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Abstract. Heavy rains and tropical storms often result in
floods, which are expected to increase in frequency and in-
tensity. Flood prediction models and inundation mapping
tools provide decision-makers and emergency responders
with crucial information to better prepare for these events.
However, the performance of models relies on the accuracy
and timeliness of data received from in situ gaging stations
and remote sensing; each of these data sources has its lim-
itations, especially when it comes to real-time monitoring
of floods. This study presents a vision-based framework for
measuring water levels and detecting floods using computer
vision and deep learning (DL) techniques. The DL models
use time-lapse images captured by surveillance cameras dur-
ing storm events for the semantic segmentation of water ex-
tent in images. Three different DL-based approaches, namely
PSPNet, TransUNet, and SegFormer, were applied and eval-
uated for semantic segmentation. The predicted masks are
transformed into water level values by intersecting the ex-
tracted water edges, with the 2D representation of a point
cloud generated by an Apple iPhone 13 Pro lidar sensor. The
estimated water levels were compared to reference data col-
lected by an ultrasonic sensor. The results showed that Seg-
Former outperformed other DL-based approaches by achiev-
ing 99.55 % and 99.81 % for intersection over union (IoU)
and accuracy, respectively. Moreover, the highest correla-
tions between reference data and the vision-based approach
reached above 0.98 for both the coefficient of determina-
tion (R2) and Nash–Sutcliffe efficiency. This study demon-
strates the potential of using surveillance cameras and artifi-

cial intelligence for hydrologic monitoring and their integra-
tion with existing surveillance infrastructure.

1 Introduction

Flood forecasts and flood inundation mapping (FIM) can
play an important role in saving human lives and reducing
damage by providing timely information for evacuation plan-
ning, emergency management, and relief efforts (Gebrehiwot
et al., 2019). These models and tools are designed to iden-
tify and predict inundation areas and the severity of dam-
age caused by storm events. Two primary sources of data for
these models are in situ gaging networks and remote sensing.
For example, in situ stream gages, such as those operated by
the United States Geological Survey (USGS) provide use-
ful streamflow information like water height and discharge
at monitoring sites (Turnipseed and Sauer, 2010). However,
they cannot provide an adequate spatial resolution of stream-
flow characteristics (Lo et al., 2015). The limitation of in situ
stream gages is further exacerbated by the lack of system-
atic installation along the waterways and accessibility issues
(Li et al., 2018; King et al., 2018). Satellite data and remote
sensing can complement in situ gage data by providing infor-
mation at a larger spatial scale (Alsdorf et al., 2007). How-
ever, continuous monitoring of data for a region of interest
remains to be a problem due to the limited revisit intervals
of satellites, cloud cover, and systematic departures or bi-
ases (Panteras and Cervone, 2018). Crowdsourcing methods
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have gained attention as a potential solution but their reliabil-
ity is questionable (Schnebele et al., 2014; Goodchild, 2007;
Howe, 2008). To address these limitations and enhance real-
time monitoring capabilities, surveillance cameras are inves-
tigated here as a new source of data for hydrologic monitor-
ing and flood data collection. However, this requires a signif-
icant investment in computer vision (CV) and artificial in-
telligence (AI) techniques to develop reliable methods for
detecting water in surveillance images and translating that
information into numerical data.

Recent advances in CV offer new techniques for process-
ing image data for the quantitative measurements of physical
attributes from a site (Forsyth and Ponce, 2002). However,
there is limited knowledge of how visual information can be
used to estimate physical water parameters using CV tech-
niques. Inspired by the principle of the float method, Tsubaki
et al. (2011) used different image processing techniques to
analyze images captured by closed-circuit television (CCTV)
systems installed for surveillance purposes to measure the
flow rate during flood events. In another example, Kim et al.
(2011) proposed a method for measuring water level by de-
tecting the borderline between a staff gauge and the surface
of water based on image processing of the captured image of
the staff gage installed in the middle of the river. As the use
of images for environmental monitoring becomes more pop-
ular, several studies have investigated the source and mag-
nitude of errors common in image-based measurement sys-
tems, such as the effect of image resolution, lighting effects,
perspective, lens distortion, water meniscus, and temperature
changes (Elias et al., 2020; Gilmore et al., 2013). Further-
more, proposed solutions to resolve difficulties originating
from poor visibility have been developed to better identify
readings on staff gages (Zhang et al., 2019). Recently, deep
learning (DL) has become prevalent across a wide range of
disciplines, particularly in applied sciences such as CV and
engineering.

DL-based models have been utilized by the water re-
sources community to determine the extent of water and wa-
terbodies visible in images captured by surveillance camera
systems. These models can estimate the water level (Pally
and Samadi, 2022). In a similar vein, Moy de Vitry et al.
(2019) and Vandaele et al. (2021) employed a DL-based ap-
proach to identify floodwater in surveillance footage and in-
troduced a novel qualitative flood index, SOFI, to determine
water level fluctuations. SOFI was calculated by taking the
aspect ratio of the area of the water surface detected within
an image to the total area of the image. However, these types
of methods, which make prior assumptions and estimate wa-
ter level fluctuation roughly, cannot serve as a vision-based
alternative for measuring streamflow characteristics. More
systematic studies adopted photogrammetry to reconstruct a
high-quality 3D model of the environment with a high spatial
resolution to have a precise estimation of real-world coordi-
nation while measuring streamflow rate and stage. For ex-
ample, Eltner et al. (2018, 2021) introduced a method based

on structure from motion (SfM) and photogrammetric tech-
niques to automatically measure the water stage using low-
cost camera setups.

Advances in photogrammetry techniques enable 3D sur-
face reconstruction with a high temporal and spatial reso-
lution. These techniques are adopted to build 3D surface
models from RGB imagery (Westoby et al., 2012; Eltner
and Schneider, 2015; Eltner et al., 2016). However, most of
the photogrammetric methods are still expensive as they rely
on differential global navigation satellite systems (DGNSS),
ground control points (GCPs), commercial software, and
data processing on an external computing device (Froideval
et al., 2019). A lidar scanner, on the other hand, is now easily
available since the introduction of the iPad Pro and iPhone 12
Pro in 2020 by Apple. This device is the first smartphone
equipped with a native lidar scanner and offers a potential
paradigm shift in digital field data acquisition, which puts
these devices at the forefront of smartphone-assisted field-
work (Tavani et al., 2022). So far, the iPhone lidar sensor
has been used in different studies such as forest invento-
ries (Gollob et al., 2021) and coastal cliff sites (Luetzen-
burg et al., 2021). The availability of lidar sensors to build
3D environments and advancements in DL-based models of-
fer a great potential to produce numerical information from
ground-based imageries.

This paper presents a vision-based framework for mea-
suring water levels from time-lapse images. The proposed
framework introduces a novel approach by utilizing the
iPhone lidar sensor as a laser scanner, which is commonly
available on consumer-grade devices, for scanning and con-
structing a 3D point cloud of the region of interest. During
the data collection phase, time-lapse images and ground truth
water level values were collected using an embedded camera
and ultrasonic sensor. The water extent in the captured im-
ages was determined automatically using semantic segmen-
tation DL-based models. For the first time, the performance
of three different state-of-the-art DL-based approaches, in-
cluding convolutional neural networks (CNNs), hybrid CNN
transformer, and transformers–multilayer perceptron (MLP),
was evaluated and compared. CV techniques were applied
for camera calibration, pose estimation of the camera setup in
each deployment, and 3D–2D reprojection of the point cloud
onto the image plane. Finally, K-nearest neighbor (KNN)
was used to find the nearest projected (2D) point cloud co-
ordinates to the waterline on the riverbanks, for estimating
the water level in each time-lapse image.

2 Deep learning architectures

Since this study tends to cover a wide range of DL ap-
proaches, this section solely focuses on reviewing different
DL-based architectures. So far, different DL networks have
been applied and evaluated for semantic segmentation of the
waterbodies within the RGB images captured by cameras
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(Erfani et al., 2022). All existing semantic segmentation ap-
proaches – CNN and transformer-based – share the same ob-
jective of classifying each pixel of a given image but differ in
the network design.

CNN-based models were designed to imitate the recog-
nition system of primates (Shamsabadi et al., 2022),
while possessing different network designs such as low-
resolution representation learning (Long et al., 2015; Chen
et al., 2017), high-resolution representation recovery (Badri-
narayanan et al., 2015; Noh et al., 2015; Lin et al., 2017),
contextual aggregation schemes (Yuan and Wang, 2018;
Zhao et al., 2017; Yuan et al., 2020), feature fusion and re-
finement strategy (Lin et al., 2017; Huang et al., 2019; Li
et al., 2019; Zhu et al., 2019; Fu et al., 2019). CNN-based
models follow local to global features in different layers of
the forward pass, which used to be thought of as a general
intuition of the human recognition system. In this system,
objects are recognized through the analysis of texture and
shape-based clues–local and global representations and their
relationship in the entire field of view. Recent research, how-
ever, shows that significant differences exist between the vi-
sual behavioral system of humans and CNN-based models
(Geirhos et al., 2018b; Dodge and Karam, 2017; De Cesarei
et al., 2021; Geirhos et al., 2020, 2018a) and reveal higher
sensitivity of the visual systems in humans to global features
rather than local ones (Zheng et al., 2018). This fact drew
attention to models that focus on the global context in their
architectures.

Developed by Dosovitskiy et al. (2020), Vision Trans-
former (ViT) was the first model that showed promising re-
sults on a computer vision task (image classification) with-
out using convolution operation in its architecture. In fact,
ViT adopts “transformers”, as a self-attention mechanism, to
improve accuracy. Transformer was initially introduced for
sequence-to-sequence tasks such as text translation (Vaswani
et al., 2017). However, as applying the self-attention mech-
anism to all image pixels is computationally expensive, the
transformer-based models could not compete with the CNN-
based models until the introduction of ViT architecture which
applies self-attention calculations to the low-dimension em-
bedding of small patches originating from splitting the input
image to extract global contextual information. Successful
performance of ViT on image classification inspired several
subsequent works on transformer-based models for different
computer vision tasks (Liu et al., 2021).

In this study, three different DL-based approaches in-
cluding CNN, hybrid CNN transformer, and transformers–
multilayer perceptron (MLP) were trained and tested for se-
mantic segmentation of water. For these approaches, the se-
lected models were PSPNet (Zhao et al., 2017), TransUNet
(Chen et al., 2021), and SegFormer (Xie et al., 2021), re-
spectively. The performance of these models is evaluated and
compared using conventional metrics, including class-wise
intersection over union (IoU) and per-pixel accuracy (ACC).

3 Study area

In order to evaluate the performance of the proposed frame-
work for measuring the water levels in rivers and channels,
a time-lapse camera system has been deployed at Rocky
Branch, South Carolina. This creek is approximately 6.5 km
long and collects stormwater from the University of South
Carolina campus and the City of Columbia. Rocky Branch
is subjected to rapid changes in water flow and discharges
into the Congaree River (Morsy et al., 2016). The observa-
tion site is located within the University of South Carolina
campus behind 300 Main Street (see Fig. 1a).

An Apple iPhone 13 Pro lidar sensor was used to scan
the region of interest. Although there is no official informa-
tion about the technology and hardware specifications, Gol-
lob et al. (2021) reports that the lidar module operates at
the 8XX nm wavelength and consists of an emitter (verti-
cal cavity surface-emitting laser with diffraction optics ele-
ment, VCSEL DOE) and a receptor (single photon avalanche
diode array-based near-infrared complementary metal oxide
semiconductor image sensor, SPAD NIR CMOS) based on
direct-time-of-flight technology. Comparisons between the
Apple lidar sensor and other types of laser scanners includ-
ing handheld, industrial, and terrestrial have been conducted
by several recent studies (Mokroš et al., 2021; Vogt et al.,
2021). Gollob et al. (2021) tested and reported the perfor-
mance of a set of eight different scanning apps and found
three applications including 3D Scanner App, Polycam, and
SiteScape suitable for actual practice tests. The objective
of this study is not the evaluation of the iPhone lidar sen-
sor and app performance. Therefore, the 3D Scanner App
(LAAN LABS, 2022) was used with the following settings:
confidence, high; range, 5.0 m; masking, none; and resolu-
tion, 5 mm for scanning and 3D reconstruction processing.
The scanned 3D point cloud and its corresponding scalar
field are shown in Fig. 1b and c, respectively.

As the lidar scanner settings were set at the highest level
of accuracy and computational demand, scanning the whole
region of interest at the same time was not possible. So, the
experimental region was divided into several sub-regions and
scanned in multiple steps. In order to assemble the sub-region
lidar scans, several GCPs were considered in the study area.
These GCPs were measured by a total station (Topcon GM
Series) and used as landmarks to align distinct 3D point
clouds with each other and create an integrated point cloud
encompassing the entirety of the study area.

Moreover, several ArUco markers were installed for esti-
mating camera (extrinsic) parameters. In each setup deploy-
ment, these parameters should be recalculated (additional in-
formation can be found in Sect. 4.3). Since it was not possible
to accurately measure the real-world coordination of ArUco
markers by the lidar scanner, the coordinates of the top-left
corner of markers were also measured by the surveying to-
tal station. To establish a consistent coordinate system, the
3D point cloud scanned for each sub-region was transformed
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Figure 1. Study area of the Rocky Branch creek. (a) View of the region of interest, (b) the scanned 3D point cloud of the region of interest
including an indication of the ArUco markers’ locations, and (c) the scalar field of left and right banks of Rocky Branch in the region of
interest (the color bar and the frequency distribution of z values for the captured points are shown on the right side).

into the total station’s coordinate system. The real-world co-
ordinates of ArUco markers were then added to the 3D point
cloud (see Fig. 1b).

4 Methodology

This study introduces the Eye of Horus, a vision-based
framework for hydrologic monitoring and real-time water
level measurements in bodies of water. The proposed frame-
work includes three main components. The first step is de-
signing two deployable setups for data collection. These se-

tups consist of a programmable time-lapse camera run by
Raspberry Pi and an ultrasonic sensor run by Arduino. After
collecting data, the first phase (Module 1) involves configur-
ing and training DL-based models for semantic segmentation
of water in the captured images. In the second phase (Mod-
ule 2), CV techniques for camera calibration, spatial resec-
tion, and calculating projection matrix are discussed. Finally,
in the third phase (Module 3), an machine learning (ML)-
based model uses the information achieved by CV models
to find the relationships between real-world coordinates of
water level in the captured images (see Fig. 2).
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Figure 2. The Eye of Horus workflow includes three main modules starting from processing images captured by the time-lapse camera to
estimating water level by projecting the waterline on riverbanks using CV techniques.

Figure 3. Data acquisition devices. (a) Beena, run by Raspberry Pi (Zero W) for capturing time-lapse images of the river scene, and (b) Aava,
run by Arduino Nano for measuring water level correspondence.

4.1 Data acquisition

Two different single-board computers (SBCs) were used in
this study: Raspberry Pi (Zero W) for capturing time-lapse
images of a river scene and Arduino (Nano 3.x) for measur-
ing water level as the ground truth data. These devices were
designed to communicate with each other, i.e., to trigger the
other to start or stop recording. While capturing time-lapse
images, the Pi camera device triggers the ultrasonic sensor to
measure the corresponding water level. The camera device
is equipped with the Raspberry Pi Camera Module 2 which
has a Sony IMX219 8 MP sensor. This sensor is able to cap-
ture an image size of 4256× 2832 pixels. However, in this
study, the image resolution was set to 1920× 1440 pixels to
balance image quality and computational cost in subsequent
image processing steps. This setup is also equipped with a
1200 mAh UPS lithium battery power module to provide un-
interrupted power to the Pi SBC (see Fig. 3a).

The Arduino-based device records the water level. The
design is based on a drone-deployable sensor created by
Smith et al. (2022). The nRF24L01+ single-chip 2.4 GHz
transceiver allows the Arduino and Raspberry Pi to com-

municate via radio frequency (RF). The chip is housed in
both packages and the channel, pipe addresses, data rate, and
transceiver–receiver configuration are all set in the software.
The HC-SR04 ultrasonic sensor is mounted on the base of the
Arduino device and provides a contactless water level mea-
surement. Two permanent magnets at the top of the housing
attach to a ferrous structure and allow the ultrasonic sensor
to be suspended up to 14 ft over the surface of the water. The
device also includes a microSD card module and DS3231
real-time clock, which enable data logging and storage on-
device as well as transmission. The device is powered by a
rechargeable 7.4 V 1500 mAh lithium polymer battery (see
Fig. 3b).

The Arduino device waits to receive a ping from the Rasp-
berry Pi device to initiate data collection. The ultrasonic sen-
sor measures the distance from the sensor transducer to the
surface of the water. The nRF24L01+ transmits this distance
to the Raspberry Pi device and saves the measurement and a
time stamp from the real-time clock to an onboard microSD
card. This acts as backup data storage, in case transmission to
the Raspberry Pi fails. The nRF24L01+RF transceivers have
an experimentally determined range of up to 30 ft, which al-
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Table 1. The configuration of models trained and tested in this study.

Model names Params Total size Batch size Loss function Optimizer LR
(M) (MB) (B, H , W , C)

PSPNet 66.2 7178 2× 500× 500× 3 Binary cross entropy SGD 2.50× 10−4

TransUNet 20.1 6017 2× 448× 448× 3 Cross entropy+ dice SGD 2.50× 10−4

SegFormer-B0 3.7 2217 2× 512× 512× 3 Cross entropy AdamW 6.00× 10−5

SegFormer-B5 82.0 27 666 2× 1024× 1024× 3 Cross entropy AdamW 6.00× 10−5

lows flexibility in the relative placement of the camera to the
measuring site.

A dataset for semantic segmentation was created by col-
lecting images from a specific region of interest at differ-
ent times of the day and under various flow regimes. This
dataset includes 1172 images, with manual annotations of the
streamflow in the creek for all of them. The dataset is further
divided into 812 training images, 124 validation images, and
236 testing images.

4.2 Deep learning model for water segmentation

The water extent can be automatically determined on the
2D image plane with the help of DL-based models. The task
of semantic segmentation was applied within the framework
of this study to delineate the waterline on the left and right
banks of the channel. Three different DL-based models were
trained and tested in this study. PSPNet, the first model, is a
CNN-based semantic segmentation multi-scale network that
can better learn the global context representation of a scene
(Zhao et al., 2017). ResNet-101 (He et al., 2016) was used as
the backbone of this model to encode input images into the
features. ResNet architecture takes the advantage of “residual
blocks” that assist the flow of gradients during the training
stage allowing effective training of deep models even up to
hundreds of layers. These extracted features are then fed into
a pyramid pooling module in which feature maps produced
by small to large kernels are concatenated to distinguish pat-
terns of different scales (Minaee et al., 2022).

TransUNet, the second model, is a U-shaped architecture
that employs a hybrid of CNN and transformers as the en-
coder to leverage both the local and global contexts for pre-
cise localization and pixel-wise classification (Chen et al.,
2021). In the encoder part of the network, CNN is first used
as a feature extractor to generate a feature map for the in-
put image, which is then fed into transformers to extract
long-range dependencies. The resulting features are upsam-
pled in the decoding path and combined with detailed high-
resolution spatial information skipped from the CNN to make
estimations on each pixel of the input image.

SegFormer, the third model, unifies a novel hierarchi-
cal transformer, which does not require the positional en-
codings used in standard transformers, and multilayer per-
ceptron (MLP) performs efficient segmentation (Xie et al.,

2021). The hierarchical transformer introduced in the en-
coder of this architecture gives the model the attention abil-
ity to multi-scale features (high-resolution fine- and low-
resolution coarse information) in the spatial input without
the need for positional encodings that may adversely af-
fect a model’s performance when testing on a different res-
olution from training. Moreover, unlike other segmentation
models that typically use deconvolutions in the decoder path,
a lightweight MLP is employed as the decoder of this net-
work that inputs the features extracted at different stages of
the encoder to generate a prediction map faster and more
efficiently. Two different variants, i.e., SegFormer-B0 and
SegFormer-B5, were applied in this study. The configuration
of the models implemented in this study is elaborated in Ta-
ble 1. The total number of parameters (Params), occupied
memory size on GPU (total size), and input image size (batch
size) are reported in million (M), megabyte (MB), and batch
size× height×width× channel (B, H , W , C), respectively.

The models were implemented using PyTorch. During the
training procedure, the loss function, optimizer, and learning
rate were set individually for each model based on the results
of preliminary runs used to find the optimal hyperparame-
ters. In the case of PSPNet and TransUNet, the base learning
rate was set to 2.5×10−4 and decayed using the poly-policy
(Zhao et al., 2017). These networks were optimized using
stochastic gradient descent (SGD) with a momentum of 0.9
and weight decay of 0.0001. For SegFormer (B0 and B5), a
constant learning rate of 6.0× 10−5 was used, and the net-
works were trained with the AdamW optimizer (Loshchilov
and Hutter, 2017). All networks were trained for 30 epochs
with a batch size of two. The training data for PSPNet and
TransUNet were augmented with horizontal flipping, random
scaling, and random cropping.

4.3 Projective geometry

In this study, CV techniques are used for different purposes.
First, CV models were used for camera calibration. They in-
clude focal length, optical center, radial distortion, camera
rotation, and translation. These parameters provide the in-
formation (parameters or coefficients) about the camera that
is required to determine the relationship between 3D ob-
ject points in the real-world coordinate system and its cor-
responding 2D projection (pixel) in the image captured by
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that calibrated camera. Generally, camera calibration models
estimate two kinds of parameters. First, the intrinsic parame-
ters of the camera (e.g., focal length, optical center, and radial
distortion coefficients of the lens). Second, extrinsic parame-
ters (referring to the orientation – rotation and translation – of
the camera) with respect to the real-world coordinate system.

To estimate the camera intrinsic parameters, built-in
OpenCV was applied for camera calibration using a
2D checkerboard (Bradski, 2000). The focal length (fx , fy),
optical centers (cx , cy), and the skew coefficient (s) can be
used to create a camera intrinsic matrix K:

K=

fx s cx

0 fy cy

0 0 1

 . (1)

The camera extrinsic parameters were determined using
the pose computation problem, Perspective-n-Point (PnP),
which consists of solving for the rotation, and translation
that minimizes the reprojection error from 2D–3D point cor-
respondences (Marchand et al., 2015). The PnP estimates
the extrinsic parameters given a set of “object points”, their
corresponding “image projections”, and the camera intrinsic
matrix and the distortion coefficients. The camera extrinsic
parameters can be represented as a combination of a 3× 3
rotation matrix R and a 3× 1 translation vector t :

[R|t] =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

 . (2)

Equation (3) represents the “projection matrix” in a homoge-
neous coordinate system. The projection matrix consists of
two parts: the intrinsic matrix (K), containing intrinsic pa-
rameters, and the extrinsic matrix ([R|t]), which can be rep-
resented as follows:

[
u
v
1

]
=

K︷ ︸︸ ︷[
fx s cx 0
0 fy cy 0
0 0 1 0

] [R|t]︷ ︸︸ ︷r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1


Xw

Yw

Zw

1

 . (3)

Direct linear transformation (DLT) is a mathematical tech-
nique commonly used to estimate the parameters of the pro-
jection matrix. The DLT method requires a minimum of six
pairs of known 3D–2D correspondences to establish 12 equa-
tions and estimate all parameters of the projection matrix.
Generally, the intrinsic parameters remain constant for a spe-
cific camera model, such as the Raspberry Pi Camera Mod-
ule 2, and can be reused for all images captured by that cam-
era. However, the extrinsic parameters change whenever the
camera’s location is altered. Consequently, for each setup de-
ployment, recalculation of the extrinsic parameters is nec-
essary to reconstruct the projection matrix. To simplify this
process, the PnP method was replaced with DLT. It can re-
duce the required number of 3D–2D correspondence pairs to
three by reusing the intrinsic parameters.

Additionally, ArUco markers were incorporated to repre-
sent pairs of known 3D–2D correspondences. For this pur-
pose, the pixel coordinates of ArUco markers were deter-
mined using the OpenCV ArUco marker detection module
on the 2D image plane, and the corresponding 3D real-world
coordinates were measured by the total station. With these
3D–2D point correspondences, the spatial position and ori-
entation of the camera can be estimated for each setup de-
ployment. After retrieving all the necessary parameters, a
full-perspective camera model can be generated. Using this
model, the 3D point cloud is projected onto the 2D image
plane. The projected (2D) point cloud represents the 3D real-
world coordinates of the nearest 2D pixel correspondence on
the image plane.

4.4 Machine learning for image measurements

Using the projection matrix, the 3D point cloud is projected
on the 2D image plane (see Fig. 4). The projected (2D) point
cloud is intersected with the waterline pixels, the output of
the DL-based model (Module 1), to find the nearest point
cloud coordinate. To achieve this objective, we utilize the K-
nearest-neighbors (KNN) algorithm. Notably, the indices of
the selected points remain consistent for both the 3D point
cloud and the projected (2D) correspondences. As a result, by
utilizing the indices of the chosen projected (2D) points, the
corresponding real-world 3D coordinates can be retrieved.

4.5 Performance metrics

The performance of the proposed framework is evaluated
based on four different metrics including coefficient of deter-
mination (R2), Nash–Sutcliffe efficiency (NSE), root mean
square error (RMSE), and percent bias (PBIAS). R2 is a
widely used metric that quantifies how much of the observed
dispersion can be explained in a linear relationship by the
prediction.

r2
=


n∑

i=1

(
Oi −O

)(
Pi −P

)
√

n∑
i=1

(
Oi −O

)2
·

n∑
i=1

(
Pi −P

)2


2

(4)

However, if the model systematically over- or underestimates
the results, R2 will still be close to 1.0 as it only takes disper-
sion into account (Krause et al., 2005). NSE, another com-
monly used metric in hydrology, presents the model perfor-
mance with an interpretable scale and is used to differentiate
between “good” and “bad” models (Knoben et al., 2019).

NSE= 1−

n∑
i=1

(Oi −Pi)
2

n∑
i=1

(
Oi −O

)2 (5)
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Figure 4. KNN is used to find the nearest projected (2D) point cloud (magenta dots) to the waterline (black line) on the image plane.

RMSE represents the square root of the average of squares
of the errors, the differences between predicted values and
observed values.

RMSE=

√√√√1
n

n∑
i=1

(Oi −Pi)
2 (6)

The PBIAS of estimated water level, compared against the
ultrasonic sensor data, was also used to show where the two
estimates are close to each other and where they significantly
diverge (Lin et al., 2020).

PBIAS=
100
n

n∑
i=1

(Oi −Pi)
n∑

i=1
Oi

, (7)

where n is the number of data points and O and P are ob-
served and predicted values, respectively.

5 Results and discussion

The results of this study are presented in two sections. First,
the performance of DL-based models is discussed. Then, in
the second section, the performance of the proposed frame-
work is evaluated for five different deployments.

5.1 DL-based models results

The performance of DL-based models for the task of seman-
tic segmentation is evaluated and compared in this section.
Since the proposed dataset includes just two classes, “river”
and “non-river”, non-river was omitted from the evaluation
process, and the performance of models is only reported for
the river class of the test set. The class-wise intersection over

union (IoU) and the per-pixel accuracy (ACC) were con-
sidered the main evaluation metrics in this study. Accord-
ing to Table 2, both variants of SegFormer – SegFormer-B0
and SegFormer-B5 – outperform other semantic segmenta-
tion networks on the test set. Considering the models’ con-
figurations detailed in Table 1, SegFormer-B0 can be con-
sidered the most efficient DL-based network, as it is com-
prised of only 3.7 M trainable parameters and occupies just
2217 MB of GPU ram during training. In Fig. 5, four differ-
ent visual representations of the models’ performance on the
validation set of the proposed dataset are presented. Since
the water level is estimated by intersecting the waterline on
riverbanks with the projected (2D) point cloud, precise delin-
eation of the waterline is of utmost importance to achieve bet-
ter results in the following steps. This means that estimating
the correct location of the waterline on creek banks in each
time-lapse image plays a more significant role than perfor-
mance metrics in this study. Taking the quality of waterline
detection into account and based on the visual representa-
tions shown in Fig. 5, SegFormers’ variants still outperform
DL-based approaches. In this regard, a comparison of PSP-
Net and TransUNet showed that PSPNet can delineate the
waterline more clearly, while the segmented area is more in-
tegrated for TransUNet outputs.

CNNs are typically limited by the nature of their con-
volution operations, leading to architecture-specific issues
such as locality (Geirhos et al., 2018a). Consequently, CNN-
based models may achieve high accuracy on training data,
but their performance can decrease considerably on unseen
data. Additionally, compared to transformer-based networks,
they perform poorly at detecting semantics that require com-
bining long- and short-range dependencies. Transformers can
relax the biases of DL-based models induced by convo-
lutional operations, achieving higher accuracy in localiza-
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Figure 5. Visual representations of different DL-based image segmentation approaches on the validation dataset.

Table 2. The performance metrics of different DL-based ap-
proaches.

Model names IoU ACC
(River) (River)

PSPNet 94.88 % 95.84 %
TransUNet 93.54 % 96.89 %
SegFormer-B0 99.38 % 99.77 %
SegFormer-B5 99.55 % 99.81 %

tion of target semantics and pixel-level classification with
lower fluctuations in varied situations through the leverage
of both local and global cues (Naseer et al., 2021). Yet,
various transformer-based networks may perform differently
depending on the targeted task and the network’s architec-
ture. TransUNet adopts transformers as part of its backbone;
however, transformers generate single-scale low-resolution
features as output (Xie et al., 2021), which may limit the
accuracy when multi-scale objects or single objects with
multi-scale features are segmented. The problem of pro-
ducing single-scale features in standard transformers is ad-
dressed in SegFormer variants through the use of a novel hi-
erarchical transformer encoder (Xie et al., 2021). This ap-
proach has resulted in human-level accuracy being achieved
by SegFormer-B0 and SegFormer-B5 in the delineation of
the waterline, as shown in Fig. 5. The predicted masks are in
satisfactory agreement with the manually annotated images.

5.2 Water level estimation

This section reports the framework performance based on
several deployments in the field. The performance results are
separately shown for the left and right banks and compared
with ultrasonic sensor data as the ground truth. The ultrasonic
sensor was evaluated previously and documented an average
distance error of 6.9 mm (Smith et al., 2022). The setup was
deployed on several rainy days. The results of each deploy-
ment are reported in Table 3.

In addition to Table 3, the results of each deployment are
visually demonstrated in Fig. 6. The scatterplots show the re-
lationships between the ground truth data (measured by the
ultrasonic sensor) and the banks of the river. The scatterplots
visually present whether the camera readings overestimate
or underestimate the ground truth data. Moreover, the time-
series plot of water level is shown for each deployment sep-
arately. A hydrograph, showing changes in the water level
of a stream over time, can be a useful tool for demonstrat-
ing whether camera readings can satisfactorily capture the
response of a catchment area to rainfall. The proposed frame-
work can be evaluated in terms of its ability to accurately
track and identify important characteristics of a flood wave,
such as the rising limb, peak, and recession limb.

The first deployment was done on 17 August 2022 (see
Fig. 6a). The initial water level of the base flow and parts
of the rising limb were not captured in this deployment. Ta-
ble 3 shows that the performance results of the right-bank
camera readings are better than those of the left bank. R2
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Figure 6. Scatterplot and time series plot for estimated water level by the proposed framework and measured by the ultrasonic sensor for
setup deployment on (a) 17 August, (b) 19 August, and (c) 25 August 2022.

for both banks was about 0.80 showing a strongly related
correlation between the water level estimated by the frame-
work and ground truth data. Figure 6a shows how the left and
right-bank camera readings perform during the rising limb;
the right-bank camera readings still underestimated the water
level during this time frame, and during the recession limb,
the left-bank camera readings overestimated the water level.
However, the hydrograph plot shows that both left and right-

bank camera readings were able to capture the peak water
level.

The second deployment was done on 19 August 2022. In
this deployment, all segments of the hydrograph were cap-
tured. According to Table 3, the performance of the right-
bank camera readings was better than the left-bank one; more
than 0.95 was reported for R2 and the NSE of the right bank
line. During the rising limb and crest segment, Fig. 6b shows
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Table 3. The performance metrics of the framework for 5 different days of setup deployment.

Deployment date Position
Metrics

R2 NSE RMSE PBIAS

17 Aug 2022
Left bank 0.8019 0.5258 0.0409 10.6401
Right bank 0.7932 0.7541 0.0294 −0.4848

19 Aug 2022
Left bank 0.7701 0.5713 0.0647 16.1015
Right bank 0.9678 0.9588 0.0201 −3.4752

25 Aug 2022
Left bank 0.7690 0.5700 0.0435 −7.7091
Right bank 0.8922 0.8711 0.0238 −1.7738

10 Nov 2022
Left bank 0.9461 0.8129 0.0511 −13.1183
Right bank 0.9857 0.9790 0.0171 −1.5210

11 Nov 2022
Left bank 0.9588 0.8881 0.0397 −10.3656
Right bank 0.9855 0.9829 0.0155 −1.7987

Figure 7. Water level fluctuation along both left and right banks for the flow regime for an image captured at 13:29 LT on 19 August 2022.

that both banks estimated a water level similar to ground
truth. During the recession limb, the right-bank water level
estimation remained coincident with ground truth, while the
left bank overestimated the water level. The third deployment
was on 25 August 2022. This time, the water level of the re-
cession limb and the following base flow were captured (see
Fig. 6c). The right-bank camera readings with R2 of 0.89 per-
formed better than the left bank. This time, left-bank camera
readings underestimated the water level over the recession
limb, but during the following base flow, the water level was
estimated correctly by cameras on both banks.

The results indicate that the right-bank camera readings
performed better than the left bank. Further investigation of
the field conditions revealed that stream erosion had a more
significant impact on the concrete surface of the left bank,
resulting in patches and holes that were not scanned by the
iPhone lidar. As a result, the KNN algorithm used to find the
nearest (2D) point cloud coordinates to the waterline could
not accurately represent the corresponding real-world coor-
dinates of these locations. Figure 7 shows a box plot and
scatterplot of the estimated water level for a time-lapse im-

age captured at 13:29 LT on 19 August 2022. The patches
and holes on the left-bank surface caused instability in wa-
ter level estimation for the region of interest. The box plot
of the left bank (Cam-L-BL) was taller than that of the right
bank (Cam-R-BL), indicating that the estimated water level
was spread over larger values on the left bank due to the pres-
ence of these irregularities.

After analyzing the initial results, the deployable setups
were modified to enhance the quality of data collection. The
programming code of the Arduino device, Aava, was mod-
ified to measure five different records for water level each
time it is triggered by the camera device, Beena, and to
transmit the average distance to the Raspberry Pi device.
This modification decreased the number of noise spikes in
the measured data and allowed a better comparison between
camera readings and ground truth data. The case of the cam-
era device, Beena, was redesigned to protect the single board
against rain without requiring an umbrella, which makes the
camera setup unstable in stormy weather and causes a de-
crease in the precision of measurements. Moreover, an open-
ing is incorporated into the redesigned case to connect an ex-
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Figure 8. Scatterplot and time series plot for estimated water level by the proposed framework and measured by the ultrasonic sensor for
setup deployment on (a) 10 November and (b) 11 November 2022.

ternal power bank to enhance the run time. Finally, the view-
point of the camera was subtly shifted to the right to adjust
the share of the riverbanks on the camera’s field of view.

The results of the deployments on 10 and 11 Novem-
ber 2022 demonstrate that modifications to the setup have
significantly improved the results of the left bank (as shown
in Table 3). NSE improved from approximately 0.55 for the
first three setup deployments to over 0.80 for the modified
deployments. Figure 8 shows the setup performances dur-
ing all segments of the flood wave. The peaks were captured
by the right bank line on both deployment dates, and there
was no effect of noisy spikes on either camera readings or
ground truth data. However, the right-bank images still un-
derestimated the water level during the rainstorms.

6 Conclusion

This study introduced Eye of Horus, a vision-based frame-
work for hydrologic monitoring and measuring of real-time
water-related parameters, e.g., water level, from surveillance
images captured during flood events. Time-lapse images and
real water level correspondences were collected by a Rasp-

berry Pi camera and an Arduino HC-SR05 ultrasonic sensor,
respectively. Moreover, computer vision and deep learning
techniques were used for semantic segmentation of the wa-
ter surface within the captured images and for reprojecting
the 3D point cloud constructed with an iPhone lidar scanner,
on the (2D) image plane. Eventually, the K-nearest neigh-
bor algorithm was used to intersect the projected (2D) point
cloud with the waterline pixels extracted from the output of
the deep learning model to find the real-world 3D coordi-
nates.

A vision-based framework offers a new alternative to cur-
rent hydrologic data collection and real-time monitoring sys-
tems. Hydrological models require geometric information for
estimating discharge routing parameters, stage, and flood in-
undation maps. However, determining bankfull characteris-
tics is a challenge due to natural or anthropogenic down-
cutting of streams. Using visual sensing, stream depth, water
velocity, and instantaneous streamflow at bankfull stage can
be reliably measured.

Hydrol. Earth Syst. Sci., 27, 4135–4149, 2023 https://doi.org/10.5194/hess-27-4135-2023



S. M. H. Erfani et al.: Eye of Horus: a vision-based framework for real-time water level measurement 4147

Data availability. The framework and codes developed and used
in this study are publicly available online in the Zenodo repository
(https://doi.org/10.5281/zenodo.10071662, Erfani, 2023).

Author contributions. SMHE: conceptualization, data curation,
methodology, writing (original draft preparation). CS: data curation,
resources. ZW: conceptualization. EAS: conceptualization, writing
(original draft preparation). FK: data curation. ARJD: resources,
writing (reviewing and editing). JI: writing (reviewing and editing).
EG: conceptualization, methodology, writing (reviewing and edit-
ing).

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Financial support. This research has been supported by the Na-
tional Science Foundation (grant no. 2238639) and the Office of
the Vice President for Research at the University of South Carolina
through an ASPIRE-II grant (no. 80004440). Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

Review statement. This paper was edited by Roger Moussa and re-
viewed by Remy Vandaele and one anonymous referee.

References

Alsdorf, D. E., Rodríguez, E., and Lettenmaier, D. P.: Measur-
ing surface water from space, Rev. Geophys., 45, RG2002,
https://doi.org/10.1029/2006RG000197, 2007.

Badrinarayanan, V., Handa, A., and Cipolla, R.: Segnet:
A deep convolutional encoder-decoder architecture for
robust semantic pixel-wise labelling, arXiv [preprint],
https://doi.org/10.48550/arXiv.1505.07293, 2015.

Bradski, G.: The OpenCV Library, Dr. Dobb’s Journal of Software
Tools, https://opencv.org/ (last access: 4 November 2023), 2000.

Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L.,
Yuille, A. L., and Zhou, Y.: Transunet: Transformers make strong
encoders for medical image segmentation, arXiv [preprint],
https://doi.org/10.48550/arXiv.2102.04306, 2021.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille,
A. L.: Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs, IEEE
T. Pattern Anal. Mach. Intel., 40, 834–848, 2017.

De Cesarei, A., Cavicchi, S., Cristadoro, G., and Lippi, M.: Do hu-
mans and deep convolutional neural networks use visual infor-
mation similarly for the categorization of natural scenes?, Cog-
nit. Sci., 45, e13009, https://doi.org/10.1111/cogs.13009, 2021.

Dodge, S. and Karam, L.: A study and comparison of hu-
man and deep learning recognition performance under
visual distortions, in: IEEE Int. Conf. Comput. Com-
munication and Networks, Vancouver, BC, Canada, 1–7,
https://doi.org/10.1109/ICCCN.2017.8038465, 2017.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai,
X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G.,
Gelly, S., Uszkoreit, J., and Houlsby, N.: An image is worth
16×16 words: Transformers for image recognition at scale, arXiv
[preprint], https://doi.org/10.48550/arXiv.2010.11929, 2020.

Elias, M., Eltner, A., Liebold, F., and Maas, H.-G.: Assessing
the influence of temperature changes on the geometric stabil-
ity of smartphone-and raspberry pi cameras, Sensors, 20, 643,
https://doi.org/10.3390/s20030643, 2020.

Eltner, A. and Schneider, C.: Analysis of different methods for
3d reconstruction of natural surfaces from parallel-axes uav im-
ages, Photogram. Rec., 30, 279–299, 2015.

Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abel-
lán, A.: Image-based surface reconstruction in geomorphometry
– merits, limits and developments, Earth Surf. Dynam., 4, 359–
389, https://doi.org/10.5194/esurf-4-359-2016, 2016.

Eltner, A., Elias, M., Sardemann, H., and Spieler, D.: Automatic
image-based water stage measurement for long-term observa-
tions in ungauged catchments, Water Resour. Res., 54, 10362–
10371, https://doi.org/10.1029/2018WR023913, 2018.

Eltner, A., Bressan, P. O., Akiyama, T., Gonçalves, W. N., and
Marcato Junior, J.: Using deep learning for automatic water
stage measurements, Water Resour. Res., 57, e2020WR027608,
https://doi.org/10.1029/2020WR027608, 2021.

Erfani, S. M. H.: smhassanerfani/horus: Pre-
release version (v1.0.0-alpha), Zenodo [data set],
https://doi.org/10.5281/zenodo.10071662, 2023.

Erfani, S. M. H., Wu, Z., Wu, X., Wang, S., and Gohar-
ian, E.: Atlantis: A benchmark for semantic segmentation
of waterbody images, Environ. Model. Softw., 149, 105333,
https://doi.org/10.1016/j.envsoft.2022.105333, 2022.

Forsyth, A. A. and Ponce, J.: Computer vision: a mod-
ern approach, Prentice hall professional technical reference,
ISBN 0130851981, 2002.

Froideval, L., Pedoja, K., Garestier, F., Moulon, P., Conessa, C.,
Pellerin Le Bas, X., Traoré, K., and Benoit, L.: A low-cost open-
source workflow to generate georeferenced 3d sfm photogram-
metric models of rocky outcrops, Photogram. Rec., 34, 365–384,
2019.

Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., and Lu, H.: Dual
attention network for scene segmentation, in: IEEE Conf. Com-
put. Vis. Pattern Recog., Long Beach, CA, USA, 3141–3149,
https://doi.org/10.1109/CVPR.2019.00326, 2019.

Gebrehiwot, A., Hashemi-Beni, L., Thompson, G., Kordjamshidi,
P., and Langan, T. E.: Deep convolutional neural network for
flood extent mapping using unmanned aerial vehicles data, Sen-
sors, 19, 1486, https://doi.org/10.3390/s19071486, 2019.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.
A., and Brendel, W.: Imagenet-trained cnns are biased towards
texture; increasing shape bias improves accuracy and robustness,

https://doi.org/10.5194/hess-27-4135-2023 Hydrol. Earth Syst. Sci., 27, 4135–4149, 2023

https://doi.org/10.5281/zenodo.10071662
https://doi.org/10.1029/2006RG000197
https://doi.org/10.48550/arXiv.1505.07293
https://opencv.org/
https://doi.org/10.48550/arXiv.2102.04306
https://doi.org/10.1111/cogs.13009
https://doi.org/10.1109/ICCCN.2017.8038465
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.3390/s20030643
https://doi.org/10.5194/esurf-4-359-2016
https://doi.org/10.1029/2018WR023913
https://doi.org/10.1029/2020WR027608
https://doi.org/10.5281/zenodo.10071662
https://doi.org/10.1016/j.envsoft.2022.105333
https://doi.org/10.1109/CVPR.2019.00326
https://doi.org/10.3390/s19071486


4148 S. M. H. Erfani et al.: Eye of Horus: a vision-based framework for real-time water level measurement

arXiv [preprint], https://doi.org/10.48550/arXiv.1811.12231,
2018a.

Geirhos, R., Temme, C. R. M., Rauber, J., H Schütt, H., Bethge, M.,
and Wichmann, F. A.: Generalisation in humans and deep neural
networks, Adv. Neural Inform. Process. Syst., 31, 7538–7550,
ISBN 9781510884472, 2018b.

Geirhos, R., Meding, K., and Wichmann, F. A.: Beyond accuracy:
quantifying trial-by-trial behaviour of cnns and humans by mea-
suring error consistency, Adv. Neural Inform. Process. Syst., 33,
13890–13902, 2020.

Gilmore, T. E., Birgand, F., and Chapman, K. W.: Source and mag-
nitude of error in an inexpensive image-based water level mea-
surement system, J. Hydrol., 496, 178–186, 2013.

Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Nothdurft,
A.: Measurement of forest inventory parameters with Apple iPad
pro and integrated LiDAR technology, Remote Sens., 13, 3129,
https://doi.org/10.3390/rs13163129, 2021.

Goodchild, M. F.: Citizens as sensors: the world of volunteered ge-
ography, Geo J., 69, 211–221, 2007.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep resid-
ual learning for image recognition, in: IEEE Conf. Com-
put. Vis. Pattern Recog., Las Vegas, NV, USA, 770–778,
https://doi.org/10.1109/CVPR.2016.90, 2016.

Howe, J.: Crowdsourcing: How the power of the crowd
is driving the future of business, Random House,
https://doi.org/10.2146/ajhp100029, 2008.

Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., and Liu,
W.: Ccnet: Criss-cross attention for semantic segmentation,
in: Int. Conf. Comput. Vis., Seoul, South Korea, 603–612,
https://doi.org/10.1109/ICCV.2019.00069, 2019.

Kim, J., Han, Y., and Hahn, H.: Embedded implementation of
image-based water-level measurement system, IET Comput.
Vis., 5, 125–133, 2011.

King, T. V., Neilson, B. T., and Rasmussen, M. T.: Estimating dis-
charge in low-order rivers with high-resolution aerial imagery,
Water Resour. Res., 54, 863–878, 2018.

Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: In-
herent benchmark or not? Comparing Nash–Sutcliffe and Kling–
Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331,
https://doi.org/10.5194/hess-23-4323-2019, 2019.

Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different effi-
ciency criteria for hydrological model assessment, Adv. Geosci.,
5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005.

LAAN LABS: 3D Scanner App – LiDAR Scanner for iPad
Pro & iPhone Pro, https://3dscannerapp.com/ (last access:
16 September 2022), 2022.

Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., and Liu, H.:
Expectation-maximization attention networks for semantic seg-
mentation, in: Int. Conf. Comput. Vis., Seoul, South Korea,
9166–9175, https://doi.org/10.1109/ICCV.2019.00926, 2019.

Li, Z., Wang, C., Emrich, C. T., and Guo, D.: A novel approach to
leveraging social media for rapid flood mapping: a case study of
the 2015 south carolina floods, Cartogr. Geogr. Inform. Sci., 45,
97–110, 2018.

Lin, G., Milan, A., Shen, C., and Reid, I.: Refinenet: Multi-path
refinement networks for high-resolution semantic segmentation,
in: IEEE Conf. Comput. Vis. Pattern Recog., Honolulu, HI, USA,
5168–5177, https://doi.org/10.1109/CVPR.2017.549, 2017.

Lin, P., Pan, M., Allen, G. H., de Frasson, R. P., Zeng,
Z., Yamazaki, D., and Wood, E. F.: Global estimates of
reach-level bankfull river width leveraging big data geospa-
tial analysis, Geophys. Res. Lett., 47, e2019GL086405,
https://doi.org/10.1029/2019GL086405, 2020.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B.: Swin transformer: Hierarchical vi-
sion transformer using shifted windows, in: Int. Conf.
Comput. Vis., Montreal, QC, Canada, 9992–10002,
https://doi.org/10.1109/ICCV48922.2021.00986, 2021.

Lo, S.-W., Wu, J.-H., Lin, F.-P., and Hsu, C.-H.: Visual sensing for
urban flood monitoring, Sensors, 15, 20006–20029, 2015.

Long, J., Shelhamer, E., and Darrell, T.: Fully convolutional
networks for semantic segmentation, in: IEEE Conf. Com-
put. Vis. Pattern Recog., Boston, MA, USA, 3431–3440,
https://doi.org/10.1109/CVPR.2015.7298965, 2015.

Loshchilov, I. and Hutter, F.: Decoupled
weight decay regularization, arXiv [preprint],
https://doi.org/10.48550/arXiv.1711.05101, 2017.

Luetzenburg, G., Kroon, A., and Bjørk, A. A.: Evaluation of the
apple iphone 12 pro lidar for an application in geosciences, Sci.
Rep., 11, 1–9, 2021.

Marchand, E., Uchiyama, H., and Spindler, F.: Pose estimation for
augmented reality: a hands-on survey, IEEE T. Pattern Anal.
Mach. Intel., 22, 2633–2651, 2015.

Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N.,
and Terzopoulos, D.: Image segmentation using deep learning:
A survey, IEEE T. Pattern Anal. Mach. Intel., 44, 3523–3542,
https://doi.org/10.1109/TPAMI.2021.3059968, 2022.

Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Wężyk,
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