Articles | Volume 27, issue 22
Research article
15 Nov 2023
Research article |  | 15 Nov 2023

Eye of Horus: a vision-based framework for real-time water level measurement

Seyed Mohammad Hassan Erfani, Corinne Smith, Zhenyao Wu, Elyas Asadi Shamsabadi, Farboud Khatami, Austin R. J. Downey, Jasim Imran, and Erfan Goharian

Related authors

Bright and blind spots of water research in Latin America and the Caribbean
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650,,, 2021
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Instruments and observation techniques
A contribution to rainfall simulator design – a concept of moving storm automation
Ravi Kumar Meena, Sumit Sen, Aliva Nanda, Bhargabnanda Dass, and Anurag Mishra
Hydrol. Earth Syst. Sci., 26, 4379–4390,,, 2022
Short summary
A comparison of tools and techniques for stabilising unmanned aerial system (UAS) imagery for surface flow observations
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132,,, 2021
Short summary
Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow
Alonso Pizarro, Silvano F. Dal Sasso, Matthew T. Perks, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 24, 5173–5185,,, 2020
Short summary
Technical note: Space–time analysis of rainfall extremes in Italy: clues from a reconciled dataset
Andrea Libertino, Daniele Ganora, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 22, 2705–2715,,, 2018
Short summary
The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods
G. Blöschl, T. Nester, J. Komma, J. Parajka, and R. A. P. Perdigão
Hydrol. Earth Syst. Sci., 17, 5197–5212,,, 2013

Cited articles

Alsdorf, D. E., Rodríguez, E., and Lettenmaier, D. P.: Measuring surface water from space, Rev. Geophys., 45, RG2002,, 2007. a
Badrinarayanan, V., Handa, A., and Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling, arXiv [preprint],, 2015. a
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, (last access: 4 November 2023), 2000. a
Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A. L., and Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation, arXiv [preprint],, 2021. a, b
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE T. Pattern Anal. Mach. Intel., 40, 834–848, 2017.  a
Short summary
Predicting flood magnitude and location helps decision-makers to better prepare for flood events. To increase the speed and availability of data during flooding, this study presents a vision-based framework for measuring water levels and detecting floods. The deep learning models use time-lapse images captured by surveillance cameras to detect water extent using semantic segmentation and to transform them into water level values with the help of lidar data.