Articles | Volume 26, issue 24
https://doi.org/10.5194/hess-26-6477-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6477-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stochastic simulation of reference rainfall scenarios for hydrological applications using a universal multi-fractal approach
Laboratory of Hydrology Meteorology & Complexity (HM&Co), École des Ponts (ENPC), 77420 Champs-sur-Marne, France
Pierre-Antoine Versini
Laboratory of Hydrology Meteorology & Complexity (HM&Co), École des Ponts (ENPC), 77420 Champs-sur-Marne, France
Daniel Schertzer
Laboratory of Hydrology Meteorology & Complexity (HM&Co), École des Ponts (ENPC), 77420 Champs-sur-Marne, France
Remi Perrin
SOPREMA, 14 Rue de Saint-Nazaire, 67025 Strasbourg, France
Lionel Sindt
SOPREMA, 14 Rue de Saint-Nazaire, 67025 Strasbourg, France
Ioulia Tchiguirinskaia
Laboratory of Hydrology Meteorology & Complexity (HM&Co), École des Ponts (ENPC), 77420 Champs-sur-Marne, France
Related authors
No articles found.
Hai Zhou, Daniel Schertzer, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 29, 4437–4455, https://doi.org/10.5194/hess-29-4437-2025, https://doi.org/10.5194/hess-29-4437-2025, 2025
Short summary
Short summary
The hybrid variational mode decomposition–recurrent neural network (VMD-RNN) model provides a reliable one-step-ahead prediction, with better performance in predicting high and low values than the pure long short-term memory (LSTM) model. The universal multifractal technique is also introduced to evaluate prediction performance, thus validating the usefulness and applicability of the hybrid model.
Adarsh Jojo Thomas, Jürgen Kurths, and Daniel Schertzer
Nonlin. Processes Geophys., 32, 131–138, https://doi.org/10.5194/npg-32-131-2025, https://doi.org/10.5194/npg-32-131-2025, 2025
Short summary
Short summary
We have developed a systematic approach to study the climate system at multiple scales using climate networks, which have been previously used to study correlations between time series in space at only a single scale. This new approach is used to upscale precipitation climate networks to study the Indian summer monsoon and to analyze strong dependencies between spatial regions, which change with changing scales.
Jerry Jose, Auguste Gires, Yelva Roustan, Ernani Schnorenberger, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys., 31, 587–602, https://doi.org/10.5194/npg-31-587-2024, https://doi.org/10.5194/npg-31-587-2024, 2024
Short summary
Short summary
Wind energy exhibits extreme variability in space and time. However, it also shows scaling properties (properties that remain similar across different times and spaces of measurement). This can be quantified using appropriate statistical tools. In this way, the scaling properties of power from a wind farm are analysed here. Since every turbine is manufactured by design for a rated power, this acts as an upper limit on the data. This bias is identified here using data and numerical simulations.
Jerry Jose, Auguste Gires, Ernani Schnorenberger, Yelva Roustan, Daniel Schertzer, and Ioulia Tchiguirinskaia
Nonlin. Processes Geophys., 31, 603–624, https://doi.org/10.5194/npg-31-603-2024, https://doi.org/10.5194/npg-31-603-2024, 2024
Short summary
Short summary
To understand the influence of rainfall on wind power production, turbine power and rainfall were measured simultaneously on an operational wind farm and analysed. The correlation between wind, wind power, air density, and other fields was obtained on various temporal scales under rainy and dry conditions. An increase in the correlation was observed with an increase in the rain; rain also influenced the correspondence between actual and expected values of power at various velocities.
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024, https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Short summary
Nature-based solutions (NBSs), such as green roofs, have appeared as relevant solutions to mitigate urban heat islands. The evapotranspiration (ET) process allows NBSs to cool the air. To improve our knowledge about ET assessment, this paper presents some experimental measurement campaigns carried out during three consecutive summers. Data are available for three different (large, small, and point-based) spatial scales.
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Atmos. Meas. Tech., 15, 5861–5875, https://doi.org/10.5194/amt-15-5861-2022, https://doi.org/10.5194/amt-15-5861-2022, 2022
Short summary
Short summary
Weather radars measure rainfall in altitude whereas hydro-meteorologists are mainly interested in rainfall at ground level. During their fall, drops are advected by the wind which affects the location of the measured field. Governing equation linking acceleration, gravity, buoyancy, and drag force is updated to account for oblateness of drops. Then multifractal wind is used as input to explore velocities and trajectories of drops. Finally consequence on radar rainfall estimation is discussed.
Auguste Gires, Jerry Jose, Ioulia Tchiguirinskaia, and Daniel Schertzer
Earth Syst. Sci. Data, 14, 3807–3819, https://doi.org/10.5194/essd-14-3807-2022, https://doi.org/10.5194/essd-14-3807-2022, 2022
Short summary
Short summary
The Hydrology Meteorology and Complexity laboratory of École des Ponts ParisTech (https://hmco.enpc.fr) has made a data set of high-resolution atmospheric measurements (rainfall, wind, temperature, pressure, and humidity) available. It comes from a campaign carried out on a meteorological mast located on a wind farm in the framework of the Rainfall Wind Turbine or Turbulence project (RW-Turb; supported by the French National Research Agency – ANR-19-CE05-0022).
Yangzi Qiu, Igor da Silva Rocha Paz, Feihu Chen, Pierre-Antoine Versini, Daniel Schertzer, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 25, 3137–3162, https://doi.org/10.5194/hess-25-3137-2021, https://doi.org/10.5194/hess-25-3137-2021, 2021
Short summary
Short summary
Our original research objective is to investigate the uncertainties of the hydrological responses of nature-based solutions (NBSs) that result from the multiscale space variability in both the rainfall and the NBS distribution. Results show that the intersection effects of spatial variability in rainfall and the spatial arrangement of NBS can generate uncertainties of peak flow and total runoff volume estimations in NBS scenarios.
Cited articles
Arnaud, P. and Lavabre, J.: Nouvelle approche de la prédétermination des
pluies extrêmes, Comptes Rendus de l'Académie des Sciences – Series IIA –
Earth and Planetary Science, 328, 615–620,
https://doi.org/10.1016/S1251-8050(99)80158-X, 1999. a
Berenguer, M., Sempere-Torres, D., and Pegram, G. G.: SBMcast – An ensemble
nowcasting technique to assess the uncertainty in rainfall forecasts by
Lagrangian extrapolation, J. Hydrol., 404, 226–240,
https://doi.org/10.1016/j.jhydrol.2011.04.033, 2011. a
Brandsma, T. and Buishand, T. A.: Simulation of extreme precipitation in the Rhine basin by nearest-neighbour resampling, Hydrol. Earth Syst. Sci., 2, 195–209, https://doi.org/10.5194/hess-2-195-1998, 1998. a
Burian, S. J., Durrans, S. R., Nix, S. J., and Pitt, R. E.: Training Artificial
Neural Networks to Perform Rainfall Disaggregation,
J. Hydrol. Eng., 6, 43–51, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:1(43), 2001. a
Cameron, D., Beven, K., and Tawn, J.: Modelling extreme rainfalls using a
modified random pulse Barlett-Lewis stochastic rainfall model (with
uncertainly), Adv. Water Resour., 24, 203–211, https://doi.org/10.1016/S0309-1708(00)00042-7, 2000a. a
Cameron, D., Beven, K., and Tawn, J.: An evaluation of three stochastic
rainfall models, J. Hydrol., 228, 130–149, https://doi.org/10.1016/S0022-1694(00)00143-8,
2000b. a
Cowpertwait, P. S.: Generalized point process model for rainfall,
P. Roy. Soc. Lond. A Mat., 447, 23–37, https://doi.org/10.1098/rspa.1994.0126, 1994. a
Cowpertwait, P. S. P., O'Connell, P. E., Metcalfe, A. V., and Mawdsley, J. A.:
Stochastic point process modelling of rainfall. II. Regionalisation and
disaggregation, J. Hydrol., 175, 47–65,
https://doi.org/10.1016/S0022-1694(96)80005-9, 1996. a
Cowpertwait, P. S. P., Xie, G., Isham, V., Onof, C., and Walsh, D. C. I.: A
fine-scale point process model of rainfall with dependent pulse depths within
cells, Hydrolog. Sci. J., 56, 1110–1117,
https://doi.org/10.1080/02626667.2011.604033, 2011. a, b
Di Nunno, F., Granata, F., Pham, Q. B., and de Marinis, G.: Precipitation
Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model,
Sustainability, 14, 1–21, https://doi.org/10.3390/su14052663, 2022. a, b
Douglas, E. M. and Barros, A. P.: Probable Maximum Precipitation
Estimation Using Multifractals: Application in the Eastern United
States, J. Hydrometeorol., 4, 1012–1024,
https://doi.org/10.1175/1525-7541(2003)004<1012:PMPEUM>2.0.CO;2, 2003. a
Gao, C., Booij, M. J., and Xu, Y.-P.: Development and hydrometeorological
evaluation of a new stochastic daily rainfall model: Coupling Markov chain
with rainfall event model, J. Hydrol., 589, 125337,
https://doi.org/10.1016/j.jhydrol.2020.125337, 2020. a, b
Gao, C., Guan, X., Booij, M. J., Meng, Y., and Xu, Y.-P.: A new framework for a
multi-site stochastic daily rainfall model: Coupling a univariate Markov
chain model with a multi-site rainfall event model, J. Hydrol.,
598, 126478, https://doi.org/10.1016/j.jhydrol.2021.126478, 2021. a
Gholami, V., Darvari, Z., and Mohseni Saravi, M.: Artificial neural network
technique for rainfall temporal distribution simulation (Case study: Kechik
region), Caspian Journal of Environmental Sciences, 13, 53–60, 2015. a
Gires, A., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.: Development and analysis of a simple model to represent the zero rainfall in a universal multifractal framework, Nonlin. Processes Geophys., 20, 343–356, https://doi.org/10.5194/npg-20-343-2013, 2013. a
Gyasi-Agyei, Y.: Stochastic disaggregation of daily rainfall into one-hour time
scale, J. Hydrol., 309, 178–190,
https://doi.org/10.1016/j.jhydrol.2004.11.018, 2005. a
Gyasi-Agyei, Y. and Willgoose, G. R.: Generalisation of a hybrid model for
point rainfall, J. Hydrol., 219, 218–224, https://doi.org/10.1016/S0022-1694(99)00054-2,
1999. a
Heneker, T. M., Lambert, M. F., and Kuczera, G.: A point rainfall model for
risk-based design, J. Hydrol., 247, 54–71,
https://doi.org/10.1016/S0022-1694(01)00361-4, 2001. a, b
Hoang, C. T., Tchiguirinskaia, I., Schertzer, D., and Lovejoy, S.:
Caractéristiques multifractales et extrêmes de la précipitation à haute
résolution, application à la détection du changement climatique, Revue des
Sciences de l'Eau, 27, 205–216, https://doi.org/10.7202/1027806ar, 2014. a, b
Hubert, P., Tessier, Y., Lovejoy, S., Schertzer, D., Schmitt, F., Ladoy, P.,
Carbonnel, J. P., Violette, S., and Desurosne, I.: Multifractals and extreme
rainfall events, Geophys. Res. Lett., 20, 931–934,
https://doi.org/10.1029/93GL01245, 1993. a, b
Kaczmarska, J., Isham, V., and Onof, C.: Point process models for
fine-resolution rainfall, Hydrolog. Sci. J., 59, 1972–1991,
https://doi.org/10.1080/02626667.2014.925558, 2014. a, b
Kannan, S. and Ghosh, S.: A nonparametric kernel regression model for
downscaling multisite daily precipitation in the Mahanadi basin, Water
Resour. Res., 49, 1360–1385, https://doi.org/10.1002/wrcr.20118,
2013. a, b
Kottegoda, N., Natale, L., and Raiteri, E.: Monte Carlo Simulation of rainfall
hyetographs for analysis and design, J. Hydrol., 519, 1–11,
https://doi.org/10.1016/j.jhydrol.2014.06.041, 2014. a, b
Koutsoyiannis, D. and Onof, C.: Rainfall disaggregation using adjusting
procedures on a Poisson cluster model, J. Hydrol., 246, 109–122,
https://doi.org/10.1016/S0022-1694(01)00363-8, 2001. a
Ladoy, P., Schmitt, F., Schertzer, D., and Lovejoy, S.: The multifractal
temporal variability of Nimes rainfall data, Comptes Rendus – Academie des
Sciences, Serie II, Vol. 317, 775–782, Reports of the Academy of Sciences Series 2 Mechanics Physics Chemistry Earth and Universe Sciences (France), 1993. a
Leblois, E. and Creutin, J.-D.: Space-time simulation of intermittent rainfall
with prescribed advection field: Adaptation of the turning band method, Water
Resour. Res., 49, 3375–3387, https://doi.org/10.1002/wrcr.20190,
2013. a, b
Li, C., Singh, V. P., and Mishra, A. K.: Simulation of the entire range of
daily precipitation using a hybrid probability distribution, Water Resour. Res., 48, https://doi.org/10.1029/2011WR011446, 2012. a, b
Lovejoy, S. and Schertzer, D.: On the simulation of continuous in scale
universal multifractals, Part II: Space-time processes and finite size
corrections, Comput. Geosci., 36, 1404–1413,
https://doi.org/10.1016/j.cageo.2010.07.001, 2010. a
Mehrotra, R. and Sharma, A.: A nonparametric stochastic downscaling framework
for daily rainfall at multiple locations, J. Geophys. Res.-Atmos., 111, 1–16, https://doi.org/10.1029/2005JD006637, 2006. a
Nerini, D., Besic, N., Sideris, I., Germann, U., and Foresti, L.: A non-stationary stochastic ensemble generator for radar rainfall fields based on the short-space Fourier transform, Hydrol. Earth Syst. Sci., 21, 2777–2797, https://doi.org/10.5194/hess-21-2777-2017, 2017. a
Onof, C., Chandler, R. E., Kakou, A., Northrop, P., Wheater, H. S., and Isham,
V.: Rainfall modelling using poisson-cluster processes: A review of
developments, Stoch. Env. Res. Risk A., 14, 384–411, https://doi.org/10.1007/s004770000043, 2000. a
Park, J., Cross, D., Onof, C., Chen, Y., and Kim, D.: A simple scheme to adjust
Poisson cluster rectangular pulse rainfall models for improved performance at
sub-hourly timescales, J. Hydrol., 598, 126296,
https://doi.org/10.1016/j.jhydrol.2021.126296, 2021. a, b
Paschalis, A., Molnar, P., Fatichi, S., and Burlando, P.: A stochastic model
for high-resolution space-time precipitation simulation, Water Resour. Res., 49, 8400–8417, https://doi.org/10.1002/2013WR014437, 2013. a
Paschalis, A., Fatichi, S., Molnar, P., Rimkus, S., and Burlando, P.: On the
effects of small scale space–time variability of rainfall on basin flood
response, J. Hydrol., 514, 313–327,
https://doi.org/10.1016/j.jhydrol.2014.04.014, 2014. a, b
Pathirana, A. and Herath, S.: Multifractal modelling and simulation of rain fields exhibiting spatial heterogeneity, Hydrol. Earth Syst. Sci., 6, 695–708, https://doi.org/10.5194/hess-6-695-2002, 2002. a
Pecknold, S., Lovejoy, S., Schertzer, D., Hooge, C., and Malouin, J. F.: The
simulation of universal multifractals, 228–267, World Scientific, ISBN 978-981-4553-21-6, 1993. a
Pegram, G. G. S. and Clothier, A. N.: High resolution space–time modelling of
rainfall: the “String of Beads” model, J. Hydrol., 241, 26–41,
https://doi.org/10.1016/S0022-1694(00)00373-5, 2001. a, b
Pui, A., Sharma, A., Mehrotra, R., Sivakumar, B., and Jeremiah, E.: A
comparison of alternatives for daily to sub-daily rainfall disaggregation,
J. Hydrol., 470-471, 138–157,
https://doi.org/10.1016/j.jhydrol.2012.08.041, 2012. a, b
Qiu, Y., da Silva Rocha Paz, I., Chen, F., Versini, P.-A., Schertzer, D., and Tchiguirinskaia, I.: Space variability impacts on hydrological responses of nature-based solutions and the resulting uncertainty: a case study of Guyancourt (France), Hydrol. Earth Syst. Sci., 25, 3137–3162, https://doi.org/10.5194/hess-25-3137-2021, 2021. a
Rajagopalan, B. and Lall, U.: A k-nearest-neighbor simulator for daily
precipitation and other weather variables, Water Resour. Res., 35,
3089–3101, https://doi.org/10.1029/1999WR900028, 1999. a
Salas, J.: Analysis and modeling of hydrologic time series, Handbook of
hydrology, ISBN 0070397325, edited by: Maidment, D. R., 1993. a
Schertzer, D. and Lovejoy, S.: Multifractal simulations and analysis of clouds
by multiplicative processes, Atmos. Res., 21, 337–361,
https://doi.org/10.1016/0169-8095(88)90035-X, 1988.
a
Schertzer, D. and Lovejoy, S.: Nonlinear Variability in Geophysics:
Multifractal Simulations and Analysis, in: Fractals' Physical Origin and
Properties, Springer New York, NY, https://doi.org/10.1007/978-1-4899-3499-4-3, 1989. a, b, c, d
Schertzer, D. and Lovejoy, S.: Hard and soft multifractal processes, Physica A, 185, 187–194,
https://doi.org/10.1016/0378-4371(92)90455-Y, 1992. a, b
Schertzer, D. and Lovejoy, S.: Multifractals, Generalized Scale Invariance and
Complexity in geophysics, Int. J. Bifurcat. Chaos, 21,
3417–3456, https://doi.org/10.1142/S0218127411030647, 2011. a, b
Schertzer, D. and Nicolis: Nobel Recognition for the Roles of Complexity
and Intermittency,
http://eos.org/opinions/nobel-recognition-for-the-roles-of-complexity-and-intermittency,
last access: 15 December 2022. a
Serinaldi, F.: Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models, Nonlin. Processes Geophys., 17, 697–714, https://doi.org/10.5194/npg-17-697-2010, 2010. a
Shah, S., O'Connell, P., and Hosking, J.: Modelling the effects of spatial
variability in rainfall on catchment response. 1. Formulation and calibration
of a stochastic rainfall field model, J. Hydrol., 175, 67–88,
https://doi.org/10.1016/S0022-1694(96)80006-0, 1996. a
Tchiguirinskai, I., Schertzer, D., Hubert, P., Bendjoudi, H., and Lovejoy, S.:
Potential of multifractal modelling of ungauged basins, p. 11, edited by: Schertzer, D., Hubert, P., Koide, S., and Takeuchi, K., 298–308, PUB Kick-Off Meeting , IAHS Press, 2007. a
Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D., and Pecknold, S.:
Multifractal analysis and modeling of rainfall and river flows and scaling,
causal transfer functions, J. Geophys. Res.-Atmos., 101, 26427–26440, https://doi.org/10.1029/96jd01799, 1996. a, b
Wheater, H. S., Isham, V. S., Cox, D. R., Chandler, R. E., Kakou, A., Northrop, P. J., Oh, L., Onof, C., and Rodriguez-Iturbe, I.: Spatial-temporal rainfall fields: modelling and statistical aspects, Hydrol. Earth Syst. Sci., 4, 581–601, https://doi.org/10.5194/hess-4-581-2000, 2000. a
Wheater, H. S., Chandler, R. E., Onof, C. J., Isham, V. S., Bellone, E., Yang,
C., Lekkas, D., Lourmas, G., and Segond, M.-L.: Spatial-temporal rainfall
modelling for flood risk estimation, Stoch. Env. Res. Risk A., 19, 403–416, https://doi.org/10.1007/s00477-005-0011-8, 2005. a
Wilks, D. S.: Multisite generalization of a daily stochastic precipitation
generation model, J. Hydrol., 210, 178–191, https://doi.org/10.1016/S0022-1694(98)00186-3,
1998. a
Short summary
Reference rainfall scenarios are indispensable for hydrological applications such as designing storm-water management infrastructure, including green roofs. Therefore, a new method is suggested for simulating rainfall scenarios of specified intensity, duration, and frequency, with realistic intermittency. Furthermore, novel comparison metrics are proposed to quantify the effectiveness of the presented simulation procedure.
Reference rainfall scenarios are indispensable for hydrological applications such as designing...