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Abstract. Computational simulators of complex physical
processes, such as inundations, require a robust character-
ization of the uncertainties involved to be useful for flood
hazard and risk analysis. While flood extent data, as ob-
tained from synthetic aperture radar (SAR) imagery, have
become widely available, no methodologies have been im-
plemented that can consistently assimilate this information
source into fully probabilistic estimations of the model pa-
rameters, model structural deficiencies, and model predic-
tions. This paper proposes a fully Bayesian framework to
calibrate a 2D physics-based inundation model using a sin-
gle observation of flood extent, explicitly including un-
certainty in the floodplain and channel roughness param-
eters, simulator structural deficiencies, and observation er-
rors. The proposed approach is compared to the current
state-of-practice generalized likelihood uncertainty estima-
tion (GLUE) framework for calibration and with a simpler
Bayesian model. We found that discrepancies between the
computational simulator output and the flood extent observa-
tion are spatially correlated, and calibration models that do
not account for this, such as GLUE, may consistently mis-
predict flooding over large regions. The added structural defi-
ciency term succeeds in capturing and correcting for this spa-
tial behavior, improving the rate of correctly predicted pixels.
We also found that binary data do not have information on
the magnitude of the observed process (e.g., flood depths),
raising issues in the identifiability of the roughness param-
eters, and the additive terms of structural deficiency and ob-
servation errors. The proposed methodology, while computa-
tionally challenging, is proven to perform better than existing
techniques. It also has the potential to consistently combine
observed flood extent data with other data such as sensor in-

formation and crowdsourced data, something which is not
currently possible using GLUE calibration framework.

1 Introduction

As floods represent the most costly natural hazard world-
wide, the relevance of scientifically informed risk manage-
ment to aid in mitigating the impact of floods in human en-
vironments is of foremost importance (Global Facility for
Disaster Reduction and Recovery, 2014; Jha et al., 2012).
Furthermore, the characterization of flood risk management
as a problem of decision-making under uncertainty is now
widely accepted in the research community, and efforts are
increasingly being placed in that direction (Hall and Solo-
matine, 2008; Beven, 2014a). In this line, there is a need to
robustly and transparently characterize the uncertainty in all
components of a flood risk analysis, particularly in the flood-
plain inundation model, usually considered deterministic in
practice.

This paper focuses on the use of computational simulators
of inundation models, a key component in flood risk quantifi-
cation, that aim to simulate the process by which water flows
throughout a floodplain due to riverine bank overflow, water
excess from rainfall, large coastal wave heights or any combi-
nation of those. This is done by solving a set of flow dynam-
ics equations both in space and time for a given set of initial
and boundary conditions and is termed here a flood simu-
lator. Even for a well-defined forcing event (e.g., a known
flow discharge, rainfall, or sea-level rise), predictions of the
flood process remain largely uncertain due to a combina-
tion of (1) errors in observations used for calibration, (2) er-
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rors in the simulator structure due to simplifications (also
termed model inadequacy), (3) numerical errors in solving
the physics-based model (also termed code uncertainty), and
(4) residual error as a result of aleatory uncertainties in na-
ture and other unknown unknowns (Kennedy and O’Hagan,
2001). Thus, in line with the uncertainty quantification objec-
tives, several authors in recent decades have highlighted the
importance of building probabilistic, rather than determin-
istic, estimations of physical processes in general and flood
processes in particular (Kennedy and O’Hagan, 2001; Gold-
stein and Rougier, 2004; Moges et al., 2021; Di Baldassarre
et al., 2010; Beven, 2014b; Alfonso et al., 2016).

Uncertainty quantification of predictions is obtained
through probabilistic calibration of the simulator based on
real-world observations of the process output and its bound-
ary conditions. For flood simulators, this was initially done
with the use of discharge measurements and water levels at
points along the reach (Romanowicz et al., 1996; Werner
et al., 2005). With the increased availability of satellite im-
agery, particularly from SAR (synthetic aperture radar) satel-
lites, to obtain flood extent information (i.e., binary obser-
vations) and the increased computational capacity to imple-
ment 2D inundation models, spatially distributed observa-
tions have been used widely for calibration in the last 20
years. The added value of distributed data and model pre-
dictions for inundation modeling has been widely accounted
for in the literature (Aronica et al., 2002; Hunter et al., 2005;
Werner et al., 2005; Pappenberger et al., 2005; Stephens and
Bates, 2015).

The widespread use of distributed observations in uncer-
tainty quantification of flood predictions was also driven by
the formalization of the generalized likelihood uncertainty
estimation (GLUE) framework by Beven and Binley (1992).
Due to its simplicity and ease of implementation, it has been
widely used to calibrate probabilistic flood models in the last
2 decades by quantifying uncertainty in simulator parameters
(Aronica et al., 2002; Romanowicz and Beven, 2003; Bates
et al., 2004; Hunter et al., 2005; Werner et al., 2005; Hor-
ritt, 2006; Di Baldassarre et al., 2009; Mason et al., 2009;
Di Baldassarre et al., 2010; Kiczko et al., 2013; Wood et al.,
2016; Romanowicz and Kiczko, 2016). Its strength does not
rely only on its simplicity, but it is also a working alternative
for complex cases with “non-traditional error residual distri-
butions”, as explained by Sadegh and Vrugt (2013). In cases
like this, formal likelihood functions that fail to capture the
complex distribution of the observations can be overly op-
timistic regarding the uncertainty (Sadegh and Vrugt, 2013;
Beven, 2016; Wani et al., 2019).

This inference technique, closely related to the modern ap-
proximate Bayesian computation (ABC) methods (Sadegh
and Vrugt, 2013), is based on simplified likelihood func-
tions (also termed “pseudo-likelihood”) using summary in-
dicators of the fit between data and observations. This im-
plies that predictions cannot be formally interpreted as prob-
abilities, since the method does not provide a distribution

model for the residuals. Furthermore, GLUE implementa-
tions do not attempt to capture the spatial structure of the
residuals and cannot differentiate between observation errors
(typically assumed mutually independent) and model inad-
equacy errors that usually exhibit a systematic behavior in
space and time (Stedinger et al., 2008; Vrugt et al., 2009;
Rougier, 2014) (i.e., some locations are systematically over-
or under-flooded). As a result, all variability in prediction is
characterized through uncertainty in the model parameters,
implicitly assuming that, at least, some of the simulator pa-
rameters can fit the true process reasonably well in all loca-
tions of interest.

Alternatively, the formal Bayesian approach for uncer-
tainty quantification in simulator predictions appears to be
a robust framework to cope with many of the limitations of
GLUE while transparently and consistently translating the
modeler’s subjective judgments on uncertainty into proba-
bilities (Rougier, 2014). The seminal work on probabilis-
tic calibration of computational simulators by Kennedy and
O’Hagan (2001) proposed a fully probabilistic model build-
ing methodology to explicitly account for observation er-
rors, model inadequacy, and parametric uncertainty. This ap-
proach, later extended by others (Goldstein and Rougier,
2004; Rougier, 2014), has been widely used in many differ-
ent disciplines, although its application to inundation models
has been mostly restricted to a few cases where flood-depth
measurements were available (Hall et al., 2011). The com-
plex statistical properties of spatial binary observations have
restricted its widespread implementation in practice. Some
researchers have extended this framework to binary obser-
vations. Wani et al. (2017), Cao et al. (2018), Chang et al.
(2019), and Woodhead (2007) attempted this for inundation
models. This latter study, however, did not explicitly account
for the model inadequacy, and inferences were focused on bi-
nary values (i.e., flooded or non-flooded) rather than on flood
depths.

The present work proposes to adapt the fully Bayesian
methodology of Kennedy and O’Hagan (2001) to create
probabilistic predictions of flood depths using inundation
simulators with spatial binary observations of flood extent
obtained from SAR satellite imagery and compare it to sim-
pler and more traditionally used methods. The proposed cal-
ibration approach aims to do the following:

1. Develop a rigorous and probabilistic framework for in-
undation model inference. This enables consistent un-
certainty propagation through the risk modeling chain
using a Bayesian methodology and allows for a con-
sistent integration of data from different sources, such
as binary satellite-borne flood extent data, uncensored
flood-depth measurements on the ground, or crowd-
sourced qualitative data.

2. Explicitly account for the deficiencies of the computa-
tional flood simulator driven by simplifications in the
fluid dynamics equations used, errors in the input data
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(e.g., elevation map inaccuracies), and/or numerical in-
accuracies of the solver. These are explicitly taken into
account by the inclusion of an additive, spatially corre-
lated, inadequacy term in predictions.

3. Model errors in data acquisition (i.e., observation er-
rors) explicitly and disaggregated from other uncer-
tainty sources such as model structural deficiencies and
input errors.

The proposed approach is built based on the Gaussian
process classification theory (see Rasmussen and Williams,
2006), where the physical process acts as the latent variable
that is being censored. It can be also found in the literature
as a clipped Gaussian process (CGP) model (Oliveira, 2000)
or as a particular case of the spatially correlated multivari-
ate probit model with non-linear regressors (Chib and Green-
berg, 1998). Several publications can be found where differ-
ent physics-based simulators were calibrated using censored
observations of the real process and statistical inadequacy
functions (Wani et al., 2017; Cao et al., 2018; Chang et al.,
2019), although no attempt, to the authors’ knowledge, has
been made to implement this in the context of flood simula-
tors and binary extent observations.

This work is organized as follows. Section 2 provides a
review of the general Bayesian framework for the statistical
calibration of computational model as proposed by Kennedy
and O’Hagan (2001) and describes the three specific cali-
bration approaches used in this paper: (1) the widely used
GLUE framework, (2) a fully Bayesian model without inad-
equacy function, and (3) a fully Bayesian framework includ-
ing an inadequacy term. Section 3 describes an illustrative
one-dimensional example to help understand some of the key
implications of using an inadequacy function and binary data
for calibration. Section 4 describes a real case study, the data
available for calibration, its numerical implementation, and
the results from the three models. Section 5 presents a dis-
cussion of the key findings and limitations of the proposed
approaches in terms of model building, uncertainty quantifi-
cation, and information content of data. Conclusions and po-
tential paths for future research can be found in Sect. 6.

2 Methods

2.1 Uncertainty framework

Using mathematical models to make inferences about real-
world physical systems involve many sources of uncertainty,
since (i) the models are always incomplete simplifications of
reality, (ii) computational simulators can be numerically im-
precise, and (iii) these simulators require inputs that are un-
certain (Goldstein and Rougier, 2004). A robust characteri-
zation of these uncertainties is, then, necessary to understand
the implications of the inferences made. In this context, an
uncertainty framework is a mathematical description of the

probabilistic relationships between (1) a computational sim-
ulator S used to describe a physical system, (2) inferences
about the true physical process Y, and (3) observations of
that process Z.

In this work, we will use uppercase letters to describe ran-
dom variables and lowercase letters for their particular real-
izations. Bold letters indicate some vectorial quantity that, in
the case of the spatial processes S, Y, and Z, indicates val-
ues at different points in space. For example, Y= {Y (x1),
Y (x2), . . . ,Y (x3)}. Greek letters will be used for model input
parameters.

The simulator is a mechanistic model used to represent a
physical process by means of simplifying assumptions of the
real world. In the context of flood modeling, this is a compu-
tational code that outputs flood depths (and potentially many
other parameters) at different points in space S, by solving
a set of flow dynamics equations in a given spatial and time
domain and for a set of required inputs (see Eq. 1): (1) a set
of boundary conditions ν that are considered to vary from
event to event and are considered known (either observed or
predicted), like the upstream hydrograph or peak flow in the
case of a riverine flood scenario, and (2) a set of model’s pa-
rameters β that are typically unobservable and considered to
be fixed for a wide range of contexts by an appropriate cal-
ibration procedure (Kennedy and O’Hagan, 2001), such as
terrain topography, surface roughness, or Manning’s rough-
ness parameters.

S= g(ν,β) (1)

A real-world physical process is, however, described by a
very complex function relating the input boundary condi-
tions ν and true process output Y. This function is not known
(and cannot be known), and the modeler needs to rely on the
available simulator that is not, in any case of practical inter-
est, a perfect representation of the true process: Y 6= S. To
represent this discrepancy mathematically, some researchers
(Kennedy and O’Hagan, 2001; Goldstein and Rougier, 2004)
have proposed the use of an additive model inadequacy func-
tion δ as in Eq. (2).

Y= S+ δ (2)

Finally, observations of the physical process Z at a set
of points in space can be obtained through some data-
acquisition technique. During flood events, there are differ-
ent sources of observations such as water level readings from
gauging stations in rivers, satellite imaging (particularly SAR
imaging) of flood extent, and, more rarely, ground obser-
vations of water depths in the floodplain (Di Baldassarre,
2012). In any case, there are two types of observations, un-
censored water depth observations (a positive real value) and
binary observations (water–no water), that are distinct from
those obtained from SAR satellite imagery.

Mathematically, observations can be thought of as noisy
versions of the true process Y, typically characterized by
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Table 1. Summary of variables, parameters, and hyperparameters in
the uncertainty framework.

Variable Parameters Hyperparameters

Boundary conditions ν – –
Simulator output S β –
True process output Y δ θ

Observations Z ε σ

some additive error process ε as per Eq. (3) (Kennedy and
O’Hagan, 2001; Goldstein and Rougier, 2004). Furthermore,
binary observations, on which this work will mostly focus,
can be represented as censored versions of the continuous
water depth measurements, as seen in Eq. (4).

Zuncen = Y+ ε (3)
Zcen = 1{Y+ ε > 0}, (4)

where 1{condition} is the indicator function that equals 1
when the condition is true and 0 otherwise.

All variables and model parameters introduced so far are
summarized in Table 1.

2.1.1 Bayesian inference

The objective of uncertainty quantification is, in this case,
to obtain probabilistic predictions of the true process out-
put Y∗ at spatial locations x∗ for unobserved boundary con-
ditions ν∗. The Bayesian methodology allows us to condi-
tion these predictions on previously observed data {z,ν}, also
known as calibrated predictions (Gelman et al., 2013). The
predictive distribution density can be computed as

f
(
y∗|ν∗,z,ν

)
=

∫ ∫ ∫
f
(
y∗|s,δ

)
f
(
s|ν∗,β

)︸ ︷︷ ︸
code

uncertainty

f (δ,β|z,ν)︸ ︷︷ ︸
param. uncertainty

+
model inadequacy

dδdsdβ. (5)

The distribution f (s|ν∗,β) represents the uncertainty in
the computation of the simulator outputs at the locations of
the new values, also termed code uncertainty in the litera-
ture (Kennedy and O’Hagan, 2001). This can be associated
with numerical errors in the implementation and solving of
the equations of the model but more significantly can arise
due to surrogacy of the model by the use of statistical emula-
tors (Carbajal et al., 2017; Jiang et al., 2020). This is useful
when the original simulator is computationally expensive to
run and doing hundreds or thousands of simulations is not
feasible. This will not be the case in this work, so we will as-
sume that the simulator S can be deterministically obtained
given its parameters β. That is, f (s|ν∗,β) has a single prob-
ability mass at s= S(ν∗,β), and the predictive distribution

is reduced to Eq. (6). An application of the use of statistical
emulators within the framework described here can be found
in Kennedy and O’Hagan (2001) and Hall et al. (2011).

Considering a deterministic computational simulator, and
integrating out the terms δ and s in Eq. (5), we obtain

f
(
y∗|ν∗,z,ν

)
=

∫
f
(
y∗|β,ν∗,z,ν

)︸ ︷︷ ︸
model

inadequacy

f (β|z,ν)︸ ︷︷ ︸
parametric
uncertainty

dβ (6)

f
(
y∗|β,ν∗,z,ν

)
=

∫
f
(
y∗|β,δ

)
f (δ|β,z,ν)dδ. (7)

The distribution f (β|z,ν) is the posterior distribution of
the simulator parameters β conditioned on observed data
and is a representation of the parametric uncertainty of the
model. On the other hand, the conditional predictive distri-
bution f (y∗|β,ν∗,z,ν) reflects the uncertainty on new true
process predictions for a given simulator output defined by β
and for a new event ν∗. This is the quantification of model
inadequacy and is obtained by integrating over the posterior
distribution of the inadequacy term f (δ|β,z,ν) conditioned
on data as in Eq. (7).

The posterior distributions of both the inadequacy term δ

and simulator parameters β are the core of Bayesian statistics
since they define how data are assimilated into new predic-
tions of the true process as given in Eqs. (8) and (9).

f (δ|β,z,ν)∝ f (z|δ,β,ν)︸ ︷︷ ︸
observation

error

· f (δ) (8)

f (β|z,ν)∝ f (z|β,ν)︸ ︷︷ ︸
likelihood
function

· f (β)=

∫
f (z|δ,β,ν)︸ ︷︷ ︸

observation
error

· f (δ)

· f (β)dδ (9)

The distribution f (z|δ,β,ν) is the joint probability of
observations conditioned to a given value of the simulator
and the inadequacy terms (also termed conditional likelihood
function). That is, it is defined by the distribution of the errors
in observations ε. On the other hand, f (z|β,ν) is the proba-
bility of obtaining the observed data for a given set of simu-
lator parameters and is obtained by integrating out the inade-
quacy terms from the distribution in Eq. (8). This is why it is
also termed marginal likelihood function here or simply like-
lihood function. Finally, f (δ) and f (β) are the prior distri-
butions of the inadequacy term and the simulator parameters
respectively. This should reflect the modeler’s knowledge be-
fore obtaining, or disregarding, the available data (Rougier,
2014).

Since the spatial terms δ and ε are high-dimensional ran-
dom variables, they can result in complex prior distributions
with an arbitrarily large number of hyperparameters. It is typ-
ical, then, to define parametric joint distributions for each
that depend on only two sets of hyperparameters: θ and σ
respectively (see Table 1). Parameter selection can be done
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by fixing these hyperparameters to some values defined by
the modeler or assigning some appropriate hyperpriors to
each. The posterior distribution of simulator parameters and
the likelihood function are extended to include the set of hy-
perparameters as in Eq. (10). In the same line, the predic-
tive distribution (Eq. 6) and the inadequacy function poste-
rior distribution (Eq. 8) should always be understood as also
conditioned on hyperparameters θ and σ .

f (β,θ ,σ |z,ν)∝ f (z|β,θ ,σ ,ν) · f (β,θ ,σ ) (10)

In this framework, then, a given statistical model is de-
fined by assigning a prior distribution for the inadequacy
term, f (δ), and for the observation error f (z|δ,β,ν) (the
likelihood function is obtained by integrating out δ from
the latter). When no closed-form solution for the distribu-
tions exists, approximate sampling schemes, such as Markov
chain Monte Carlo (MCMC) (Gelman et al., 2013), are typi-
cally used to (i) sample model parameters from Eq. (10), then
(ii) sample the inadequacy function from Eq. (8), and finally
(iii) sample the true process output (e.g., flood depths) from
f (y∗|s,δ).

In the next section, two different models within this frame-
work will be analyzed: one with the inadequacy function and
one without.

2.2 Statistical models

Given the proposed Bayesian uncertainty framework to ob-
tain calibrated predictions of flood events given past obser-
vations, a proper implementation requires the modeler to de-
fine probability distributions for the observation error model
ε and prior distributions for the model inadequacy δ, and sim-
ulator parameters β. Three models are reviewed in this work:
(1) the widely used GLUE method (current state of practice),
(2) a simple Bayesian model without including an inade-
quacy term, and (3) a newly proposed Bayesian model in-
cluding an inadequacy term with a spatially correlated Gaus-
sian process prior.

2.2.1 Model 1: GLUE

GLUE has been, by far, the most widely used approach for
the statistical calibration of flood simulators using flood ex-
tent data (Aronica et al., 2002; Hunter et al., 2005; Hor-
ritt, 2006; Stephens and Bates, 2015; Wood et al., 2016; Pa-
paioannou et al., 2017). In this framework, the marginal like-
lihood f (z|β,ν) is obtained from a score that ranks each
set of β in terms of how “good” they are in predicting the
observed data. In this sense, it is only informally a likeli-
hood function, or pseudo-likelihood. It is typical to leave out
(i.e., assign a 0 likelihood) those β values for which the score
is below some minimum acceptance threshold defined by the
modeler. A very high threshold will only accept very few β

values with a relatively good fit with the observation but po-
tentially with a larger bias (see Beven, 2014a, b).

The most widely used score function is some modified
version of the critical success index (CSI), which penalizes
overprediction of flooded pixels (Aronica et al., 2002; Hunter
et al., 2005; Stephens and Bates, 2015). This is

F(β)=
A−B

A+B +C
, (11)

where A is the number of correctly predicted pixels, B is the
number of overpredicted pixels (predicted flooded observed
non-flooded), and C is the number of underpredicted pixels
(predicted non-flooded and observed flooded).

To build a likelihood distribution for each value of β
from the score in Eq. (11), three steps are typically fol-
lowed: (1) compute a rescaled F0 score so that it lies in
the [0, 1] range to ensure positivity, (2) reject all “non-
behavioral” models by assigning F0 = 0 according to a pre-
defined acceptance threshold (e.g., all models with F < 0.5
or the 70 % group with lower F values), and (3) standard-
ize the resulting F scores so that they all integrate to 1. The
pseudo-likelihood is, then, defined in Eq. (12).

f (z|β,ν)=
F0(β)∑
j

F0
(
βj
) , (12)

where F0(β)=
F(β)−min

∀j
F
(
βj
)

max
∀j
F
(
βj
)
−min
∀j
F
(
βj
) .

Posterior samples for the parameters β are typically drawn
by assuming a uniform prior, although it is not a requirement
of the framework. Values βj are drawn uniformly from the
defined range of possible values, and the likelihood is com-
puted for each with the procedure described above. The like-
lihood values are then used as weights to sample posterior
values of β.

Finally, since no inadequacy is considered in this frame-
work δ ≡ 0, true process inferences are obtained directly
from the simulator output Y= S for each posterior sample
o β. All uncertainty, then, is included in the posterior dis-
tribution of the simulator parameters (i.e., parametric uncer-
tainty), and no attempt is made to describe the joint distribu-
tion of the discrepancy between observations and simulator
outputs (Stedinger et al., 2008).

2.2.2 Model 2: no inadequacy and independent
observations

This model considers no inadequacy (i.e., δ ≡ 0) and as-
sumes that observation errors are spatially independent. It is
perhaps, the simplest formally Bayesian model for calibrated
predictions, and it implicitly assumes that the simulator can
reliably capture the spatial structure of the true process. As
in the GLUE framework, uncertainty in predictions is char-
acterized by uncertainty in simulator parameters β. Model
setup is summarized in Eq. (13).

Y= S
Z= 1{S+ ε > 0} (13)
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The likelihood function is given by the distribution of ob-
servation errors ε for a given set of hyperparameters σ . Since
observations are, in this case, independent binary variables,
the likelihood function is just the product of Bernoulli prob-
abilities given as

f (z|β,σ ,ν)=
N∏
j−1

p
zj
j

(
1−pj

)1−zj , (14)

where pj is the probability that observation Zj = 1 and de-
pends on the marginal distribution for the observation er-
ror εj .

Different probability distributions for the independent ob-
servation errors εj yield likelihood models for the data with
distinct properties. Some of the typical ones are as follows:

1. The probit model assumes a Gaussian distribution ε ∼
N (0,σ 2) so that pj =8(Sj/σ).

2. The logit model assumes a logistic distribution εj ∼

logistic(0,σ ) so that pj = (1+ e−Sj /σ )−1.

3. The binary channel model assumes a discrete Bernoulli
distribution for εj , where pj = σ1(Sj > 0)+ (1−
σ2)(Sj = 0).

For a given set of parameters β and σ , each data point
marginally contributes a quantity p

zj
j (1−pj )

1−zj to the total
likelihood. Considering this, we can draw some conclusions
on how each error model deals with model predictions when
maximizing the likelihood function:

– Correctly predicted wet (zj = 1|Sj > 0). The marginal
contribution is in this case pj . The logit and probit mod-
els assign a marginal contribution of 0.5< pj < 1 and
the binary channel model a value of σ1.

– Correctly predicted dry (zj = 0|Sj = 0). The marginal
contribution is in this case 1−pj . The logit and probit
models assign a marginal contribution of 0.5 and the
binary channel model a value of σ2.

– Overpredicted (zj = 0|Sj > 0). The marginal contribu-
tion is in this case 1−pj . The logit and probit models
assign a marginal contribution of 0< pj < 0.5 and the
binary channel model a value of 1− σ1.

– Underpredicted (zj = 1|Sj = 0). The marginal contri-
bution is in this case pj . The logit and probit models as-
sign a marginal contribution of 0.5 and the binary chan-
nel model a value of 1− σ2.

The analysis in the previous paragraph shows that the pro-
bit or logit models do not seem reasonable for this type of
problem. On the one hand, these models assign the same
likelihood to a correctly predicted dry point and an under-
predicted point (predicted dry and observed wet). On the
other hand, both models seem very inflexible in the sense that

they always penalize more overpredicted points than under-
predicted ones, and correctly predicted wet points are more
“rewarded” than correctly predicted dry points. For these rea-
sons, the binary channel model, although quiet simple, ap-
pears to be a more suitable and flexible option in this case
(see Woodhead, 2007, for a more detailed discussion on this
model). This model also allows for a simple expression to
calculate the log-likelihood for a given set of parameters as

logf (z|β,σ ,ν)= A log(σ1)+B log(1− σ1)

+C log(1− σ2)+D log(σ2) , (15)

where A is the total number of correctly predicted flooded
observations, B is the number of overpredicted (i.e., pre-
dicted flooded but observed dry) observations, C is the num-
ber of underpredicted observations (predicted dry but ob-
served flooded), and D is the number of correctly predicted
dry observations.

Since there is no inadequacy, as in the GLUE model, pre-
dictive samples of flood depths are obtained from the simu-
lator output for each posterior sample of β.

2.2.3 Model 3: inadequacy function and independent
observations

The full model proposed here assumes that the additive in-
adequacy function δ has a 0-mean Gaussian process (GP)
prior with a squared exponential covariance function defined
by hyperparameters θ and that observation errors ε follow
an independent Gaussian distribution with hyperparameter σ
that represents the marginal standard deviation. The use of
GPs for the inadequacy is convenient for analytical reasons
since Gaussian distributions have well-studied joint and con-
ditional properties but also from a historic perspective since
the use of GPs for spatial data regression underlies the first
geostatistical techniques, such as kriging (Schabenberger and
Gotway, 2005).

This is a generalization of the spatially independent model
described in Sect. 2.2.2, in the sense that it assumes that the
discrepancy between the simulator output and true process
has a spatially correlated structure. The null mean implies
that, a priori, it is not known if model inadequacy will be
positively or negatively biased. The model setup is described
in Eq. (16).

Y=max(S+ δ,0)
Z= 1{Y+ ε > 0}
δ ∼ GP(0,k(x,x′,θ))

ε ∼N
(

0,σ 2I
)

(16)

The true process Y is strictly positive and the sum S+δ not
necessarily. Thus, the model setup requires the negative val-
ues to be rectified with the function max(.,0), assigning the
probability of all negative values to the point y = 0 and gen-
erating a zero-inflated process (there is a non-zero probability
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mass at y = 0). The spatial structure of the inadequacy func-
tion is characterized by a squared exponential kernel (SEK),
as per Eq. (17), with a variance parameter θ1 that controls
the amplitude of the realization and an inverse length param-
eter θ2 that controls its roughness (number of crossings of
an horizontal axis). For an analysis of the influence of kernel
selection in GP regression, refer to Rasmussen and Williams
(2006).

k(x,x′,θ)= θ1 exp
{
−θ2

∣∣x− x′
∣∣2} (17)

Given this model setup, the likelihood of observed data is
given by the cumulative multivariate Gaussian function as

f (z|β,θ ,σ,ν)=
∫
AN

. . .

∫
A1

N
(

y|S,Kθ + σ
2I
)

dy1 . . .dyN , (18)

where Kθ is the covariance matrix as obtained from kernel
(Eq. 17). For observed spatial points x and given hyperpa-
rameters θ , the integration limits for each observed point are

Aj =

{
(−∞,0] zj = 0
(0,∞) zj = 1 . (19)

Equation (18) gives the likelihood of a multivariate pro-
bit model that has been widely used for spatial classification
models and which can also be found in the literature as a
clipped Gaussian process (CGP) (Oliveira, 2000) or as a spa-
tial generalized linear model (SGLM) (Schabenberger and
Gotway, 2005; Berrett and Calder, 2016). It involves the in-
tegration of a high-dimensional multivariate Gaussian distri-
bution. An efficient implementation to compute this was pro-
posed in Genz (1992) and has been readily implemented in
different coding languages. It is important to highlight that
the rectification of the negative values in the definition of
Y does not affect this likelihood, since the integration lim-
its cover all positive, or negative, values.

For the current model, calibrated predictions of the true
process require posterior sampling of the inadequacy term
as described by the distribution in Eqs. (7) and (8). Making
use of Bayes’ theorem and given the current model setup,
and in coincidence with the theory of GPs for classification
(Rasmussen and Williams, 2006), the posterior distribution
of the inadequacy function at the observed points is given by

f (δ|β,θ ,σ,z,ν)=
f (z|δ,β,σ,ν) · f (δ|θ)

f (z|θ ,ν)

∝

∏
j

p
zj
j

(
1−pj

)1−zj
·N (δ|0,Kθ ) , (20)

where pj =8(Sj + δj/σ).
Since the distribution in Eq. (20) does not have a closed-

form solution, approximate numerical techniques should be
used to draw from posterior inadequacy samples. A simple
change of variables allows us to obtain a more useful sam-
pling scheme for this. Introducing an intermediate noisy la-
tent variable u= S+δ+ε, the distribution in Eq. (20) can be
rewritten as

f (δ|β,θ ,σ,z,ν)=
∫
f (δ|u,β,θ ,σ ) · f (u|β,θ ,z,ν)du. (21)

The first factor of the integrand is the conditional distri-
bution of two correlated Gaussian variables and is given by
Eq. (22), as can be deduced from standard multivariate Gaus-
sian properties (Rasmussen and Williams, 2006). The second
integrand represents the conditional distribution of a contin-
uous Gaussian variable u conditioned to lie in the region
defined by z= 1{u}. That is the definition of the truncated
Gaussian distribution as in Eq. (23). This is strictly valid
if u= Y+ ε, which is not the case due to the rectification
of negative values in the definition of Y. Then again, since
observations filter together all negative and all positive val-
ues, this is not expected to have a significant influence in the
model.

f (δ|u,β,θ ,σ )=N
(
δ|Kθ

(
Kθ + σ

2I
)−1

(u−S),

Kθ −Kθ

(
Kθ + σ

2I
)−1

KT
θ

)
(22)

f (u|β,θ ,σ,z,ν)=NB

(
u|S,Kθ + σ

2I
)

(23)

The distribution NB(u|., .) is a Gaussian distribution trun-
cated to the regionB = ∩i{(−∞,0]1(zi = 0)+(0,∞)1(zi =
1)}. For example, in the bivariate case with observations
z= {0,1}, the distribution is truncated to the region u1 ∈

(−∞,0] ∩ u2 ∈ (0,∞) (i.e., the upper-left quadrant in the
plane). It is important to note that the expression in Eq. (22)
is very similar to the predictive distribution in kriging regres-
sion with u instead of the actual observation values (Ras-
mussen and Williams, 2006).

At this point, posterior predictive samples at the locations
of the observed data can be obtained by simply adding the
computational simulator output (for any new event ν∗) and
the inadequacy sample (for each posterior set of θ and β
parameters). However, if predictions are required for other,
non-observed points in space x∗, spatial correlation in the
posterior predictions of the inadequacy term should be taken
into account. Since inadequacy values at different points are
jointly Gaussian, we can sample posterior predictions at un-
observed points from the Gaussian distribution in Eq. (24).

f
(
δ∗|β,δ,θ ,σ,ν∗

)
=N

(
y∗|K∗θK−1

θ δ,K∗∗θ −K∗θKθK∗θ
T
)

(24)

Matrix K∗∗θ is the covariance for the new spatial points x∗
and K∗θ for observed points x and new points x∗.

To summarize, the inference process requires the follow-
ing three steps:

1. Sample β, θ , and σ from their posterior distribution
with likelihood given by Eq. (18), with an appropriate
MCMC scheme.
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2. Sample the inadequacy function term at locations of in-
terest from the conditional distribution f (δ|θ ,z,ν) as
follows.

a. Sample the noisy latent field u from the truncated
normal distribution in Eq. (23).

b. Given the sampled field u, sample the inadequacy
field from the Gaussian distribution in Eq. (22).

c. If necessary, sample the inadequacy field at unob-
served locations using Eq. (24).

3. Sample flood depths at locations of interest (observed
and unobserved) by adding simulator outputs (for the
event of interest) and inadequacy terms: Y∗ = S∗+ δ∗.

2.3 Performance assessment

In Bayesian inference, the performance of predictive models
is typically done by comparing calibrated predictions against
observations. Since we are dealing with spatial binary data, a
spatial index can be built as the posterior probability of any
given point in space to be mispredicted (over- or underpre-
dicted). That is, for an observed flooded point zj = 1, this
index is the posterior probability that the point is predicted
dry. Adopting a negative probability value for overpredic-
tions and a positive for underpredictions to improve the visu-
alization, this “misprediction rate” index is expressed math-
ematically by

ρj = p
(
yj > 0|z,ν

)(
zj − 1

)
+p

(
yj = 0|z,ν

)
zj , (25)

where the sub-index j indicates the spatial location xj .
A point with ρj close to 1 (or −1) means that the current

calibrated predictions systematically underpredict (or over-
predict) flooding at that location. Conversely, a value closer
to 0 implies that the simulator is consistently estimating it
correctly. For a perfect simulator, all pixels will be correctly
predicted flooded or dry for any simulation (in fact, all simu-
lations of the statistical simulator would be the same).

An overall metric for the entire region of analysis can be
obtained as the average misprediction rate, by averaging ρj
for all the points as per Eq. (26). This is equivalent to the av-
erage number of mispredicted observations over all posterior
predictions.

P =
1
N

N∑
j=1

∣∣ρj ∣∣ (26)

3 Illustrative example

To help understand some conceptual and numerical features
of the role of the inadequacy function and binary observa-
tions in calibration, a simplified one-dimensional (1D) model
is used as the real process, and noisy synthetic, uncensored
and censored (binary), observations are numerically obtained

Figure 1. (a) Synthetic true model and realizations of computa-
tional model runs and b) uncensored and binary observations of the
true process.

from it. To do this, three different model settings are used:
(1) a model with the simulator alone, (2) a model with inad-
equacy alone, and (3) a model with both.

In this 1D case, the true (synthetic) process is represented
by a modulated harmonic function f (x)= 3x2

· sin(10x2
+

6xt). To predict this, a computational model is available, in
the form of a fixed-amplitude harmonic function: S(x)=
3x2 sin(βx). This simple model could represent our flood
simulator. It does a good job of capturing the varying am-
plitude of the true periodic function, but it cannot perfectly
represent its frequency content, as can be seen by comparing
the arguments of both sinusoidal functions in Fig. 1. The pa-
rameter β needs to be calibrated with observations (training
dataset) of the true process in order to maximize the appro-
priate likelihood function. Observations of the true process
are obtained by adding white Gaussian noise and a threshold
at y = 0 in the case of binary observations (see Fig. 1).

In every case in this example, posterior samples of pa-
rameters were obtained by means of Markov chain Monte
Carlo (MCMC) methods.

3.1 Model calibration with uncensored observations

Calibrated predictions with uncensored observations are in-
cluded to have a better understanding of the limitations of
having binary observations. The prediction model is the same
as Model 3 defined in Sect. 2.2.3, with the difference that
for uncensored observations, we have Z= S+ δ+ ε. This is
in line with the standard theory of GP regression, where the
simulator output S appears as a deterministic additive term,
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which can be found in Rasmussen and Williams (2006) and
in Hall et al. (2011) applied to inundation models. The pre-
dictive distribution for new observations and the parameters’
likelihood is given by Eqs. (27) and (28).

f
(
y∗|ν∗,β,θ

)
=N

(
S∗+K∗θ

(
Kθ + σ

2
n I
)−1

(z−S),

K∗∗θ −K∗θ
(

Kθ + σ
2
n I
)−1

K∗θ
T

)
(27)

f (z|β,θ ,σ,ν)=N
(

S,Kθ + σ
2I
)

(28)

Model predictions are shown in Fig. 2 for (1) the compu-
tational model alone δ ≡ 0, for (2) the inadequacy function
alone S≡ 0, and for (3) the full model. It can be seen, as
expected, that the simulator alone cannot reliably predict the
data in the entire range since it cannot capture the varying
frequency of the true process. The likelihood shows many
peaks for different β values corresponding to different pos-
sible models: low-frequency where the data are fitted rather
well in the left end of the range or high-frequency where the
data are fitted well in the right end of the range (shown by
the one plotted in Fig. 2). The narrow uncertainty bounds re-
flect the choice of a narrow prior to converge to one of these
models. Choosing a “less informative” prior might result in
unreasonably large confidence bounds and a predictive curve
that mixes rather physically distinct models, rendering it use-
less.

On the other hand, the middle plot shows that the flexibil-
ity of the GP prior allows the data to be fitted adequately ev-
erywhere without the need of the computational model. For
the full model (lower plot), it can be seen that both the sim-
ulator and the inadequacy contribute to correctly fitting the
data everywhere.

For the latter case, model parameters are, a priori, uniden-
tifiable since the inadequacy function competes with the sim-
ulator in order to fit the data. That is, for any given set of
simulator parameters β, a posterior distribution for the inad-
equacy parameters θ can be found that appropriately fits the
data. To solve this, we fixed the values of simulator param-
eters β to be close to the ones obtained in the first case (see
full dotted yellow line in plot) and let the inadequacy correct
the predictions only where necessary (see the dotted blue line
in the plot). This is in line with the suggestions in Reichert
and Schuwirth (2012) and Wani et al. (2017) and is based on
the assumption that physics-based computational simulators
are expected to have better extrapolating capabilities to un-
seen events than the inadequacy function. Numerically, this
is done by assigning narrow priors for β in the region where
the simulator alone does a better job.

3.2 Model calibration with binary observations

In the case of binary observations, the role of the inadequacy
function in data fitting becomes more complex. Using only

Figure 2. (a) Calibration using computational model only, (b) cal-
ibration using inadequacy function only, and (c) calibration using
computational model and an additive inadequacy function.

the inadequacy to fit the binary data, the model shows a rea-
sonable fit for the varying frequency but an approximately
constant amplitude over the entire range (see Fig. 4). This re-
flects the limited information that binary data comprise rela-
tive to the uncensored counterpart. In particular, binary data
do not give information about the amplitude of the true pro-
cess, only about its crossings over the 0 axis (also termed
function roughness, or frequency content).

It is expected that parameters that control the “ampli-
tude” of the inadequacy function (and/or the simulator) re-
main largely unidentified (Oliveira, 2000; Berrett and Calder,
2016). This is the case of the marginal variance θ1 in the
squared exponential kernel of the Gaussian process. Using a
very wide prior for this parameter will yield arbitrary large
uncertainty bounds since data do not constrain its amplitude
(i.e., the posterior is also very wide). To show this, Fig. 4
compares two calibrations using relatively wide priors for θ1
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Figure 3. Log-likelihood function for the binary observations as a
function of the inadequacy function parameters.

but centered at different values. Results show a similar fre-
quency pattern but radically different amplitudes due to the
different priors of θ1. In the same line, the noise parameter σ
is also not identifiable since the binary operator filters out the
high-frequency–low-amplitude influence of the white noise.

As a result, the amplitude of the inadequacy remains
unidentified by the data but at the same time has a very sig-
nificant impact on predictions: an arbitrarily large θ1 will
imply arbitrarily large amplitudes of the inadequacy func-
tion, yielding physically unrealistic predictions, while very
low θ1 values will yield very low amplitude for the inade-
quacy, rendering it virtually useless for calibration. In this
context, the influence of the simulator in calibration becomes
of paramount importance. It is the only component that can
give a reliable assessment of the amplitude of the true pro-
cess, while the inadequacy can help correct for the spatial
structure (i.e., crossings over the 0 axis) wherever the simu-
lator is deficient.

There is no strict guidance on what value to center the
prior at for θ1, but a rule of thumb would indicate using
the lowest value that clearly improves the fit with observa-
tions. This allows us to prioritize the simulator term in pre-
dictions as much as possible while still improving the fit to
data, since the likelihood is relatively flat as a function of θ1
(as explained in the previous paragraph). This can be justi-
fied by inspection of the log-likelihood function as a func-
tion of the inadequacy parameters as shown in Fig. 3: the
function is practically insensitive to θ1 for values θ1 > 1, in-
dicating small information content related to that variable,

Figure 4. Calibration using the inadequacy function only for a θ1
prior centered at 1 (a) and centered at 20 (b).

and it rapidly becomes flat for lower values, indicating small
information content for both variables.

Figure 5 shows different calibrations using both the sim-
ulator and the inadequacy for narrow θ1 priors centered at
different values. A very low value (upper plot, with a prior
centered around 0.02) implies that the inadequacy practically
does not modify the simulator output anywhere, while a very
large value (lower plot, with a prior centered around 20) im-
plies that the inadequacy amplitude overshadows the simula-
tor output everywhere but specially where the simulator on
its own does not fit the data correctly. A prior for θ1 centered
around 0.1 seems to balance the amplitude tradeoff reason-
ably well (middle plot), giving significant improvement over
the simulator alone but still leaving the simulator output to
predominate over the inadequacy. This also reinforces the
idea that the simulator should be fixed around its best val-
ues, as was explained in the uncensored data case.

4 Case study

4.1 Description and observations

The case study is based on a short reach on the upper river
Thames in Oxfordshire, England, just downstream from a
gauged weir at Buscot. The river, at this location, has an esti-
mated bankfull discharge of 40 m s−3 and drains a catchment
of approximately 1000 km2 (Aronica et al., 2002). The to-
pography DEM was obtained from stereophotogrammetry at
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Figure 5. Comparison of calibration using both the simulator and
the inadequacy function for different prior means for θ1: 0.02 (a),
0.1 (b), and 20 (c).

a 50 m scale with a vertical accuracy of ±25 cm, obtained
from large-scale UK Environment Agency maps and surveys
(see Fig. 6).

For calibration, a satellite observation of the flood extent
of a 1-in-5-year event that occurred in December 1992 was
used (Fig. 6). The binary image of the flood was captured
20 h after the flood peak when discharge was at a level of
73 m3 s−1 as per the hydrometric data recorded by the gaug-
ing station (Aronica et al., 2002). The resolution of the image
is 50 m. As described in previous research, the short length
of the reach and the broadness of the hydrograph imply that
a steady-state hydraulic model is sufficiently accurate for the
calibration (Aronica et al., 2002; Hall et al., 2011).

4.2 Inundation model

The computational inundation model used is the raster-based
LISFLOOD-FP model (Neal et al., 2012). LISFLOOD-FP

Figure 6. Floodplain topography at Buscot, with SAR imagery of a
1992 flood event, channel layout, and gauge station location.

couples a 2D water flow model for the floodplain and a 1D
solver for the channel flow dynamics. Its numerical structure
makes it computationally efficient and suitable for the many
simulations needed for probabilistic flood risk analysis and
model calibration.

A simplified rectangular cross-section is used for the chan-
nel with a constant width of 20 m for the entire reach and
a varying height of around 2 m. The observed event is de-
fined by the boundary condition of a fixed input discharge
of ν = 73 m s−3 at the geographic location of the gauging
station shown in Fig. 6 and by an assumed downstream
boundary condition of a fixed water level of approximately
90 cm above the channel bed height. The model’s parame-
ters used for calibration are Manning’s roughness parame-
ters for the channel rch and for the floodplain rfp, both con-
sidered spatially uniform in the domain of analysis. That is,
β = {rch, rfp}. Higher dimensionality for the simulator’s pa-
rameters (e.g., spatially varying roughness) might add com-
putational burden to an already demanding problem, and fur-
ther identifiability issues could also arise.

4.3 Numerical implementation

The calibration routine was implemented in the program-
ming language R (R Core Team, 2020) and the pmvnorm
function of the TruncatedNormal (Botev and Belzile, 2021)
package to compute the high-dimensional integral of the like-
lihood function (Eq. 18). The function rtmvnorm from the
same package was used to sample from the truncated nor-
mal distribution of Eq. (23). These two evaluations were
the most time-consuming of the entire process due to the
high-dimensionality of the observations (around 1800 pix-
els): while a single run of the inundation model takes around
3 s in a 10-core Intel i9-10700K processor, one likelihood
evaluation takes around 40 s. The original image of the reach
was trimmed closer to the flood extent to reduce the number
of observations for calibration, as seen in Fig. 6.

For models 2 and 3, both the predictive distribution of new
observations and the posterior distributions of the model pa-

https://doi.org/10.5194/hess-27-1089-2023 Hydrol. Earth Syst. Sci., 27, 1089–1108, 2023



1100 M. Balbi and D. C. B. Lallemant: Bayesian calibration of a flood simulator

rameters were sampled using an adaptive MCMC scheme.
A Gaussian jump distribution was used to select candidates,
where the covariance matrix was empirically obtained from
initial runs of the chain and subsequently scaled up and down
in order to obtain an acceptance ratio of around 0.25. Two
chains of 15 000 runs with an initial adaptive step of 5000
were used in order to ensure adequate mixing and stabiliza-
tion of the chains, as measured by a Gelman–Rubin conver-
gence diagnostic (Gelman et al., 2013) below 1.05. Total time
for the 40 000 runs was around 2 weeks for Model 3 and
around a day for Model 2.

4.4 Results

Calibrated predictions for the observed event are obtained
using the three methods described in Sect. 2.2. These pre-
dictions are then compared to the satellite binary observation
through the goodness-of-fit metrics in Eqs. (25) and (26). The
“probability of flood” map p(yj > 0|z,ν) is obtained empir-
ically from the prediction samples, by computing the propor-
tion of samples where each pixel is flooded as described in
Sect. 2.3. This can be considered a measure of the training
error as it is computed for the observed event and observed
pixels.

4.4.1 Model 1: GLUE

The inundation model was run for a fine grid of β with uni-
form probability (prior) in the region 0.001< rch < 0.3 and
0.001< rfp < 0.3. Only runs with F > 0.45 were retained as
“behavioral” solutions for posterior analysis and prediction,
with a maximum of F = 0.52 obtained for rch = 0.029 and
rfp = 0.045 (see Fig. 7). While this leaves out the large ma-
jority of the runs, visual inspection showed that values lower
than F = 0.45 could yield unacceptable inundation patterns.
It appears form the marginal posterior distributions of Fig. 7
that the model fit is better for lower values of channel or
floodplain roughness.

The probability of flood and misprediction rate ρ maps in
Fig. 8 show that all accepted simulations systematically mis-
predict (over- or underpredict) inundation at several regions
around the edge of the flood extent, yielding an average mis-
prediction rate of P = 0.08. This can be due to limitations of
the LISFLOOD-FP model in capturing the spatial behavior
of the true event or some spatial dependent error in the input
data (e.g., DEM) or, most probably, a combination of both.

It is important to stress again that the results of the GLUE
model are very sensitive to the acceptance threshold used (in
this case, F > 0.45). A lower threshold implies larger areas
with more uncertain inundation patterns and larger areas of
relatively low probability of misprediction, while retaining
only a few of the best simulations (i.e., a higher threshold)
yields less variability in predictions and smaller areas with a
higher probability of misprediction, as in the results of Fig. 8.

Figure 7. Marginal prior and posterior distribution of parameters
for Model 1.

Figure 8. (a) Probability of flood and (b) misprediction rate for
Model 1.

4.4.2 Model 2: no inadequacy and independent
observations

This model is tested with a binary-channel observation er-
ror structure (see Sect. 2.2). Since parameters β are strictly
positive, and {σ1,σ2} lie in the range [0, 1], appropri-
ate real-valued transformed variables were used for cali-
bration through MCMC: log-transformation for the former
and probit transformation for the latter. Gaussian distribu-
tions were used for the prior of the transformed variables
in all cases, with a relatively wide variance to reflect non-
informativeness. For the {σ1,σ2}, the prior means also re-
flect the fact that values above 0.5 are expected in each case
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Figure 9. Marginal prior and posterior distribution of parameters
for Model 2.

(e.g., assuming that the observation error is not unrealisti-
cally large).

Prior and posterior distribution for model parameters are
shown in Fig. 9. It can be seen that the posterior of the
LISFLOOD-FP parameters is narrowly concentrated around
fixed best-fit values: rch = 0.03 and rfp = 0.045. For the ob-
servation error parameters, the posteriors are narrowly con-
centrated around σ1 = 0.82 and σ2 = 0.98, implying that
overpredictions are more “accepted” than underpredictions.
The model likelihood seems to clearly discriminate this set
of parameters against any other, resulting in practically no
variability in predictions. This is in agreement with the re-
sults obtained by Woodhead (2007) and has to do with the
shape of the likelihood function (Eq. 15), where for σ1 and
σ2 values close to 1, a slight change in the number of mispre-
dicted pixels results in a large change in the likelihood. On
the other hand, values equal to 0.5 would imply a constant
likelihood (see Eq. 15) and no information gained from data.

Probability of flood and misprediction rate ρ maps are
shown in Fig. 10. Systematic mispredictions are observed
in many places, mainly overpredictions, along the edge of
the observation with a resultant average rate of P = 0.072.

Figure 10. (a) Probability of flood and (b) misprediction rate for
Model 2.

Since this calibration results in a “single best prediction”, all
mispredicted pixels result in systematic errors (i.e., for ev-
ery simulation), highlighting the limitations of this spatially
independent discrepancy model. Results are very similar to
the GLUE model with a very high threshold (only keeping a
single “best” run).

4.4.3 Model 3: inadequacy function and independent
observations

Model 3 was run with narrow priors for the simulator param-
eters centered around the best values obtained in the previous
independent model. As explained in Sect. 3, this was done to
avoid identifiability problems with θ1, letting the simulator
“do its best” while only using the inadequacy term where
necessary. Narrow priors were used, both centered at 0.1,
to keep the amplitude of the inadequacy function relatively
low (but not too low, as discussed in Sect. 3). The param-
eter θ2 that prescribes the spatial frequency (i.e., crossings
over the 0 axis) of the inadequacy function was calibrated us-
ing a Gaussian non-informative prior centered around 0.14.
In every case, calibration was done for the logarithm of the
parameters to preserve their positiveness.

Prior and posterior distributions of the transformed param-
eters are shown in Fig. 11. The posteriors of the simulator pa-
rameters (upper plot) are distributed very close to their priors
as intended. The same goes for θ1 and σ , where the posteri-
ors have the same width as the priors. The roughness param-
eter θ2, on the other hand, contains most of the information
gain from observations in this model, as can be seen from the
very narrow posterior distribution as compared to the vague
prior. This is expected, as explained in the illustrative exam-
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Figure 11. Marginal prior and posterior distributions of parameters.

ple of Sect. 3, since it is the only parameter from the kernel
that can gather meaningful information from binary data.

Probability of flood and misprediction rate ρ maps are
shown in Fig. 12. It can be seen that the inadequacy function
deals with many of the systematic misprediction regions that
the simulator had when used alone for prediction, as in the
previous two models. This model yields an average mispre-
diction rate of P = 0.057 and also displays a different spa-
tial pattern where over- and underpredicted pixels seem to be
more uniformly distributed along the observed flood extent
edge.

5 Discussion

The methodology and results shown in the previous sections
indicate that satellite-borne binary observations can provide

Figure 12. (a) Probability of flood and (b) misprediction rate.

valuable information for inundation model calibration and
that explicitly modeling the spatially correlated discrepancy
between the simulator output and observations through an
inadequacy term can improve predictions. In this section we
discuss some of the main takeaways from the results obtained
for the illustrative example and the real-world case study.

5.1 Model building and hypothesis

The traditionally used GLUE framework was described and
compared to a more general and formal framework in which
appropriate probabilistic models were assigned to the dis-
crepancy between observations and simulator output. The
main advantages of this methodology are (1) the capability
of consistently including the different sources that add to the
discrepancy such as observation errors or simulator inade-
quacy and (2) the computation of formal probability distri-
butions, and thus uncertainty bounds, for readily observed or
future events. This does not mean that any calibrated predic-
tions and uncertainty bounds within this formal framework
are “better” than another obtained by GLUE, but it does have
the potential for a more transparent and flexible model setup
that can include all the modeler’s prior knowledge and obser-
vations consistently.

A basic assumption that was used for model building here
is that observation errors are spatially independent and ho-
mogeneous (identically distributed). Model 2 was a simple
model built by assuming that all of the discrepancy between
observations and the simulator output could be explained by
this type of observation error alone. Results from this model,
and from GLUE (see Figs. 8 and 10), show that the discrep-
ancy is spatially correlated, reflected by regions of systemat-
ically under- or over-flooded pixels, indicating that the simu-
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lator on its own cannot capture the spatial structure of the ob-
served extent everywhere. This could be due to a more com-
plex observation error structure (uncertainty in satellite im-
age acquisition and interpretation), due to limitations in the
physical representation given by the equations in the model
or due to errors in the boundary conditions (e.g., error in the
DEM used). Most probably, it is a combination of all.

These results also highlight the importance of explicitly
modeling the spatial correlation that is not captured by the
computational simulator. Model 3 implements this through
an additive inadequacy term with a spatially correlated Gaus-
sian process prior. Implicit in this model is the fact that all
spatial correlation in discrepancy is assigned to simulator in-
adequacy and none to the observation errors (assumed inde-
pendent). This, of course, could be challenged in the light
of further information or knowledge, as in the error models
studied by Woodhead (2007), but it remains a common as-
sumption in the calibration of physical models (Kennedy and
O’Hagan, 2001).

5.2 Uncertainty quantification

The plots in Fig. 13 show the predictive distribution of flood
depths for three different points observed flooded for the
three calibration models. The GLUE model results reflect an
uncertainty in line with the wide posteriors obtained for the
simulator roughness parameters. These are, however, highly
dependent on the threshold value used and what the modeler
considers to be a behavioral model.

On the other hand, Model 2 predictions are practically de-
terministic since no uncertainty is reflected in the posterior
predictions. This might be an indicator of the model’s inabil-
ity of representing the true process rather than goodness-of-
fit, as seen from the spatially correlated regions of under- and
overpredicted pixels in Fig. 10 and the larger misprediction
rate of this model compared to Model 3. However, assuming
a larger observation error by fixing values of σ1 and σ2 closer
to 0.5 could allow for a larger, more realistic uncertainty in
the flood depths obtained, similar to the influence that the
threshold value has in the GLUE model.

Finally, Model 3 shows larger uncertainty in predictions
that is contributed entirely by the inadequacy term, since
the simulator parameters have a very narrow posterior. The
wider shape of the distributions is also in line with the results
shown for the 1D-illustrative example. The predictive distri-
butions can also be shifted from the ones obtained by GLUE
or Model 2, due to the addition of the inadequacy term to
the simulator. These aspects are discussed in the subsequent
sections.

It is important to state again that a better or more reli-
able likelihood does not imply smaller uncertainty bounds
but rather a more consistent way of dealing with the different
sources of uncertainty. In this case, as shown in the illustra-
tive example, not considering spatial correlation of residual
(as in Model 2) can yield unrealistically optimistic uncer-

Figure 13. Predictive distributions of flood depths for three different
points in the floodplain.

tainty bounds; the same would happen if using a very high
threshold in GLUE.

5.3 Role of the inadequacy function

As explained before, results from the GLUE model indicate
that the discrepancy between observed flood extent and sim-
ulator output is spatially dependent. That is, there are ar-
eas where the simulator systematically underpredicts or over-
predicts flooding. The additive inadequacy term in Model 3
takes the role of modeling this spatial dependence of simu-
lator deficiencies, since the observation error term is consid-
ered independent in all models. It can reflect inaccuracies in
the input spatial data, such as DEM, channel depth or width,
and roughness parameters, or structural deficiencies of the
mathematical simplifications of the simulator.

Adding the inadequacy function better replicates the ob-
served inundation extent, but it can also distort the depths at
the flooded pixels if its values are not restricted, yielding un-
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Figure 14. Flood-depth maps from Model 3 predictions of the simulator and inadequacy (a, b), the simulator alone (c, d), and inade-
quacy (e, f) for a marginal prior mode of θ1 = 0.05 (a, c, e) and θ1 = 1 (b, d, f). The dashed black line is the observed flooded extent.

realistic patterns (see discussion in Sect. 3). These local dis-
tortions are expected to have a lesser influence than the simu-
lator’s inherent deficiencies if kept constrained at reasonable
levels. A very low value for the inadequacy amplitude, on
the other hand, would result in virtually no improvement in
the goodness-of-fit of calibrated predictions and the observed
extent. This can also be seen in the predictive distributions of
Fig. 13, where they can be shifted relative to the other models
that only use the simulator for prediction.

The plots in Fig. 14 show a comparison of a single flood-
depth prediction (zoomed in at the bottom left corner of the
extent) using the posterior mode parameters, for the simula-
tor alone (middle), the simulator and the inadequacy (upper),
and the inadequacy (lower) for a marginal variance prior cen-
tered at θ1 = 0.05 and θ1 = 1. As expected, it can be seen that
the inadequacy is positive where the simulator tends to un-
derpredict and negative where it tends to overpredict. How-
ever, it is not 0 for the correctly predicted pixels, and this is
added to the simulator output. This distortion is much larger
for the larger marginal variance θ1, as can be seen in the right-
column plots (and consistent with the synthetic results from

Fig. 5), with up to 2 m of flood depth added in some correctly
predicted pixels due to the inadequacy term. The predicted
overall flood extent (and, thus, the fit to the observations) is
very similar in both cases.

As mentioned at the beginning of this section, the inad-
equacy term can represent complex spatial (and eventually
temporal) error structures from input data and simplified pro-
cess representations. It enables the construction of improved
simulations by combining the explanatory and extrapolating
capabilities of physics-based models with the optimized pre-
diction of statistical models. Results from the synthetic ex-
ample in Sect. 3 suggest that this symbiosis requires exper-
tise in constraining the inferential process of the physics-
based model to realistic values. This is relevant for a very
broad range of applications that go beyond the inundation
case study developed in this work (see Sargsyan et al., 2015;
Wani et al., 2017; Cao et al., 2018; Chang et al., 2019), where
simplified process representations are required in order to
perform robust uncertainty analysis.
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5.4 Information content of binary observations

The illustrative 1D example in Sect. 3 was specifically se-
lected to show the limitations that using censored obser-
vations imply for predictive accuracy, model building, and
numerical modeling. Censored binary observations, as ex-
plained, do not provide information about the magnitude of
the true process output (i.e., flood depths) but only about its
spatial frequency (i.e., crossing over the 0 axis). This means
that when only censored observations are available, an appro-
priate simulator is of paramount importance to obtain mean-
ingful predictions, as is seen in Fig. 5.

From a numerical standpoint, binary observations do not
provide information about the marginal variance θ1 that con-
trols the inadequacy amplitude. To avoid identifiability and
convergence problems, a narrow prior (or simply fixing the
value) is required, centered at an appropriate value following
the criteria mentioned previously: not too large to unrealisti-
cally distort simulator outputs but large enough to improve fit
to the observations where needed. For this reason, relatively
large uncertainty bounds on flood-depth predictions are also
expected, as can be seen from Figs. 5 and 13.

The noise parameter σ also remains mostly unidentifiable
since it is filtered out by the censoring, and it does not seem to
significantly affect the results if kept within reasonable val-
ues (similar to the θ1 magnitude for this case study). Further
experiments are needed to analyze the influence and tradeoffs
of the marginal variance and noise values used in calibration.

5.5 Limitations

As explained in the Introduction, the main reason for the pop-
ularity of GLUE models is its conceptual simplicity and ease
of implementation. This is, at the same time, a limitation of
the proposed Bayesian model. The discrepancy between a
simulator output and observations of the real process can be
very complex and non-stationary (both in space and time).

Due to its flexibility and well-known analytical proper-
ties, GPs are a good choice to predict complex and corre-
lated residual structures but also carry the risk of over-fitting
observations. When uncensored data are available, this can
be controlled with an appropriate level of observation noise
(e.g., σ in our framework). When only binary data are avail-
able, however, noise is not distinguishable in the likelihood,
and over-fitting can pose a serious problem. Our proposed
approach to deal with this is to give the simulator a predomi-
nant role in prediction while restricting the inadequacy “only
where necessary”. This implies verifying improvements in
the fit of the model in those places where the simulator alone
systematically mispredicts and also checking the absolute
values of predictions to prevent unrealistic values from the
inadequacy function. This, still, requires modeler expertise
and knowledge about the particular problem at hand.

In the same line, an implicit hypothesis of the model is
that the inadequacy function does not depend on the forc-

ing event ν. This was assumed more from data availability
than from theoretical grounds. While a single event might be
informative of the inadequacy function, particularly if defi-
ciencies in the simulator are due to input errors (e.g., DEM
inaccuracies), it is also expected that some of the simulator
deficiencies in predicting the true process are dependent on
the magnitude of the events being predicted. This issue could
be approached by calibration with observations from events
of different magnitude, resulting, of course, in higher com-
putational demand.

In this regard, an important limitation of the proposed
Bayesian model with spatially correlated inadequacy func-
tion is the computational burden. While this is also a lim-
itation for any calibration method, in this case, the likeli-
hood function (Eq. 18) is very time-consuming with cur-
rent computational capacities and mathematical techniques
(Genz, 1992), even for a small reach like the one studied here.
The same goes for sampling from the truncated normal in
Eq. (23) for calibrated predictions. Widespread adoption of
this formal model, thus, requires the elaboration of more effi-
cient techniques for computing and sampling from very high
dimensional Gaussian distributions or studying ways of us-
ing less observations without losing important information.
Dimensionality reduction techniques are expected to play a
role in this favor (Chang et al., 2019).

6 Conclusions

Efficient management of risk due to hazards requires reliable
predictions of very complex physical processes, such as in-
undations. Hence, it is important to have adequate predictive
models that can capture the relevant spatial features of flood-
ing, making use of all available real-world data. This paper
proposes a fully probabilistic framework for the statistical
calibration of inundation simulators using binary observa-
tions of flood extent, such as the ones obtained from satellite
observations and publicly available worldwide. Probabilistic
inferences for new flood events can then be coupled with fre-
quency models (also Bayesian) to obtain reliable and robust
probabilistic inferences of flood hazard (and eventually flood
damage). Furthermore, the framework’s capability of explic-
itly modeling the structure of the observation errors and sim-
ulator deficiencies paves the way for the consistent inclusion
of data from different sources (e.g., satellite-borne, ground
depth measurements, crowdsourced) in future works.

The newly proposed model, which can explicitly model
the simulator structural deficiencies through an inadequacy
term, is used in a real case study, and the results are com-
pared to the traditionally used GLUE framework and to a
simpler Bayesian model without the inadequacy term. Re-
sults show that calibrated predictions done for models with-
out the inadequacy function and independent observation er-
rors show systematic mispredictions in certain regions of the
flood extent, reflecting that the likelihood functions used (or
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pseudo-likelihood in the case of GLUE) do not capture the
spatial complexity of the observations. Including the inade-
quacy term, acknowledging the spatial correlation of the sim-
ulator’s discrepancy with observations, can help improve pre-
dictions as measured by a lower average misprediction rate
(from 0.072 to 0.057) and by removing regions with system-
atic errors in predictions.

We show that an appropriate physics-based simulator is
needed to obtain meaningful inferences when only binary
(i.e., censored) observations are available. The inadequacy
function and the simulator compete with each other to fit the
data, and we suggest that it is reasonable to let the simula-
tor do “as best as it can” and the inadequacy function cor-
rect only where necessary. This is due to better extrapolat-
ing capabilities of the physics-based models but also because
censored observations do not carry information about ampli-
tudes (i.e., water depths) of the true process. Resulting pre-
dictions can be very sensitive to the priors used, in the same
way GLUE results are extremely sensitive to the threshold
use to discriminate behavioral models.

From a numerical implementation standpoint, the pro-
posed model proves to be computationally intensive, and care
must be taken in the definition of the model hyperparame-
ters to avoid identifiability and convergence problems. Fur-
ther work remains to be done, particularly by implement-
ing more efficient numerical techniques for computing high-
dimensional integrals and/or exploring ad hoc ways of re-
ducing the computational burden of the likelihood function
(e.g., leaving out neighboring pixels).

As stated before, the main benefit of the proposed model
lies in the explicit and disaggregated modeling of the dif-
ferent sources of uncertainty, such as observation errors and
simulator inadequacy. The inadequacy term allows us to ac-
count for structural deficiencies in the physics-based sim-
ulator used and/or undetected errors in input information
(e.g., DEM). Furthermore, different data sources could be
consistently combined for inference within the same frame-
work by simply considering different observation error struc-
tures (e.g., as in Eqs. 4 and 3). This is particularly useful
when combining observations from very different sources
such as satellites, crowdsourcing, or ground sensors: they all
might have different observation error structures ε, but the in-
adequacy term that is part of the true process should remain
the same for all.

In this light, it would be interesting to develop illustrative
examples, as well as real case studies, where censored (satel-
lite radar data) and uncensored data (ground flood height
measurements) are available. This could exploit and combine
the capacity of uncensored observations in constraining un-
certainty in the model’s predictions (Werner et al., 2005) and
the spatially distributed availability of satellite data.
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