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Table S1. Summary of the dataset for the preliminary analysis but not the final utilization of  

the proposed model. 

Aims Variables Source 
Resolution 

(spatial/temporal) 

Model preliminary 

analysis 

EVI MOD13C1, MYD13C1 0.05o/16 day 

LAI MCD15A2H 500m/8 day 

Air 

temperature 
China Meteorological Forcing 

Dataset 
0.1o/3 hourly Solar 

radiation 

Wind 

 

Table S2 Summary of the characteristics of in situ sites 

ID  Site  Land-use Elevation Longitude Latitude 
Soil 

depth 

Projections  

and references 

1 Yucheng  Cropland 23m 116.57E 36.83N 10cm 

China Watershed Allied 

Telemetry Experimental 

Research (WATER), 

(Zhang et al., 2021) 

(Li et al., 2009) 

(Huang et al., 2016) 

2 Daxing Cropland 20m 116.42E 39.62N 5cm 

3 Miyun Woodland 350m 117.32E 40.63N 5cm 

4 Guantao Cropland 30m 115.12E 36.51N 2cm 

5 Arou Grassland 2995m 100.46E 38.04N 10cm 

6 Maliantan Grassland 2817m 100.30E 38.55N 5cm 

7 Yingke Cropland 1519m 100.42E 38.85N 5cm 

8 Guantan Woodland 2835m 100.25E 38.53N 5cm 

9 AKA cropland 1008m 80.85E 40.67N 10cm Chinese Ecosystem 

Research Network 

(CERN), 

(Yu et al., 2006) 

(Li et al., 2018) 

(Zhu et al., 2007) 

(Yao et al., 2018) 

  

 

10 ALF Woodland 2455m 101.02E 24.54N 5cm 

11 ASA cropland 1296m 109.31E 36.85N 10cm 

12 BJF Woodland 1162m 115.43E 39.97N 5cm 

13 BNF Woodland 722m 101.02E 21.95N 10cm 

14 CBF Woodland 512m 127.09E 42.40N 5cm 

15 CLD Desert 1342m 80.70E 37.01N 10cm 

16 CSA cropland 21m 120.38E 35.25N 10cm 
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17 CWA cropland 1241m 107.67E 35.25N 10cm 

18 DHF Woodland 412m 112.53E 23.17N 15cm 

19 ESD Desert 1301m 110.18E 39.50N 10cm 

20 FKD Desert 578m 88.00E 44.15N 10cm 

21 FQA cropland 65m 114.55E 35.02N 10cm 

22 GGF Woodland 6967m 101.88E 29.60N 10cm 

23 HBG Grassland 3321m 101.33E 37.66N 5cm 

24 HJA cropland 305m 108.20E 24.40N 10cm 

25 HLA cropland 221m 126.63E 47.43N 10cm 

26 HSF Woodland 102m 112.90E 22.70N 10cm 

27 HTF Woodland 294m 109.75E 26.83N 10cm 

28 LCA cropland 52m 114.68E 37.88N 10cm 

29 LSA cropland 4230m 91.33E 29.66N 5cm 

30 LZD cropland 1363m 100.12E 39.33N 10cm 

31 MXF Woodland 2035m 103.90E 31.70N 10cm 

32 NMD Desert 348m 120.70E 42.92N 10cm 

33 QYA cropland 48m 115.07E 26.74N 10cm 

34 SNF Woodland 1611m 110.40E 31.50N 10cm 

35 SPD cropland 1413m 104.95E 37.45N 10cm 

36 SYA cropland 35m 123.40E 41.52N 10cm 

37 TYA cropland 62m 111.50E 28.91N 10cm 

38 YGA cropland 448m 105.45E 31.27N 10cm 

39 YTA cropland 44m 116.92E 28.25N 10cm 

40-59  Maqu network Grassland ~3430m 
101.63-

102.75E 

33.5-

34.25N 
5cm 

Tibetan Plateau 

observatory of plateau 

scale soil moisture 

and soil temperature 

(Tibet-Obs), 

(Su et al., 2013) 

(Wei et al., 2019) 
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60-716 

Agro-

meteoroloical 

stations 

Cropland 
-84-

4200m  

75.98-

134.28E 

18.5-

51.72N 
10cm 

China's 

agrometeorological 

observation network, 

(Meng et al., 2021) 

(Wang et al., 2016) 

 

Table S3 Optimal parameters regarding seven climate regions 

Climate region n_estimators max_depth min_samples_split max_features 

Arid 69 11 8 0.12 

Semi-arid 80 18 9 0.16 

Aird/semi-wet 47 9 5 0.31 

Wet/semi-arid 36 10 3 0.25 

Wet 52 15 11 0.16 

Moist 62 10 9 0.12 

Over-wet 22 8 4 0.27 
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Figure S1. Spatial distributions of ESA CCI SM, ERA5 SM and calibrated ERA SM on the 

selected days of 2009. The lower-left panel in each sub-figure shows the histogram, and the blue 

color represents the pixels in which the ESA dataset are available while the red color represents 

the pixels in which the ERA dataset are available. 

 

 

Figure S2. (a) Annual PDSI in 2009. (b) Spatial distribution of drought events, and two severe 

drought events (D1 and D2) selected for further analysis.   
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Figure S3. Spatial distribution of availability of the original CCI SM and gap-filled SM in 2009. 

 

 

Figure S4. Time series in the (a) region D1 and (b) D2. D1 and D2 are identified in Figure S2. 

 

 

 

 

 

 

 

(a) (b) 
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Figure S5. Spatial distributions and time series of the importance score of selected variables in 

2009. 

 

Figure S6. Pearson correlation and importance score of using Noah, ERA, and GLDAS DTR 

replacing MODIS DTR.  
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Sect. S1: The regression subset selection approach 

The main assumption beneath this regression subset selection approach is that the suppressor 

variables are associated significantly with each other in regression models, although they may be 

less correlated with the dependent variables. To be specific, this approach can be conducted with 

the following steps: (1) using least-squares linear regression to check the potential relationships 

between SM and explanatory variables; (2) applying a backward stepwise (remove) regression to 

explore the potential explanatory variables based on the Akaike Information Criterion (AIC); (3) 

exploiting the best models from all variable combination to identify the important variables 

impacting SM; and (4) quantifying the relative contributions of each explanatory variable to SM  

based on the determination coefficient. 

Sect. S2: The description of DisPATCH model 

      As one typical SM disaggregation model, DISPATCH has been extensively applied in 

current studies (Molero et al., 2016; Song et al., 2021). The DISaggregation based on Physical 

And Theoretical scale Change (DISPATCH) algorithm is implemented to disaggregate ESA 

CCI-derived SM. The disaggregation principle beneath this model can be expressed as: 

𝑆𝑀𝐻 = 𝑆𝑀𝐿 +
𝛿𝑆𝑀

𝛿𝑆𝐸𝐸
× (𝑆𝐸𝐸𝐻 − 𝑆𝐸𝐸𝐻)                                                 (1) 

where 𝑆𝑀𝐿  is low resolution soil moisture (e.g., ECA CCI SM), 𝑆𝑀𝐻  is downscaled high 

resolution soil moisture. 𝑆𝐸𝐸𝐻 is the evaporative efficiency retrieved at high resolution scale, 

and 𝑆𝐸𝐸𝐻  is the average value within high resolution pixels. 
𝛿𝑆𝑀

𝛿𝑆𝐸𝐸
 is the partial derivative 

obtained at a low resolution scale. 𝑆𝐸𝐸𝐻 is described as 

      𝑆𝐸𝐸𝐻 =
𝑇𝑠,𝑚𝑎𝑥−𝑇𝑠

𝑇𝑠,𝑚𝑎𝑥−𝑇𝑠,𝑚𝑖𝑛
                                                                          (2) 

with 𝑇𝑠  is soil temperature, 𝑇𝑠,𝑚𝑎𝑥  and 𝑇𝑠,𝑚𝑖𝑛  is soil temperature in dry  and wet conditions, 

respectively. High resolution soil temperature is calculated as 

𝑇𝑠 =
𝑇𝐻−𝑓𝑣𝑇𝑣

1−𝑓𝑣
                                                                           (3) 
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where 𝑇𝐻 is high resolution land surface temperature (e.g., MODIS), 𝑓𝑣 is fractional vegetation 

cover and 𝑇𝑣 denotes  vegetation temperature. can be calculated following the studies of Moran 

et al. (1994). 

Sect. S3: The description of traditional models 

      Four models are used for comparison analysis, including the Multiple linear regression 

(MLR), Extreme gradient boost (XGB), Support vector machine (SVM) and Artificial Neural 

Network (ANN). 

1. Multiple linear regression (MLR) 

The MLR model can be described as follows: 

𝑆𝑀 = 𝑎 + ∑ 𝑥𝑖 × 𝑉𝑖                                                                     (4) 

where 𝑆𝑀 is reconstructed soil moisture, 𝑉 is a continuous explanatory variable. The parameter 

𝑎 is intercept value, and 𝑥 is the regression coefficients. 

2. Extreme gradient boost (XGB) 

      XGB model is an ensemble decision tree model that is implemented based on an advanced 

gradient boosting framework. A forward fractional algorithm is used in XGB to achieve learning 

optimization. Specifically, the new regression tree is sequentially generated based on the errors 

of previous ensemble models, and further trained to literately minimize the cost function. A 

regular term is added to the cost function for controlling the model complexity, mainly by 

reducing the model variance.  

3. Support vector machine (SVM) 

      SVM is a robust machine learning algorithm, which is based on an optimization theory. This 

model is implemented primarily by establishing a set of hyperplanes with maximal margins. The 

overall SVM can be described as follows:  

         y = ∑ 𝑎𝑖𝐾(𝑥𝑖 , 𝑥)𝑀
𝑖=1 − 𝑏                                                         (5) 

where x is the independent vector, and 𝑥𝑖  are the trained vectors, 𝑀 is the number of training 

data. 𝑎𝑖 and 𝑏 are parameters that can be obtained by maximizing the objective function. 𝐾 is the 

kernel function that can simplify the learning process. Here we used the radial based kernel 

function. 
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4. Artificial Neural Network (ANN) 

      The artificial neural network implemented with Levenberg-Marquardt training strategy (Lera 

and Pinzolas, 2002) is used to conduct SM reconstruction. The activation function used for the 

hidden layer and output layer is sigmoid purelin, respectively. The output layer is generated with 

a linear function, which can be described as follows: 

𝑂 = (∑ 𝑖𝑝 × 𝑤𝑝 +𝑀
𝑝=1 𝑏) × ℎ(𝑥)                                                  (6) 

     ℎ(𝑥) =
1

1+𝑒−𝑥                                                                           (7) 

where 𝑂 is the output of the object hidden layer node, 𝑖𝑝 is an input,𝑀 is the number of nodes, , 

𝑤𝑝 is the weight, and 𝑏 is the bias. ℎ(𝑥) is the sigmoid activation function.  
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