Articles | Volume 26, issue 24
https://doi.org/10.5194/hess-26-6477-2022
https://doi.org/10.5194/hess-26-6477-2022
Research article
 | 
22 Dec 2022
Research article |  | 22 Dec 2022

Stochastic simulation of reference rainfall scenarios for hydrological applications using a universal multi-fractal approach

Arun Ramanathan, Pierre-Antoine Versini, Daniel Schertzer, Remi Perrin, Lionel Sindt, and Ioulia Tchiguirinskaia

Related authors

Multifractality of Climate Networks
Adarsh Jojo Thomas, Jürgen Kurths, and Daniel Schertzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2793,https://doi.org/10.5194/egusphere-2024-2793, 2024
Short summary
Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024,https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Part 1: Multifractal analysis of wind turbine power and the associated biases
Jerry Jose, Auguste Gires, Yelva Roustan, Ernani Schnorenberger, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-5,https://doi.org/10.5194/npg-2024-5, 2024
Revised manuscript accepted for NPG
Short summary
Part 2: Joint multifractal analysis of available wind power and rain intensity from an operational wind farm
Jerry Jose, Auguste Gires, Ernani Schnorenberger, Yelva Roustan, Daniel Schertzer, and Ioulia Tchiguirinskaia
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-6,https://doi.org/10.5194/npg-2024-6, 2024
Revised manuscript accepted for NPG
Short summary
Combining Recurrent Neural Networks with Variational Mode Decomposition and Multifractals to Predict Rainfall Time Series
Hai Zhou, Daniel Schertzer, and Ioulia Tchiguirinskaia
EGUsphere, https://doi.org/10.5194/egusphere-2023-2710,https://doi.org/10.5194/egusphere-2023-2710, 2024
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Scientific logic and spatio-temporal dependence in analyzing extreme-precipitation frequency: negligible or neglected?
Francesco Serinaldi
Hydrol. Earth Syst. Sci., 28, 3191–3218, https://doi.org/10.5194/hess-28-3191-2024,https://doi.org/10.5194/hess-28-3191-2024, 2024
Short summary
Assessing downscaling techniques for frequency analysis, total precipitation and rainy day estimation in CMIP6 simulations over hydrological years
David A. Jimenez, Andrea Menapace, Ariele Zanfei, Eber José de Andrade Pinto, and Bruno Brentan
Hydrol. Earth Syst. Sci., 28, 1981–1997, https://doi.org/10.5194/hess-28-1981-2024,https://doi.org/10.5194/hess-28-1981-2024, 2024
Short summary
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024,https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Synoptic weather patterns conducive to compound extreme rainfall–wave events in the NW Mediterranean
Marc Sanuy, Juan C. Peña, Sotiris Assimenidis, and José A. Jiménez
Hydrol. Earth Syst. Sci., 28, 283–302, https://doi.org/10.5194/hess-28-283-2024,https://doi.org/10.5194/hess-28-283-2024, 2024
Short summary
Exploring the joint probability of precipitation and soil moisture over Europe using copulas
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024,https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary

Cited articles

Arnaud, P. and Lavabre, J.: Nouvelle approche de la prédétermination des pluies extrêmes, Comptes Rendus de l'Académie des Sciences – Series IIA – Earth and Planetary Science, 328, 615–620, https://doi.org/10.1016/S1251-8050(99)80158-X, 1999. a
Berenguer, M., Sempere-Torres, D., and Pegram, G. G.: SBMcast – An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation, J. Hydrol., 404, 226–240, https://doi.org/10.1016/j.jhydrol.2011.04.033, 2011. a
Brandsma, T. and Buishand, T. A.: Simulation of extreme precipitation in the Rhine basin by nearest-neighbour resampling, Hydrol. Earth Syst. Sci., 2, 195–209, https://doi.org/10.5194/hess-2-195-1998, 1998. a
Burian, S. J., Durrans, S. R., Nix, S. J., and Pitt, R. E.: Training Artificial Neural Networks to Perform Rainfall Disaggregation, J. Hydrol. Eng., 6, 43–51, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:1(43), 2001. a
Cameron, D., Beven, K., and Tawn, J.: Modelling extreme rainfalls using a modified random pulse Barlett-Lewis stochastic rainfall model (with uncertainly), Adv. Water Resour., 24, 203–211, https://doi.org/10.1016/S0309-1708(00)00042-7, 2000a. a
Download
Short summary
Reference rainfall scenarios are indispensable for hydrological applications such as designing storm-water management infrastructure, including green roofs. Therefore, a new method is suggested for simulating rainfall scenarios of specified intensity, duration, and frequency, with realistic intermittency. Furthermore, novel comparison metrics are proposed to quantify the effectiveness of the presented simulation procedure.