Articles | Volume 27, issue 5
https://doi.org/10.5194/hess-27-1089-2023
https://doi.org/10.5194/hess-27-1089-2023
Research article
 | 
14 Mar 2023
Research article |  | 14 Mar 2023

Bayesian calibration of a flood simulator using binary flood extent observations

Mariano Balbi and David Charles Bonaventure Lallemant

Related authors

Flood damage functions for rice: Synthesizing evidence and building data-driven models
Alina Bill-Weilandt, Nivedita Sairam, Dennis Wagenaar, Kasra Rafiezadeh Shahi, Heidi Kreibich, Perrine Hamel, and David Lallemant
EGUsphere, https://doi.org/10.5194/egusphere-2025-3706,https://doi.org/10.5194/egusphere-2025-3706, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Importance of tides and winds in influencing the nonstationary behaviour of coastal currents in offshore Singapore
Jun Yu Puah, Ivan D. Haigh, David Lallemant, Kyle Morgan, Dongju Peng, Masashi Watanabe, and Adam D. Switzer
Ocean Sci., 20, 1229–1246, https://doi.org/10.5194/os-20-1229-2024,https://doi.org/10.5194/os-20-1229-2024, 2024
Short summary
Tsunami damage to ports: cataloguing damage to create fragility functions from the 2011 Tohoku event
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021,https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary

Cited articles

Alfonso, L., Mukolwe, M. M., and Di Baldassarre, G.: Probabilistic Flood Maps to Support Decision-Making: Mapping the Value of Information: Probabilistic Flood Maps To Support Decision-Making: VOI-MAP, Water Resour. Res., 52, 1026–1043, https://doi.org/10.1002/2015WR017378, 2016. a
Aronica, G., Bates, P. D., and Horritt, M. S.: Assessing the Uncertainty in Distributed Model Predictions Using Observed Binary Pattern Information within GLUE, Hydrol. Process., 16, 2001–2016, https://doi.org/10.1002/hyp.398, 2002. a, b, c, d, e, f, g
Balbi, M.: Code and Data Github repository for “Bayesian calibration of a flood simulator using binary flood extent observations”, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7682138, 2022. a
Bates, P. D., Horritt, M. S., Aronica, G., and Beven, K.: Bayesian Updating of Flood Inundation Likelihoods Conditioned on Flood Extent Data, Hydrol. Process., 18, 3347–3370, https://doi.org/10.1002/hyp.1499, 2004. a
Berrett, C. and Calder, C. A.: Bayesian Spatial Binary Classification, Spat. Stat., 16, 72–102, https://doi.org/10.1016/j.spasta.2016.01.004, 2016. a, b
Download
Short summary
We proposed a methodology to obtain useful and robust probabilistic predictions from computational flood simulators using satellite-borne flood extent observations. We developed a Bayesian framework to obtain the uncertainty in roughness parameters, in observations errors, and in simulator structural deficiencies. We found that it can yield improvements in predictions relative to current methodologies and can potentially lead to consistent ways of combining data from different sources.
Share