate by us-
ing the out-of-bag samples. We use the “Bayesian Opti-
mization” module (http://rmcantin.github.io/bayesopt/html/
bopttheory.html, last access: 20 August 2021) to select the
best hyperparameters in driving the RF algorithm. Four
critical parameters deciding the RF algorithm include the
number of trees (n_estimators), the maximum tree depth
(max_depth), the minimum number of samples for splitting
an internal node (min_samples_split), and the number of fea-
tures (max_features). For each specific climate region, the
Bayesian optimization process is carried out within 20 itera-
tions to optimal parameters. This procedure is implemented

by using the dataset of 2003–2008 as the cross-validation
window. Optimal parameters in the seven climate regions are
listed in Table S3.

3.2.2 Identify the spatiotemporal window

One critical issue related to the machine learning model is
how to efficiently explore the informative covariates. Here,
we use a spatiotemporal strategy to capture the spatial and
temporal SM and the related covariate dynamics. Our strat-
egy primarily relies on the available pixels within a regional
subset, thereby allowing more pixels of interest to participate
in the regression. Figure 4b provides the diagram of the spa-
tiotemporal window search strategy.

An adaptive strategy is employed to determine the opti-
mal spatiotemporal window size. Two critical variables are
adopted to identify the window size, i.e., the size of the spa-
tial window (sw) and the number of temporal days (nd). To
find the optimal sw and nd, we continually increase the value
of sw and nd from the initial values until the samples par-
ticipating in regression meet the criterion; i.e., the number
of available pixels within the searched window should be no
less than 8 times the participating explanatory variables (i.e.,
seven) (Svetnik et al., 2003; Liu et al., 2020a). Here an initial
sw is set to 5 and an initial nd is set to 1. Considering that
a fraction of gaps occurs in the satellite dataset (e.g., LST
and albedo) and the optimal window may not exist, the max-
imum values of sw and nd are introduced to terminate this
process. A sensitivity analysis is conducted with the indepen-
dent dataset to select the two maximum values. Specifically,
we conduct a cross-validation during 2003–2008 to evaluate
the accuracy of the gap-filling model. The increasing max-
imum nd from 1 to 7 with intervals of length 1 is tested,
and the maximum sw is tested from 4 to 10 with intervals
of length 1. The values that yield the lowest RMSE (Fig. 4c)
are selected, and finally, we set the maximum sw to 7 and
the maximum nd to 4. Note that we also conduct a sensitiv-
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ity analysis for each climate region and find no substantial
differences in the resulting optimal values of two parameters
among the seven climate regions. This is probably because
this sensitivity analysis is more reliant on model structure
rather than sample characteristics.

3.2.3 Residual calibration

Considering that the machine learning model might not fully
account for the variability in SM, the original reconstruction
needs to be calibrated, which can potentially remove the bias
resulting from neglected variables such as those that are ex-
cluded for model establishment (Zhu et al., 2012; Liu et al.,
2020a). In practice, we add the interpolated model residuals
to the original reconstructions. The geographically weighted
regression (GWR) model, which is an extension of the tradi-
tional linear regression model (Li et al., 2017), is applied to
interpolate the RF-derived residuals. This procedure is based
on the samples within the searched window for each target
pixel. The model residual (εj ) derived from Eq. (1) can be
described using the explanatory variables as follows:

εj = β0
(
uj ,vj

)
+

∑k

i=0
βi
(
uj ,vj

)
Xij , (4)

where β0
(
uj ,vj

)
and βi

(
uj ,vj

)
are the regression coeffi-

cients estimated at the j th pixel, and
(
uj ,vj

)
are the coor-

dinates. The regression coefficients can be estimated using
the observations within the self-adaptive searched window
as follows:{
β̂
(
uj ,vj

)
= (XT (W

(
uj ,vj

)
)X)−1XTW

(
uj ,vj

)
Y,

wij = [1− (dij/b)2]2,
(5)

where β̂
(
uj ,vj

)
is the coefficient matrix composed of coef-

ficients from each explanatory variable, and X and Y are the
explanatory variable matrix and the dependent variable (i.e.,
SM) vector, respectively. Here latitude, longitude, and the
seven explanatory variables selected are used to implement
the GWR model. W

(
uj ,vj

)
is the weight matrix composed

of wij , dij is the Euclidean distance between the observation
ith and j th points, and a and b are the window radii.

Before adding to the original reconstruction, the GWR-
interpolated residual is further smoothed with a normalized
k×k Gaussian filter with a standard deviation of σ . This pro-
cedure can remove the grid-like artifacts that extensively ex-
ist in statistical model outcomes. Based on the optimization
procedure (Sismanidis et al., 2021; Liu et al., 2019), we set
k = 5 and σ = 1.5.

3.3 Model analysis

3.3.1 Model validation

Model validation was conducted using data from 2009 when
a sufficient number of ground measurements was collected.
The top layer SM measurements from the in situ stations

were first used to evaluate the accuracy of the reconstructed
results. Considering the scale mismatch between the sparse
distribution of in situ stations and the CCI SM product (∼
25 km), we used the Disaggregation based on Physical And
Theoretical scale Change (DISPATCH) model (Merlin et al.,
2012) to disaggregate the 0.25◦ reconstructions to 1 km res-
olution. Detailed descriptions regarding this disaggregation
method can be found in Sect. S2 in the Supplement.

Evaluating the gap-filled SM with in situ measurements
can produce biases that can be caused by scale mismatching
and disaggregation model performance. To account for this,
holdout cross-validation with 10 replicates was performed in
2009 to evaluate the model accuracy. For each replicate, we
randomly held out 10 % of the pixels, that is, manually intro-
ducing gaps for these pixels, and trained the model with the
remaining 90 % of the dataset. Specifically, the pixels dur-
ing all the periods were first rearranged into a time series,
and then 10 % of them were dropped in each replicate. After
the gap-filled SM series of holdout pixels were reconstructed
from the training set, they were validated against the original
SM.

To reveal the physical plausibility of gap-filled SM, we
paid particular attention to the evaluation of gap-filling SM
under extremely dry conditions. Extreme drought is de-
fined based on meteorological conditions, that is, the Palmer
Drought Severity Index (PDSI) of less than −2 over 8 con-
secutive months or longer (Fig. S2).

The statistics used for the model accuracy assessment in-
clude the coefficient of determination (R2), the root mean
square error (RMSE), the mean absolute error (MAE), the av-
erage error bias (BIAS), and the unbiased RMSE (ubRMSE).
In addition, Nash–Sutcliffe efficiency (NSE) is used to mea-
sure the overall performance of the proposed model. All
these metrics have been extensively used for evaluating satel-
lite SM.

3.3.2 Model comparison

The proposed method was compared against four exten-
sively used models that adopt the same explanatory variables
and spatiotemporal window search strategy. The first one is
the conventional multiple linear regression (MLR) approach.
Three typical machine learning approaches, i.e., extreme gra-
dient boost (XGB), support vector machine (SVM), and ar-
tificial neural network (ANN), are also used for compari-
son. Detailed descriptions of the four available models can
be found in Sect. S3.

3.3.3 Uncertainty analysis

Considering the criticality of explanatory variables in simu-
lating SM, uncertainty analyses regarding these selected vari-
ables were conducted. We first investigated the accuracy of
the reconstruction model that excludes one participating vari-
able. Given the critical importance of satellite-derived DTR
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Figure 4. (a) Diagram of the random forest model implemented for a multidimensional dataset. (b) Diagram of the spatiotemporal window
determination strategy for random forest regression. (c) Results of the sensitivity analysis regarding two maximum values, i.e., the size of the
spatial window (sw) and the number of temporal days (nd), for terminating the searching process.

and the severe issues of missing data in satellite-observed
LST products, we further investigated the substitution perfor-
mance of other surface temperature sources in reconstruct-
ing SM, i.e., Noah, ERA, and GLDAS. This analysis was
conducted by focusing on two regions (in Fig. 1) that have
sufficient data sources to support our experiments (Liu et
al., 2020a, 2021b): one region is in northern China cover-
ing mostly arid and semi-arid areas, while the other region is
in southern China covering mostly wet areas.

Since the reanalysis SM is a vital input in our approach, we
also compare it with the other two products to evaluate the
feasibility of ERA data in reconstructing CCI SM. GLEAM
and Noah surface SM are, respectively, employed to replace
the ERA SM, while the other explanatory variables keep the
rest the same.

3.3.4 Long-term extension

The available dataset forcing for our model has a long record,
indicating potential for modeling long-term SM products. To
verify this, the proposed gap-filling method was further ex-
tended to the long-term ECA CCI SM databases of 2005–
2015. We also investigated the trend of the SM series dur-
ing this period, which was obtained via Sen’s slope and
Mann–Kendall significance analysis (Li et al., 2021a, c). The
trends from the reconstructed SM series were also compared
with those from the original CCI SM, which were evaluated
against in situ measurements.

4 Results and discussion

4.1 Spatiotemporal patterns

The spatiotemporal pattern of the original daily CCI SM and
the corresponding gap-filled dataset in 2009 is first checked.
As shown in Fig. 5a (and Fig. S3), a considerably large
gap occurs in the original CCI SM, and this gap problem
is greater in winter. We reconstruct the contaminated SM
pixels using the spatiotemporal RF model. Most of the con-
taminated pixels (more than 85 %) are reconstructed. Rela-
tively few missing pixels are gap-filled in winter in compari-
son with other seasons, primarily because of the heavy con-
tamination of clear pixels caused by frequent occurrence of
cloud during this period. It means that the learning capac-
ity of the spatiotemporal machine learning method is con-
strained when encountering limited satellite observations.

Figure 5b shows the box plot of the original versus gap-
filled SM on selected days in 2009. Conformity exists be-
tween the original and reconstructed SM for most days. A
similar pattern in variance and magnitude is also observed
for the SM of the monthly average and the selected days,
as illustrated in Fig. 5c; that is, a large difference occurs in
winter and spring. This can be attributed to the fact that the
original CCI SM provides fewer training data from October
to May of the following year. Additionally, the distribution
of CCI SM is more uneven in this period, which might re-
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duce model performance owing to the limited representation
of training samples (Stroud et al., 2001).

In terms of different climate regions, a minor discrep-
ancy is evident between the original and reconstructed SM
(Fig. 5d), with a bias in the median SM values of less
than 8 %. It means that the reconstructed SM has variation-
depicting capacity. Small overestimation occurs in arid re-
gions, which originally had less soil water storage.

Figure 6 exhibits the spatial distributions of the origi-
nal CCI SM and the reconstructed SM on selected days in
2009. The humid regions are mostly concentrated in southern
China adjacent to the coast of the western Pacific, whereas
the dry regions are mainly distributed in the northern and
western parts of China. A considerable fraction of contam-
inated pixels is observed on the selected days, and this con-
tamination is severe in the winter season and in mountain-
ous areas and snow-covered regions (e.g., Tibetan Plateau
and Mongolian Plateau). Almost all the contaminated pix-
els from March to October are reconstructed; meanwhile, the
proposed model reconstructs the most contaminated pixels
for the remaining months. Owing to the additional valid val-
ues provided by gap-filled pixels, more spatial variation is
depicted in the reconstructed SM images. Missing pixels still
occur in the reconstructed SM images, especially in the cold
seasons. This is probably related to the fact that the surface
temperature, ET, and precipitation are more connected in the
warm season through energy balance considerations and at-
mospheric circulation. Some of these invalid pixels corre-
spond to snow- and water-covered regions that have been
removed beforehand. Because missing Earth data are to a
large extent not at random, statistical measures of compar-
ative analysis among them tends to produce bias (Bessen-
bacher et al., 2022b). To account for this, paired histograms
of two datasets are compared to explore the value distribution
properties. The histograms show that the gap-filled dataset
does not impact the SM distribution in warm seasons, that is,
in agreement with the CCI dataset. However, this bias can-
not fully indicate the improved accuracy of gap-filled SM
because the pixels could be missing not at random.

4.2 Accuracy validation with in situ measurements

The proposed model is first evaluated with sparse in situ mea-
surements from WATER and CERN. As shown in Fig. 7a,
agreement is obtained between the 1 km CCI SM-derived
values and the in situ measurements, with an R2 of 0.8. This
accordance is also found between the 1 km reconstructed
SM and the in situ measurements (Fig. 7b), with an R2 of
0.75. High accuracy is also observed when performing eval-
uation with in situ measurements from national agrometeo-
rological stations. The R2 value between the 1 km CCI SM-
derived values and the in situ measurements is 0.81, while
the R2 value between the 1 km reconstructed SM and the in
situ measurements is 0.71 (Fig. 7c and d). Inconsistency evi-
dently remains, and noticeable overestimations are observed

in the high range of SM. Additionally, the accuracy of the
gap-filling products tends to be diminished by drought con-
ditions, but this impact is limited.

We further validate the reconstructed results with the
dense in situ measurements from the Maqu network. The
RMSE and MAE values are 0.11 and 0.09 cm3 cm−3

(Fig. 7e), respectively, for the 1 km CCI SM-derived values,
and 0.12 and 0.09 cm3 cm−3 (Fig. 7f), respectively, for the
1 km reconstructed SM. It means that reasonable agreement
is obtained for both the CCI SM product and the gap-filled
SM; however, poor performance is found in the range of low
values, mostly because of the extreme conditions and the
fewer samples available for model regression.

The time series of average 0.25◦ CCI SM values and
reconstructed SM over the dense grid are compared with
the dense in situ observations. Both the original and recon-
structed SM match well with the in situ series, with NSE
values of 0.83 and 0.85, respectively. The reconstructed SM
(Fig. 7g) mostly describes the temporal dynamics of in situ
measurements, that is, sufficiently capturing seasonal and
daily variability. In addition, the rainfall events impacting the
surface dynamics are observed to be well depicted in the SM
temporal variations. The reconstructed SM appears to have
inherited the merits of stability between April and November
from the CCI SM, i.e., having comparable values during this
period.

4.3 Accuracy validation with cross-validation analysis

Cross-validation analysis is further performed with 2009
data to evaluate model performance. The obtained metrics
(Fig. 8a) illustrate reasonable coincidence between the re-
constructed and original CCI SM, with a median R2 range
of 0.51 to 0.63. Better accuracy of gap-filled SM in compar-
ison to original CCI SM is also demonstrated by the metrics
of RMSE, MAE, and ubRMSE. In particular, the median of
BIAS is less than 0.01 cm3 cm−3. Comparatively, better ac-
curacy is achieved in the growth seasons (March–October),
which can be attributed to the fact that the critical environ-
mental factors, such as NDVI, DTR, and ERA SM, are more
related to satellite-derived SM during the season of vegeta-
tion growth (Chen et al., 2014; Otkin et al., 2016).

Figure 8b shows the accuracy metrics for different cli-
mate regions. A pattern similar to that of the monthly
means is observed; that is, acceptable accuracy occurs in
most regions. No significant differences in median R2 and
BIAS are evident between the reconstructed SM of each cli-
mate region, with the bias between the maximum and mini-
mum median R2 and BIAS values being less than 0.09 and
0.003 cm3 cm−3, respectively. The metrics indicate relatively
poor performance in wet regions with high specific heat ca-
pacity and low albedo. The lower amounts and high thermal
entropy of the available variables (i.e., LST and albedo) in
these areas can affect model capacity and stability (Wang et
al., 2005). Notably, despite the relatively high RMSE, MAE,
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Figure 5. Comparison between the CCI dataset and gap-filled SM in 2009. (a) Plots of the availability of the CCI dataset and gap-filled SM.
(b) Box plot of the CCI dataset and gap-filled SM on the selected days. (c) Box plot of the month-average CCI and gap-filled SM. (d) Box
plot of raw and gap-filled SM regarding seven climate regions.

Figure 6. Spatial distributions and histogram of the raw and gap-filled CCI SM on the 15th of each month in 2009.
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Figure 7. Evaluations of model results. Panels (a), (c), and (e) are the scatter plots of 1 km CCI SM-derived values against field measures
regarding WATER/CERN, agrometeorological stations, and the Maqu network, respectively, and panels (b), (d), and (f) are the scatter plots
of 1 km gap-filled SM-derived values against field measures. The subfigures in the upper corners of panels (a)–(d) are the scatter plots under
extremely dry conditions. Panel (g) is the time series of average CCI SM-derived values against site measures in the Maqu region. The shaded
area in panel (g) denotes ±1 standard error.

and ubRMSE values in the humid region, the R2 value is
very high (Fig. 10), which might be attributable to the high
SM variability in these areas. The accuracy is lower over the
regions that experience drought due to perturbations of the
soil water content but without noticeably poor performances.

The spatial distributions of the accuracy metrics in Fig. 9
further illustrate the accuracy of the proposed gap-filling
model. Discrepancies are observed in some regions, but they
rarely exceed 0.09 cm3 cm−3 in absolute value. Spatially, the
distribution of reconstructed SM follows a geographic gradi-
ent. The relatively low accuracies occur in areas of complex

terrain in western China. For these regions, complex atmo-
spheric conditions caused by high elevations tend to affect
the simulation of surface parameters. Complex topography
can result in a complicated directional anisotropy, bringing
great uncertainty in modeling surface energy and water cy-
cles (Hu et al., 2016).

The gap-filling model could be sensitive to irrigation and
drought owing to the induced inhibition and water stress of
vegetation. On the one hand, lower accuracy is found as
expected over a considerable fraction of irrigated cropland
(e.g., northern China), which can be partly attributed to the
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human irrigation drain. On the other hand, focused analyses
illustrate the consistency of the gap-filling SM with the in
situ measurements and the original SM under extremely dry
conditions (Fig. S4), illustrating the physical plausibility of
the gap-filled values for specific application.

4.4 Comparison analysis

The proposed method is further compared against four exten-
sively used models, and the accuracy metrics of the five mod-
els are shown in Fig. 10. Generally, the MLR, XGB, SVM,
and ANN, accompanying the RF, could potentially recon-
struct the missing CCI SM pixels, indicating the stable suit-
ability of these models and the feasibility of available vari-
ables. Moreover, the RF model demonstrates prominent per-
formance among all the tested models, further demonstrat-
ing its capacity for reconstructing SM when integrating an
effective dataset source and mining method. Our results are
consistent with earlier studies that illustrated the robustness
of the RF approach in simulating satellite parameters (Kar-
balaye Ghorbanpour et al., 2021; Zhao et al., 2018). This
is attributed to the capacity of the RF method to cope with
sparse samples, in addition to the fact that the RF does not
assume a specific functional or geometric form of the model.
We also check the accuracy of the models excluding the
residual calibration procedure, which is an essential compo-
nent of the proposed model. Results (in Fig. 10) demonstrate
that accuracies are lowered by ∼ 9 % when removing the
residual calibration, underscoring the importance of residual
modulation in improving SM reconstruction. Moreover, bet-
ter performance brought by the spatiotemporal domain strat-
egy is also exhibited when compared with the global regres-
sion. Quantitatively, the spatiotemporal domains can improve
the accuracy by∼ 19 % in forcing the RF regression. Overall,
these analyses indicate the feasibility of the proposed model
by integrating the modules of the residual calibration and the
spatiotemporal domain strategy.

4.5 Uncertainty analysis

We investigate the accuracy of the reconstruction model that
excludes one participating variable. As illustrated in Fig. 11a,
the performance of the model with six variables (i.e., ex-
cluding one) is relatively low when compared with that of
a model with seven variables. The strategy of removing one
variable can lower the accuracy by 2.2 %–6.4 % in terms of
R2 and by 10 %–30 % in terms of BIAS. This diminished
performance is plausible because SM is heavily related to all
the selected variables. Specifically, variability in land surface
characteristics (NDVI and albedo) and atmospheric condi-
tions (i.e., precipitation and PET) can impact SM variability.
This is plausible because satellite SM retrievals represent the
signals from the upper soil layer, which is directly exposed to
the land and the atmosphere. Meanwhile, additional covari-
ates mean an increase in the number of samples participating

in the regression model, therefore potentially resulting in im-
provement in the overall accuracy. We observe that the low-
est accuracy occurs when DTR is excluded, underscoring the
vital role of DTR in modeling SM.

The importance scores produced by the RF algorithm
(Zhao et al., 2019b; Ramoelo et al., 2015) (Fig. S5) also
show that all the selected variables substantially impact the
CCI SM simulations. Specifically, DTR shows the great-
est importance, mainly relating to the fact that temperature
variations might influence SM fluctuation. This supports the
higher model performance observed in warm seasons, dur-
ing which PET, albedo, and NDVI exhibit a higher impor-
tance score. During this period, heat from the surface can be
transferred to the atmosphere via ET and sensible heat con-
duction, thereby modifying surface SM variations (Amani et
al., 2017).

We further investigate the substitution performance of
other surface temperature products in reconstructing SM.
Considering the bias between satellite-derived LST and mod-
eled surface temperature, the variable correction described in
Sect. 3.1.5 is conducted to remove the systematic bias and
make the simulated DTR comparable with the satellite ob-
servations. Minor reductions are found in the Pearson corre-
lation and RF-derived importance score of three numerical
model-simulated DTRs (Fig. S6) when compared with the
MODIS-derived DTR, which indicates the feasibility of us-
ing each of these datasets in reconstructing SM. Reductions
in model accuracy are evident when replacing the satellite-
derived LST with the other three simulated sources (Fig. 12a
and b). Nevertheless, the availability of reconstructed SM
products is remarkably increased (by ∼ 6 %–11 %) owing to
the all-weather coverage of the reanalysis and land surface
model simulations. The surface temperature source from the
numerical model dataset is suggested as an alternative for
satellite LST, which is essential on the long-term and large
extended scale, especially considering their full-coverage
characteristic. However, in comparison with the results ob-
tained using the correction procedure, reduction in accuracy
metrics (∼ 4 %) occurs when not considering the variable
correction procedure. It emphasizes the indispensable contri-
bution of the variable calibration procedures in reconstruct-
ing surface characteristics (Duan and Bastiaanssen, 2013;
Liu et al., 2020a).

We also compare the ERA SM with two other products to
evaluate its feasibility in reconstructing CCI SM. GLEAM
and Noah surface SM are separately employed to replace
the ERA SM while keeping other explanatory variables the
same. Although the GLEAM and Noah SM-based schemes
can demonstrate acceptable accuracies, they exhibit slightly
inferior accuracies in comparison with the ERA SM-based
schemes, probably owing to their relatively large uncertain-
ties in depicting the surface SM dynamics across the two se-
lected regions. Nevertheless, our study focuses on only two
local regions; therefore, we cannot claim that the ERA prod-
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Figure 8. Accuracy metrics of 10 cross-validations for R2, RMSE, MAE, BIAS, ubRMSE, and NSE: panel (a) is averagely obtained on a
monthly basis, and panel (b) is averagely obtained for each climate region and for the drought grids.

Figure 9. Spatial distributions of accuracy metrics of 10 cross-validations in 2009 for R2, RMSE, MAE, BIAS, ubRMSE, and NSE. The
slash represents the regions impacted by drought.

uct could provide the best performance across China, and
more attention should be focused on this in further work.

4.6 Long-term extension

The proposed gap-filling method is further extended to the
long-term ECA CCI SM databases. During 2005–2015, more
than 90 % of contaminated pixels can be reconstructed using

our model. When evaluating the pixels against in situ mea-
surements from the dense Maqu network, we observe that
the reconstructed SM during 2005—2015 has an accuracy
that is comparable to that in 2009 (Table 2). The average
R2 and RMSE values of the reconstructed SM are 0.73 and
0.12 cm3 cm−3, respectively. The present results indicate that
the proposed model has a strong capacity to simulate SM on
the long-term scale.
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Figure 10. Comparison RF-based model with other models (i.e., MLR, XGB, SVM, and ANN). Error bars denote 1σ errors. The “x” symbol
represents the accuracy metrics of models excluding the residual calibration, and the “o” symbol represents the accuracy metrics of the
models that use the global regression rather than the regional regression based on the spatiotemporal window searching strategy.

Figure 11. Accuracy of the models removing one variable, i.e., using the other six variables in model regression. Error bars denote 1σ errors.
The text denotes the relative percentage of the decreased accuracy of the model with six variables (i.e., excluding one) in comparison with
that of a model with seven variables.

The spatial distribution and the obvious differences be-
tween the gap-filled and original SM datasets can be seen
in Fig. 13a–c. The gap-filled SM is drier overall than the raw
SM, consistent with the findings from Fig. 5. Negative dif-
ferences in SM occur in most regions, while positive differ-
ences are evident in small areas of the wet and arid regions.
The dynamics and trends of SM are fundamental to assess-
ing and quantifying ecohydrological regimes. As shown in
Fig. 13d–f, the difference in valid participating SM values
causes disparity in calculating the SM trend, i.e., bringing a
lower SM trend in most wet regions but a higher SM trend
in some dry regions when gap-filled values are introduced. It
implies that the trends in SM could be overestimated in satel-
lite products because they were missing. Additionally, most
regions with a significant trend demonstrate a lower trend in
comparison with the trends of the original SM. The confi-
dence level of the SM trend is converted from a significance
level to a non-significance level for a considerable fraction of
the grids. This is more pronounced in wet regions such as the
northeastern, northwestern, and southwestern parts of China,
which are sensitive to monsoon precipitation and ice melting.

The biases in SM dynamics and trends are shown more
pronounced for each climate region in Fig. 14a and b. The
regional averages of reconstructed SM are relatively low
in comparison with those from the original CCI SM. The
improvement in the reconstructed dataset in depicting SM
trends is quantitatively manifested in Fig. 14c–f; that is, the
R2 value between the trends from the original CCI SM and
those from the in situ measurements is 0.28, while the R2

value between the trends from the reconstructed CCI SM
and those from the observations is increased to 0.49. Our re-
sults are corroborated by earlier studies (Zhang et al., 2018;
Gunnarsson et al., 2021) that revealed an overestimation in
the trend of missing aerosol optical depth and albedo when
cloudy conditions prevented satellite retrievals. It means that
the variations in SM trend are related to changes in the cli-
mate variables (e.g., precipitation) and land management ac-
tivities (Li et al., 2018).

5 Conclusions and future considerations

The continuity of satellite-derived SM series is hampered by
data gap problems. This study provides a novel framework
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Figure 12. Metrics of models using different DTRs for (a) NC and (b) SC. Error bars denote 1σ errors. The “x” symbol represents the
accuracy metrics of the models without the DTR correction procedure. The “o” symbol in red represents the accuracy metrics of the models
using GLEAM SM to replace ERA SM, and the “o” symbol in blue represents the accuracy of the models using Noah SM to replace ERA
SM.

Figure 13. Implementation of the proposed model in 2005–2015. Panels (a) and (b) are the average values of raw CCI and gap-filled SM
during 2005–2015, and panel (c) is the difference between them. Panels (d) and (e) are the average trends of raw CCI and gap-filled SM
during 2005–2015, and panel (f) is the difference between them. The “x” symbol in panels (d) and (e) denotes the significance level under
0.05.

for reconstructing a spatially continuous daily SM dataset
by integrating the European Space Agency CCI SM and re-
lated explanatory variables. To achieve this, the random for-
est method taking full account of both the spatial and tem-
poral domains is adopted. The explanatory variables filtered
based on a spatiotemporal window search strategy exhibit a
substantial effect in driving the RF regression, resulting in an
efficacy improvement of ∼ 19 %. Meanwhile, model perfor-
mance is enhanced by calibrating the derived residuals based
on geographical weight regression and Gaussian filters. This
improvement is manifested by the fact that the accuracies of

gap-filling models are lowered by ∼ 9 % when removing the
residual calibration procedure.

Our study illustrates the merit of identifying a sufficient
number of explanatory variables from the integration of
satellite observations and model-driven knowledge. This is
clearly verified by the fact that the accuracy of reconstructed
SM is noticeably reduced when excluding one of each of
the participating variables in turn while retaining the re-
maining variables. The selected variables complementarily
reproduce the SM dynamics in addition to capturing the spa-
tial variations, which also implies that the nonlinear corre-
lation between the SM and explanatory variables can be de-
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Figure 14. Panel (a) shows the temporal patterns of raw and gap-filled CCI SM regarding different climate regions during 2005–2015. The
shaded area in panel (a) denotes ±1 standard error. (b) and (c): scatter plot of 1 km CCI SM-derived trends against in situ measures during
2005–2014, and panel (b) shows the trends under the significance level, while panel (c) shows all the trends. (d) and (e): scatter plot of 1 km
gap-filled SM-derived trends against in situ measures during 2005–2014, and panel (d) shows the trends under the significance level, while
panel (e) shows all the trends.
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Table 2. Metrics for the gap-filling performance regarding the Maqu network for the extended years.

Year R2 RMSE MAE Bias ubRMSE NSE
(cm3 cm−3) (cm3 cm−3) (cm3 cm−3) (cm3 cm−3)

CCI gap-filled CCI gap-filled CCI gap-filled CCI gap-filled CCI gap-filled CCI gap-filled

2008 0.8 0.71 0.11 0.13 0.1 0.13 0.06 0.07 0.06 0.06 0.8 0.81
2009 0.84 0.72 0.11 0.12 0.09 0.10 0.05 0.07 0.05 0.07 0.83 0.85
2010 0.82 0.73 0.1 0.11 0.09 0.11 0.05 0.06 0.06 0.05 0.81 0.83
2011 0.83 0.74 0.09 0.11 0.09 0.1 0.06 0.06 0.06 0.05 0.82 0.84
2012 0.81 0.72 0.12 0.13 0.09 0.12 0.06 0.05 0.05 0.05 0.81 0.82
2013 0.82 0.73 0.09 0.12 0.09 0.13 0.06 0.07 0.05 0.07 0.8 0.82
2014 0.85 0.74 0.09 0.11 0.08 0.09 0.06 0.08 0.05 0.06 0.83 0.85
2015 0.79 0.69 0.12 0.14 0.1 0.12 0.07 0.09 0.07 0.07 0.79 0.81

Note: NSE is from the evaluation with the time series of average 0.25◦ pixels, while the other five metrics are from the evaluation with 1 km disaggregated values.

picted on the spatiotemporal scale. In addition to the con-
ventional variables from optical remote sensing, the essen-
tial environmental elements from model-driven knowledge
are used to improve the performance of SM reconstruction.
Earlier studies have suggested (Li et al., 2021a; Long et al.,
2019; Shangguan et al., 2017) that reanalysis datasets and
land surface model products could provide spatiotemporally
continuous records, indicating the great potential of simu-
lating land surface parameters. Here, we employ a machine
learning model and a bias correction procedure for CCI SM
simulation, which is expected to leverage the knowledge of
the reanalysis dataset and the output from the land surface
model in transfer to the CCI SM time series. The recon-
structed SM achieves satisfactory accuracy over China, un-
derscoring the importance of spatial coverage and continu-
ity of the environmental factors from model-driven knowl-
edge and highlighting the need for multiple datasets to be
involved in gap-filled models. We further confirm this with
an uncertainty analysis showing the feasibility of using alter-
native data sources of DTR and SM, which is essential on
the long-term scales, considering the full coverage character-
istic of numerical-model-simulated products. Nevertheless,
because numerical simulation models are generally sensitive
to regional surface and climatic conditions, adoption of more
effective machine learning models and bias correction strate-
gies as well as more representative model outputs such as
CLDAS and regional numerical models could be considered
in further work (Li et al., 2022a, b).

Machine learning is recognized as a powerful tool for re-
constructing contaminated values. Despite the effectiveness
of the RF model for in situ SM databases, its applicability to
reconstructing long-term satellite observational records, es-
pecially on the large scale, deserves careful investigation.
Here, we further confirm that the RF, combined with ap-
propriate covariates exploiting both the spatial and temporal
domains together with a model-derived residual calibration
module, could be a robust method for gap filling of the CCI
SM database over China. The superiority of the RF-based

model in reconstructing SM is further proved by compar-
ison with four other models. Nevertheless, more advanced
machine learning strategies, such as deep neural networks
(DNNs) and long short-term memory (LSTM), are expected
to enhance simulation accuracy. Ensemble approaches that
mainly account for the scale biases among different grid-
ded datasets are required. For example, development of a
Bayesian modeling framework that can provide simulation
standard error using uncertainty quantification is encouraged
(Zhao et al., 2019a).

The variables forcing the proposed model are all available
on the long-term scale globally. Accordingly, our framework
could be extended to generate a promising long-term gap-
filled SM dataset. This is critical considering that spatiotem-
porally continuous SM is required for ecological and hydro-
logical research. Thus, the findings of our study might pro-
vide insights regarding continuous monitoring of surface wa-
ter dynamics and drought and promote further research into
water resource management and climate change.

Code and data availability. All the datasets used in this study are
open to the public. The National Aeronautics and Space Admin-
istration team provides the MODIS products, SRTM DEM data,
and GLDAS data. The ESA CCI soil moisture dataset and ERA-
5 reanalysis datasets are collected from the European Centre for
Medium-Range Weather Forecasts (ECMWF). Brecht Martens,
Diego Miralles, and their team provided the GLEAM datasets (http:
//www.gleam.eu/, last access: 25 April 2021, Martens et al., 2017).
The China Watershed Allied Telemetry Experimental Research
(WATER) project, Chinese Ecosystem Research Network (CERN),
and Maqu soil moisture monitoring network provide available in
situ measurements at the website (http://data.tpdc.ac.cn/). The Chi-
nese regional ground meteorological dataset is collected from the
National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, Insti-
tute of Tibetan Plateau Research, 2023).
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