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Abstract. Hydrological applications such as storm-water
management usually deal with region-specific reference rain-
fall regulations based on intensity–duration–frequency (IDF)
curves. Such curves are usually obtained via frequency anal-
ysis of rainfall and exceedance probability estimation of rain
intensity for different durations. It is also common for ref-
erence rainfall to be expressed in terms of precipitation P ,
accumulated in a duration D, with a return period T . Me-
teorological modules of hydro-meteorological models used
for the aforementioned applications therefore need to be ca-
pable of simulating such reference rainfall scenarios. This
paper aims to address three research gaps: (i) the discrep-
ancy between standard methods for defining reference pre-
cipitation and the strong multi-scale intermittency of pre-
cipitation, (ii) a lack of procedures to adapt multi-fractal
precipitation modelling to specified partial statistical refer-
ences, and (iii) scarcity of proper multi-scale tools to quan-
titatively estimate the effectiveness of such simulation pro-
cedures. Therefore, it proposes (i) a procedure based on ex-
treme non-Gaussian statistics in two scaling regimes due to
earth’s finite size to tackle multi-scale intermittency head on,
(ii) a renormalization technique to make simulations com-
ply with the aforementioned partial statistical references, and
(iii) multi-scale metrics to compare simulated rainfall time
series with those observed. While the first two proposals are
utilized to simulate reference rainfall scenarios for three re-
gions (Paris, Nantes, and Aix-en-Provence) in France that
are characterized by different climates, the last one is used
to validate them. The scope of this paper is that the baseline
precipitation scenarios simulated here can be used as realis-

tic inputs into hydrological models for applications such as
the optimal design of storm-water management infrastruc-
ture, especially green roofs. Although only purely temporal
simulations are considered, this approach could possibly be
generalized to space–time as well.

1 Introduction

Reference rainfall events characterized by amount of precip-
itation P , duration D and return period T are required to
design storm-water management infrastructures such as con-
duits, retention basins and even green roofs when consid-
ered as a storm-water management tool. For this purpose,
designed hyetograms are traditionally used. Unfortunately,
they represent a huge simplification of the reference event:
homogeneous and constant precipitation, triangle shape, etc.
In reality, rainfall is commonly considered to be a stochas-
tic variable since the rainfall process is complex and strongly
dependent on initial conditions. Therefore, reference rainfall
events used for sizing should take into account this com-
plexity. Nevertheless, availability of high-resolution obser-
vational datasets for rainfall especially over lengthy time pe-
riods and/or vast spatial areas is quite limited even today.
Consequently, there have been several studies/attempts to
stochastically produce rainfall time series and space–time
fields as listed here: simple point processes (Salas, 1993;
Heneker et al., 2001), cluster processes (Cowpertwait, 1994;
Cameron et al., 2000b, a; Cowpertwait et al., 2011; Kacz-
marska et al., 2014), hybrid processes (Gyasi-Agyei and
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Willgoose, 1999; Onof et al., 2000; Li et al., 2012) and mod-
els that use the Monte Carlo method to generate hyetograms,
i.e. the temporal distribution of rainfall intensity (Arnaud and
Lavabre, 1999; Kottegoda et al., 2014). All these four model
types are purely temporal. Markov chain (Wilks, 1998; Gao
et al., 2020, 2021) and non-parametric (Rajagopalan and
Lall, 1999; Brandsma and Buishand, 1998; Mehrotra and
Sharma, 2006; Kannan and Ghosh, 2013) models, on the
other hand, simulate rainfall time series at a few distinct
spatial points and can therefore be considered to be slightly
more advanced than purely temporal models. Cell clusters
(Wheater et al., 2000, 2005; Koutsoyiannis and Onof, 2001;
Park et al., 2021) and modified turning band (Shah et al.,
1996; Leblois and Creutin, 2013) and radar-based bead (Pe-
gram and Clothier, 2001; Berenguer et al., 2011; Paschalis
et al., 2013, 2014; Nerini et al., 2017) models can be consid-
ered to be a bit more involved than the aforementioned mod-
els; however, they do make some non-physical simplifying
assumptions (cell clusters and modified turning band mod-
els both make Gaussian assumptions) and are still not that
parsimonious. Alternatively, there are other procedures uti-
lizing point models (Cowpertwait et al., 1996; Gyasi-Agyei,
2005; Pui et al., 2012) and artificial neural networks (Burian
et al., 2001; Gholami et al., 2015; Di Nunno et al., 2022) that
generally deal with downscaling of rain fields from numer-
ical weather prediction (NWP) models. Finally, there are a
few physically based yet computationally simple and parsi-
monious models such as non-homogeneous random cascades
(Schertzer and Lovejoy, 1988, 1989; Pathirana and Herath,
2002; Serinaldi, 2010) that are capable of taking into con-
sideration the realistic spatiotemporal complexity of rainfall
fields.

To make a literature-based assessment of these aforemen-
tioned modelling approaches in the context of using the re-
sulting simulations as input for most hydrological applica-
tions, including the design of rainwater management infras-
tructures, we consider eight characteristics of observed rain-
fall fields that if incorporated by the framework make the
simulations realistic: (1) heterogeneity: spatial heterogene-
ity — rainfall is extremely variable with spatial location, es-
pecially at small spatial scales and temporal heterogeneity
(intermittency) – rainfall time series at a single spatial lo-
cation are extremely variable with time, especially on small
timescales. (2) Physically based — the model represents the
underlying process at least abstractly using physically mean-
ingful parameters in a slightly more generalized framework,
because it is stochastic rather than deterministic, with frac-
tional rather than integer derivatives. (3) Non-linearity —
for instance, fields are not presumed to be additive, e.g. like
a Gaussian or a Lévy process, but multiplicative. The for-
mer are linear, while the latter are strongly non-linear. (4)
Space–time complexity — both spatial and temporal vari-
ability/properties of the field can be considered simultane-
ously, thereby incorporating possible space–time anisotropy.
(5) Extreme statistics — extreme rainfall events occur more

frequently in fat-tailed distributions than in Gaussian distri-
butions. (6) Statistical non-stationarity with the possibility of
long-term memory — the statistical properties of the field
being auto-correlated over larger temporal lags. The last two
characteristics that are considered for the assessment make
models practically attractive. (7) High parameter parsimony
— the model uses only a few parameters. (8) Low computa-
tional complexity — the entire simulation procedure, includ-
ing parameter estimation, is not too time-consuming. The
existence of simplifying physical principles such as univer-
sality helps the frameworks in being highly parsimonious
and computationally simple without compromising too much
on the physical relevance of the simulations. Table 1 shows
a literature-based comparison of the desirable characteris-
tics possessed by each model sub-classification. As shown
in Fig. 1, most of the aforementioned models (10 out of
12) seem to be more focussed on computational and con-
ceptual simplicity than on physics. Alternatives such as uni-
versal multi-fractal (UM) cascades that are not computation-
ally that complicated compared to high-resolution numeri-
cal weather prediction models that explicitly represent given
atmospheric processes on a limited range of scale therefore
seem to be attractive choices, especially since they are capa-
ble of representing fields with high spatiotemporal variabil-
ity (Schertzer and Lovejoy, 1989, 2011). These UM cascade
models need only observational rainfall time series (not very
data-demanding) and are computationally simpler and parsi-
monious compared to the radar-based bead method (Pegram
and Clothier, 2001) mentioned earlier. Such UM-based pro-
cedures can also be directly extended to obtain space–time
fields as well. Furthermore, the idea of space–time complex-
ity in the UM framework is somewhat more generalized than
it is in the radar-based bead model, where spatial complexity
and temporal complexity are dealt with separately rather than
together.

The objective of this paper is to (i) address the general dis-
crepancy between standard procedures for defining reference
precipitation and the strong multi-scale intermittency of pre-
cipitation by making use of its extreme non-Gaussian statis-
tics and scaling behaviour over two sub-ranges of timescales
– due to earth’s finite size – necessitating some adaptation
of the multi-fractal modelling procedure, (ii) suggest a tech-
nique to make multi-fractal simulations have the necessary
partial statistical references by defining a renormalization
procedure, and (iii) to assess the accuracy of the proposed
simulation method by defining multi-scale metrics that assess
the closeness of observed and simulated time series across
timescales. These objectives enable the generation of base-
line precipitation scenarios that can be used as realistic in-
puts into hydrological models for applications such as the
optimal design of storm-water management infrastructures,
such as green roofs. Region-specific (i.e. single site sepa-
rately for different sites/conurbations) reference rainfall time
series characterized by the required P,D, and T properties,
exhibiting larger variability and intermittency over a wide
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Figure 1. Outer ring: desirable characteristics in stochastic high-resolution rainfall simulation models. Inner ring: models that possess these
characteristics (based on Table 1). Models with ≤ 3 parameters are considered here to possess high parameter parsimony. Non-homogeneous
random cascade models seem to possess all the desirable properties.

Table 1. Comparison of different stochastic rainfall modelling procedures based on the literature.

Models Desirable features No. of parame-
ters

Selected references

Simple point process Computational simplicity 10 Heneker et al. (2001)

Cluster processes Computational simplicity 5–6 Cowpertwait et al. (2011),
Kaczmarska et al. (2014)

Hybrid processes Computational simplicity 3 Li et al. (2012)

Monte Carlo based Heterogeneity, extreme statistics, computational
simplicity

31 Kottegoda et al. (2014)

Markov chain Non-stationarity, heterogeneity, computational
simplicity

4 Gao et al. (2020)

Non-parametric Extremal statistics, non-stationarity, heterogeneity 0 Kannan and Ghosh (2013)

Point models Computational simplicity 6 Pui et al. (2012)

Artificial neural networks – Varies Di Nunno et al. (2022)

Cell cluster Computational simplicity 7 Park et al. (2021)

Modified turning band Computational simplicity 8 Leblois and Creutin (2013)

Radar-based bead Heterogeneity, scale symmetry, extremal statistics, non-
stationarity, computational simplicity

4 Paschalis et al. (2014)

Non-homogeneous
random cascade

Heterogeneity, scale symmetry, non-linearity, space–
time complexity, extremal statistics, non-stationarity,
computational simplicity

2–3 (per
scaling
regime)

Tessier et al. (1996),
Hoang et al. (2014)

https://doi.org/10.5194/hess-26-6477-2022 Hydrol. Earth Syst. Sci., 26, 6477–6491, 2022



6480 A. Ramanathan et al.: Stochastic simulation of reference rainfall scenarios for hydrological applications

range of timescales close to that observed, are therefore sim-
ulated here for three localities in France. These simulated
scenarios can therefore be considered to be more realistic
than those obtained from traditional procedures that often
utilize uniform rainfall or synthetic hyetograms (Qiu et al.,
2021). It is worth noting that simulating just rainfall time se-
ries instead of space–time fields is justified because (i) the
dichotomy between time and space–time is not as strong as
usual for multi-fractal models because a multi-fractal time
series can be seen as a temporal cut of a space–time multi-
fractal field, (ii) the aim of the present study is focused on
storm-water management over a fixed and rather small spatial
area such as a building roof as mentioned earlier, and (iii) the
large-scale deployment of rainfall-runoff management tech-
nologies would instead require space–time models, obtained
with the help of new and rather limited developments as men-
tioned in (i). Section 2 discusses the different regions con-
sidered in France, their corresponding reference rainfall reg-
ulations and the observational datasets used. These rainfall
datasets are analysed via multi-fractal techniques as shown
in Sect. 3 to identify scaling regimes and corresponding UM
parameters necessary to simulate rainfall. Section 4 gives a
brief recollection about discrete-in-scale UM cascades, ex-
plains in detail the procedure used here to simulate reference
rainfall scenarios and finally defines four metrics to quantita-
tively compare the simulations with corresponding datasets.
Finally, the conclusions of this study along with its limita-
tions and some future scopes including extension to higher
dimensions and other regions are discussed in Sect. 5.

2 Regions considered and observational datasets used

French regional storm-water management/discharge regula-
tions mentioned in governmental rainfall zoning documents
provide guidelines for reference rainfall events. Buildings/-
plots irrespective of the design or type of their storm-water
management infrastructure are required to comply with cer-
tain drainage/discharge rules during the occurrence of such
reference rainfall events. Table 2 shows the reference rain-
fall guidelines for three different localities in France, and
it can be seen that they display high variability, but this is
not that surprising since rainfall, like many other geophysical
fields, exhibits high spatiotemporal variability. From the P ,
D, and T combinations for Nantes and Aix-en-Provence it is
very clear that these specifications are highly variable for dif-
ferent zones within the same region. The corresponding hy-
drological designs therefore have to take into account such
high space–time variability of rainfall, at least up to and in
fact more than these legal constraints or regulations. There-
fore, it is quite logical that the modelling technique to be
used for stochastically simulating an ensemble of such highly
variable reference rainfall scenarios should explicitly incor-
porate properties of heterogeneity and non-Gaussian statis-
tics among several other properties that the observed fields

Table 2. Variability of reference rainfall regulations in the three re-
gions considered by this study.

Region Duration D Return period T Precipitation P
(h) (years) (mm)

Paris 4 0.5 16

Nantes 1 1
12 6

1 2 16
1, 12, 24 10 29, 48, 56
1, 12, 24 30 41, 61, 68
1, 12, 24 50 49, 69, 75

Aix-en- 2 30 100
Provence 2 50 120

2 100 160

Table 3. Temporal resolution, length and percentage of missing data
of rainfall datasets used in this study.

Region Dataset Length Lobs %
(time resolution) (years) missing

Paris PD1 (daily) 100 (1921–2020) 0
PD2 (hourly) 28 (1993–2020) 0.3
PD3 (6 min) 15 (2006–2020) 0.6

Nantes ND1 (daily) 75 (1946–2020) 0
ND2 (hourly) 28 (1986, 1994–2020) 0.7
ND3 (6 min) 15 (2006–2020) 0.1

Aix-en- AD1 (daily) 60 (1961–2020) 0
Provence AD2 (hourly) 28 (1993–2020) 0.7

AD3 (6 min) 15 (2006–2020) 0.17

typically exhibit. The rainfall datasets/time series used for
the three regions, i.e. Paris, Nantes and Aix-en-Provence,
were obtained from MeteoFrance (https://donneespubliques.
meteofrance.fr/, last access: 4 March 2021) and were of dif-
ferent temporal resolutions (6 min, hourly, daily). Figure 2
shows the selected conurbations and their climatological
rainfall data. These three regions were selected for this study
as their monthly cumulative rainfall climatologies computed
from daily datasets are quite different from each other: while
Paris receives around 40–60 mm monthly rainfall, Nantes re-
ceives a higher monthly rainfall from around 40 to 90 mm,
and Aix-en-Provence on the other hand receives a more vari-
able monthly rainfall from around 10 to 80 mm. Cities are
chosen here since storm-water management is more vital in
urban areas due to its limited infiltration capacity. Informa-
tion about the datasets used for each city/conurbation is given
in Table 3. Since the proportion of data missing is low, re-
placing these values with zeros will probably not result in any
significant change to the actual data. For the sake of simplic-
ity, we shall henceforth refer to the daily, hourly and 6 min
datasets of Paris, Nantes and Aix as PD1, PD2, PD3, ND1,
ND2, ND3, AD1, AD2 and AD3 respectively.
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Figure 2. (a) The three chosen cities/conurbations in mainland France and (b) their monthly cumulative precipitation climatology (using
daily datasets).

3 Multi-fractal analysis of rainfall data

The concept of universality in complex systems states that
only a few parameters out of many are relevant for defin-
ing the system since the same dynamical process is repeated
scale after scale or the process interacts with many indepen-
dent processes over a range of scales, resulting in this re-
duction (Schertzer and Lovejoy, 1987). In the UM frame-
work only three parameters, α, C1, andH , are necessary, and
they each have different geometrical and physical meanings.
The degree of multi-fractality α defines the deviation from
mono-fractality, and its value is between 0 and 2. If α = 0,
the process is mono-/uni-fractal with a unique fractal scaling
exponent, and if α = 2, the process has a maximum multi-
fractality with a larger spectrum of scaling exponents. The
codimension of the mean C1 describes the sparseness of the
level of activity that dominantly contributes to the mean field,
C1 = 0, if the rainfall is homogeneous or, in other words, if it
always rains. The parameter H quantifies the deviation from
a conservative process (H = 0), where the ensemble average
of the field is conserved or in other words the ensemble aver-
age of the normalized field is 1. In a stochastic multi-fractal
formalism, the qth-order statistical moment of rainfallRλ ob-
served at a scale l follows the multi-scaling equation

〈Rλ
q
〉 = λK(q), (1)

where λ is the intermediate scale ratio or (temporal) resolu-
tion (ratio of the largest scale to the intermediate scale l), the
equality sign is used here in a scaling sense, and the scaling
exponent K(q) is the scaling moment function that is scale-
independent. For conservative UM, K(q) depends only on
the UM parameters as follows:

K(q)=


−qH + C1

α−1 (q
α
− q) ∀ 0≤ α < 1,

1< α ≤ 2,
−qH +C1q logq ∀ α = 1.

(2)

By computing the trace moments and double-trace moments,
the functionK(q) and UM parameters can be empirically es-
timated (Schertzer and Lovejoy, 1987; Lavallee et al., 1993),
as briefly discussed in the following two subsections. We
consider each observational dataset to be a single sample to
avoid any reduction in the largest scale considered, which
may lead to different multi-fractal characteristics. However,
there is a drawback due to this small sample size (i.e.Ns = 1,
making the effective dimension equal to the dimension of
the time series, which is 1): the estimate of the spectral
slope β is unreliable; i.e. the coefficient of determination of
the straight line fit is too low. The larger the sample size,
the better will be the estimate of the spectral slope (better
straight line fit). Therefore, the spectral slope obtained from
a time series that is split into a number of smaller samples
is more reliable than that obtained from the whole time se-
ries. However, increasing sample size with a fixed dataset
length means that with more samples the length of each sam-
ple is smaller, implying that there is a reduction in the largest
scale considered. This may in turn lead to a difference in
multi-fractal characteristics. The trace moment (TM) anal-
ysis, on the other hand, does not have this disadvantage, and
the straight line fits are reasonably good and not too depen-
dent on the number of samples. Therefore, TM analysis is
simply more preferable/relevant compared to spectral analy-
sis or estimating how many samples would be ideal when us-
ing spectral analysis. SinceH = β+K(2)−1

2 , consequently the
H values estimated using β are also not very accurate. There-
fore,H is estimated by considering the first-order (q = 1) un-
normalized trace moment 〈Rλ1

〉 initially assuming that the
time series is non-conservative:

〈Rλ
1
〉 = λ−H , (3)

where once again the equality sign is used for a possible
asymptotic equivalence (λ→∞).
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It turns out that for all the datasets the slope of a straight
line fitted through a log–log plot of 〈Rλ1

〉 vs. λ is close to
zero, implying H ≈ 0 as shown in Table 4. Therefore, we
proceed by assuming that the observed rainfall time series
used in this study are conservative.

3.1 TM analysis

In the TM analysis (Schertzer and Lovejoy, 1987, 1992) rain-
fall R3 at the finest given (temporal) resolution or scale ratio(
3=

largest scale
smallest scale

)
is averaged to obtain rainfall over coarser

and coarser resolutions Rλ, where the intermediate-scale ra-
tio λ is a decreasing integer power of λ1 (λ= λ1

n,3=

λ1
N
;n=N,. . .,0), which is the scale ratio of the elementary

cascade step and usually equals 2:

Rλ1
n(j)=

1
λ1

λ1∑
i=1

Rλ1
n+1(λ1(j − 1)+ i),

j = 1,2, . . . ,λ1
n
; n=N − 1, . . . ,0. (4)

Since rainfall time series are multi-fractals, their statistics
follow the multi-scaling Eq. (1), and therefore the trace mo-
ments at coarser and coarser (temporal) resolutions TMλ =
〈Rλ

q
〉

〈Rλ〉q
when plotted vs. λ in a log–log coordinate can be used

to estimate the slope K(q) of a fitted straight line. Figure 3
shows the results of this analysis done on all the datasets
(PD1 to AD3): there are two scaling regimes with a distinct
slope or K(q) with a scaling break (the scale where K(q)
changes abruptly and distinctly) at around 2 to 4 weeks (the
synoptic maximum – due to earth’s finite size). All these scal-
ing ranges of both the first and second scaling regimes are
tabulated in Table 4. Henceforth, the scaling moment func-
tions of the first and second scaling regimes are denoted as
K1(q) and K2(q) respectively. As seen from Fig. 3, the em-
pirical statistical moments closely follow a scaling law for
each moment order over a given range of resolutions, imply-
ing that it is quite reasonable to consider the observed fields
to be multi-fractals.

3.2 Double-trace moment (DTM) analysis

Although the TM analysis helps in estimating K(q), it does
not provide explicit estimates of UM parameters α,C1. To do
this, the DTM analysis (Lavallee et al., 1993) is used:

DTMλ = λ
ηαK(q), (5)

where η is the power to which the rainfall time series is
raised. Equation (5) suggests that, whenK(q,η) vs. η is plot-
ted in log–log coordinates, the slope of a fitted straight line
gives the estimate of α, whereas C1 is calculated using this α
estimate and the y intercept of the fitted straight line. While
performing the usual DTM analysis it is found that the α
estimates are larger than 2 (thereby exceeding the limits in
Eq. 2) in the first scaling regime for all the datasets consid-
ered here. Generally this could be due to two different issues:

(i) an incorrect α estimation procedure or (ii) an incorrect
assumption about the processes’ conservativeness. However,
for the datasets considered here, the first possibility seems
more likely due to the fact that the H estimates are negligibly
small (as shown in Table 4 and discussed earlier in Sect. 3)
and that Fourier analyses of these datasets are unreliable due
to the small sample size chosen (Ns = 1). Therefore, to over-
come this issue, an iterative DTM procedure is used here.
More technical details about this procedure are given in Ap-
pendix A of the Supplement. Table 4 shows the UM param-
eters estimated using the nine different datasets, while Fig. 4
shows the DTM-based estimation procedure. The parameters
for the first and second scaling regimes are denoted by sub-
scripts 1 and 2 respectively. Although three different scal-
ing breaks and six different pairs of α, C1 values are empiri-
cally estimated (three pairs for each scaling regime) for each
region, to simulate a reference rainfall scenario that corre-
sponds to rainfall observed in the corresponding region, only
one scaling break and two pairs of α, C1 values (one pair for
each scaling regime) are necessary. Since these values are not
too dependent on the dataset used, this choice is justified. The
UM parameters estimated from the daily and 6 min data are
selected to be used for the first and second scaling regimes
in the simulations, whereas the median value of the scaling
breaks (out of the three scaling breaks estimated from daily,
hourly and 6 min datasets) are chosen. To confirm that this
selection procedure does not result in any significant differ-
ence in the multi-fractal characteristics of the datasets and
the corresponding simulations, we compute the MCI based
on the difference in the theoretical maximum observable sin-
gularity from a finite-sized sample γs (Hubert et al., 1993;
Douglas and Barros, 2003)

MCI=
1
6

3∑
j=1

2∑
i=1

∣∣γs,obs(j)(i)− γs,sel(j)(i)
∣∣ (6)

based on the difference between UM parameter values ob-
served from datasets and selected for simulations (as indi-
cated by the subscripts obs and sel) with the analytical ex-
pression

γs =
C1α

α− 1

((
1
C1

) α−1
α

−
1
α

)
(7)

with respect to α and C1; the indices i,j denote the scal-
ing regime (first or second) and the dataset (6 min, hourly
or daily) used respectively. Since 0≤α≤2 and 0≤C1≤1 due
to the assumption of a single sample, this implies that the
maximum and minimum values of γs are close to 1 and 0
respectively.

The MCI is computed to be 0.03 for both Paris and
Nantes and 0.04 for Aix. These low values of MCI justify
the aforementioned selection procedure. Multi-fractal (sta-
tistical) analyses of observed rainfall in the three conurba-
tions chosen by this study do not display any significant sea-
sonality as there is no scaling break around a few months’
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Table 4. UM parameter estimates for the first and second scaling regimes from different datasets (PD1 to AD3) and the scaling regimes and
parameters selected for simulating rainfall over each corresponding region. H values are not included in the selected parameters and are
assumed to be zero since these rain time series seem to be almost conservative (both H1 and H2 are close to zero).

Region Dataset Scaling regimes α1, C11 , H1, Selected for simulations

α2 C12 H2 Scaling regimes α1, α2 C11 , C12

Paris PD3 15 years – 17 d 1.97 0.03 −0.00002 100 years – 21 d 1.89 0.02
17 d – 6 min 0.56 0.45 0.002 21 d – 6 min 0.56 0.45

PD2 28 years – 21 d 1.84 0.03 0.0002
21 d – 1 h 0.55 0.48 −0.003

PD1 100 years – 32 d 1.89 0.02 0.00008
32 d – 1 d 0.71 0.37 −0.0007

Nantes ND3 15 years – 17 d 1.85 0.03 0.002 75 years – 21 d 1.7 0.02
17 d – 6 min 0.69 0.38 0.002 21 d – 6 min 0.69 0.38

ND2 28 years – 21 d 1.86 0.02 0.0002
21 d – 1 h 0.59 0.42 −0.0007

ND1 75 years – 32 d 1.7 0.02 0.00008
32 d – 1 d 0.65 0.35 0.002

Aix-en-Provence AD3 15 years – 34 d 1.79 0.04 0.00008 60 years – 32 d 1.8 0.03
34 d – 6 min 0.51 0.48 0.0035 32 d – 6 min 0.51 0.48

AD2 28 years – 21 d 1.76 0.06 −0.00007
21 d – 1 h 0.48 0.55 0.005

AD1 60 years – 32 d 1.8 0.03 −0.0003
32 d – 1 d 0.49 0.54 0.0002

timescale. However, there is clear evidence of a strong syn-
optic maximum indicated by a scaling break around a few
weeks’ timescale with corresponding changes in scaling be-
haviour as seen in Fig. 3. It is worth noting that this afore-
mentioned absence of seasonality in multi-fractal character-
istics could imply that the low-frequency scaling regime’s
UM parameters are sufficient to represent seasonal variability
(in cumulative precipitations – Fig. 2), whereas together with
the high-frequency scaling regime’s UM parameters they are
sufficient for reproducing well the statistics of different storm
types (either convective or stratiform). This requires some
elaboration of the UM cascade process (as detailed in Sect. 4)
to guarantee good agreement between observed and simu-
lated rainfall over the full range of timescales.

4 Discrete-in-scale universal multi-fractal cascades

Multi-fractal cascade processes have strongly non-Gaussian
statistics (e.g. fat-tailed distributions) and therefore are ca-
pable of generating structures of highly varying intensities.
These cascades represent the atmospheric physical processes
underlying rainfall generation in an abstract (Richardson’s
idea of energy transfer from large to small scales by random
breakups of eddies) but explicit manner by the concept of
scale symmetry or scale invariance – a property respected
“even” by the Navier–Stokes equations used by state-of-the-
art NWP models for operational weather forecasting but only
on a limited range of scales (Schertzer and Lovejoy, 1987).

These cascade models are based on Richardson’s idea of en-
ergy transfer embodied in his 1922 poem “Big whorls have
little whorls Which feed on their velocity, And little whorls
have lesser whorls And so on to viscosity.” So, the ideology
of cascade models is firmly rooted in the so-called physi-
cal world while generating fields that have the right statisti-
cal properties. Therefore, these cascade models take us from
the physical world to the statistical world due to which these
types of models can be considered a bridge between purely
statistical and purely physical models. The importance of
this type of bridge has gained recognition from the Nobel
Committee for Physics (Schertzer and Nicolis, 2022). Due
to their multiplicative property, the heterogeneity of the sim-
ulated field increases incrementally at smaller scales (mak-
ing these models capable of generating scale-dependent rain
rates as observed in nature). Although discrete-in-scale cas-
cades consider scale ratios that are integer powers of inte-
gers, they exhibit better scaling properties and are pedagog-
ically straightforward compared to continuous-in-scale cas-
cades (Lovejoy and Schertzer, 2010). Furthermore, for the
current purpose of simulating rainfall time series, anisotropic
and vector generalizations are not very relevant. Therefore,
the discrete-in-scale UM cascade model is used here to
simulate an ensemble of rainfall scenarios for each region
with its corresponding P , D and T specifications. The ba-
sic idea of discrete-in-scale cascades (Schertzer and Lovejoy,
1989, 2011) is to iteratively divide large-scale eddies (struc-
tures) using a constant integer-scale (timescale) ratio λ1 (usu-
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Figure 3. Trace moment analysis of accumulated rainfall data. (a, b, c) Paris: PD1, PD2, PD3; (d, e, f) Nantes: ND1, ND2, ND3; (g, h, i)
Aix: AD1, AD2, AD3. The first scaling regime is shown in blue, whereas the second scaling regime is shown in red.

ally 2 as mentioned earlier) and multiplicatively distributed
flux (ελ) to these sub-eddies randomly. It is convenient to do
this using an additive noise or generator 0λ, the exponen-
tial of which results in the multiplicatively modulated multi-
fractal flux series at (temporal) resolution λ (Schertzer and
Lovejoy, 1989). To simulate universal multi-fractals (whose
statistics are governed by Eqs. 1 and 2), this generator must
satisfy

〈ελ
q
〉 = 〈eq0λ〉 = λ

C1
α−1 q

α

. (8)

To do this, an extremal Lévy random variable of index α and
suitable amplitude (Pecknold et al., 1993; Gires et al., 2013)
– that is a function of C1 – is chosen as 0λ. This generator
generates the singularity γλ corresponding to each sub-eddy.
In the present context rainfall Rλ accumulated in a given in-
terval of time is the flux ελ. Such a simulated field when nor-
malized by its ensemble average is canonically conserved.

4.1 Simulating reference rainfall scenarios

To have the same P ,D and T characteristics of the reference
rainfall, a simulated rainfall series with the largest (temporal)

scale (Tsim) needs to have a specific number (ρ) of peak val-
ues of rainfall (≥ P ) accumulated over specific durations (D)
so that their return period T = Tsim

ρ
. A simple way to do this

is to multiply the simulated multi-fractal time series (with the
largest scale Tsim = ρT , ∀ ρ ∈ Z

+) by an appropriate renor-
malization constant (RC): P divided by the ρth highest value
in the multi-fractal series aggregated over durationD. There-
fore, the simulated rainfall series are dependent on these P ,
D and T values, resulting in 1 rainfall series for Paris, 11
rainfall series for Nantes and 3 rainfall series for Aix. Since
the observed datasets have two scaling regimes, it is neces-
sary to use a double cascade: a coarser (temporal) resolution
cascade using parameters α1, C11 for the first scaling regime
and a finer (temporal) resolution cascade using parameters
α2, C12 for the second scaling regime. Let the smallest scale
observed and simulated be δ (here δ = 6 min for all three re-
gions). The largest temporal scale selected from the observed
datasets Tsel is related to the largest scale that can be simu-
lated T(s,sim) (the largest scale in the simulated sample which
is a power of λ1 = 2 and ≤ Tsim):

Ts,sim = δ2blog2
Tsel
δ
c
; Ts,sim ≤ Tsim, (9)
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Figure 4. Double trace moment analysis of accumulated rainfall data to obtain UM parameter estimates. (a, b, c) Paris: PD1, PD2, PD3; (d,
e, f) Nantes: ND1, ND2, ND3; (g, h, i) Aix: AD1, AD2, AD3. The first scaling regime is shown in blue, whereas the second scaling regime
is shown in red.

where bxc denotes the integer part of x.
The coarse-resolution cascade produces a multi-

fractal time series ελB where λB =
( Ts,sim
TB,sim

)
and

TB,sim = δ2blog2
TB,sel
δ
c are the simulated scaling break.

Each rainfall value of this coarse time resolution multi-
fractal series is now the parent structure of the second
(fine time resolution) cascade that proceeds from TB,sim

up to δ. A multi-fractal time series ελδ where λδ =
Ts,sim
δ

is thus finally produced by the double-cascade simulation
(DCS). The DCS is repeated a sufficient number of times
(if Ts,sim < Tsim) to finally extract a time series ε3δ where
3δ =

Tsim
δ

(here δ = 6 min). The ρth highest value in a
aggregated multi-fractal series ε̄ (ε3δ aggregated to temporal
resolution Tsim

D
) when multiplied by RC should equal P .

If we rank the values in series ε̄ in decreasing order and
call them ε̄DO, then the ρth value ε̄DO(ρ) is the ρth highest
value. Therefore, RC is computed as

RC=
P

ε̄DO(ρ)
. (10)

The RC computed using Eq. (10) when multiplied by ε3δ
gives the final rainfall series that has characteristics corre-
sponding to the reference rainfall. This entire procedure is re-
peated ne times to generate an ne-member ensemble of possi-
ble reference rainfall scenarios (Fig. 5 schematically presents
the whole temporal simulation method). Here, ne = 10, i.e.
an ensemble of 10 members (m1 to m10), is simulated.

Figure 6 shows the reference rainfall simulations for Paris:
both rainfall data and singularities can be compared from the
figure. The maximum observed and simulated singularities
are closer to each other than that of the corresponding rain-
fall values. This may be attributed to the fact that singularities
are less scale-dependent than rainfall and that the observed
and simulated rainfall have different scale ratios (resulting
in the unreliability of comparisons using parameters that are
more scale-dependent) since their largest scales are different
in spite of their smallest scales being equal. Figure 6e shows
that the simulated rainfall (from one member of the ensem-
ble: m10) obeys the P , D, and T reference criteria for the
Paris region. To highlight the internal variability of the 10
reference rainfall scenarios simulated, events where exactly
P mm of rainfall occurs withinD hours’ duration are plotted
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Figure 5. Schematic illustration of the simulation procedure used
in this study to generate temporal reference rainfall scenarios.

separately in Fig. 6f). Figures A1 and A2 in the Supplement
are the same as Fig. 6f) but are for different P , D and T
specifications of Nantes and Aix-en-Provence.

4.2 Comparing simulations with observational datasets

Four metrics possessing different properties have been de-
fined to compare the stochastic simulations of rainfall to the
actual datasets. The first metric is the multi-fractal compari-
son metric (MCM), the second metric is the rainfall compar-
ison metric (RCM), the third metric is the singularity com-
parison metric (SCM) and the fourth and final metric is the
codimension comparison metric (CCM). These metrics are
defined with the general idea that the lower metrics corre-
spond to better simulations and vice versa.

4.2.1 MCM

The MCM is a theoretical metric and is computed based on
the maximum observable theoretical singularity γs (Eq. 7)
from a finite sample size Ns ≈ λ

Ds , where DS is the sample
dimension (Schertzer and Lovejoy, 1992) in each dataset and
in each simulated member of the ensemble

MCM=
1
6

3∑
j=1

2∑
i=1

∣∣∣∣∣γs,obs(i)−
1
10

10∑
k=1

γs,sim(k)(i)

∣∣∣∣∣ , (11)

where j indicates the dataset used (daily, hourly or 6 min), i
denotes the scaling regime (first or second), k indicates the
ensemble member. MCM is closely related to MCI defined
earlier, the only difference between them is that the MCM
uses the UM parameters estimated from DTM analysis of
simulated members, whereas MCI directly uses the UM pa-
rameters selected for simulations from the observed datasets.
Therefore, as expected the MCM computed for all the simu-
lations are very low (shown in Fig. 7) and close to MCI. Since
both the MCM and MCI depend only on the UM parameters
or in other words the multi-fractal characteristics of the se-
ries, they are scale-independent. This means that the MCM

of two time series of same or different temporal resolutions
or lengths are not too different. Since renormalization does
not affect the multi-fractal properties of a series, the MCM is
independent of P ,D and T . Lower values of the MCM imply
that the simulation has multi-fractal properties close to that
of observed data.

4.2.2 RCM

The RCM on the other hand is a more practical metric and is
computed based on the highest rainfall value present in the
dataset and in each simulation member:

RCM=
1
3

3∑
j=1

∣∣∣∣ max[R3(obs(j))]

−
1

10
∑10
k=1max[R3(sim(k),j)]

∣∣∣∣
max[R3(obs(j))]

, (12)

where 3(obs(j))= Lobs(j)
δ(j)

; 3(sim(k),j)= Lsim(k)
δ(j)

; δ(j)=
1 d,1 h,6 min for j = 1,2,3, the indices j,k have the same
meaning as in the MCM.

Lower values of the RCM imply that the extreme be-
haviour of simulations are closer to that of the observed data.
However, RCM is sensitively dependent on scale and P , D,
T . Therefore, as shown in Fig. 7, the RCM values are larger
for cases where P

D
is larger. This might be due to the fact

that the datasets used, because of their shorter lengths are
not actually representative of these specific P , D, T values
that correspond to rainfall events that are more extreme, since
the probability of observing rarer events is higher in larger
datasets.

4.2.3 SCM

The SCM is a metric that, instead of comparing the actual
time series, compares the singularities corresponding to them
and is computed as

SCM=
1
3

3∑
j=1

∣∣∣∣ max[γ3(obs(j))]

−
1

10
∑10
k=1max[γ3(sim(k),j)]

∣∣∣∣
max[γ3(obs(j))]

, (13)

where γ3(obs(j)) =
logR3(obs(j))
log3(obs(j)) ; γ3(sim(k),j) =

logR3(sim(k),j)
log3(sim(k),j) ,

the indices j,k have the same meaning as in the MCM.
Lower values of SCM imply that the simulations are closer

to the observations (after reducing the effect of scale depen-
dence on the comparison) since the singularities correspond-
ing to the simulations and the singularities corresponding to
the observations are close to each other. Although SCM is
scale-dependent it is less sensitive to scale than RCM; more-
over SCM is also dependent on P , D, T . Therefore, SCM
values of all simulations are low (≤ 0.15) even for cases
where P

D
is larger as shown in Fig. 7.
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Figure 6. Paris reference rainfall scenarios (P = 16 mm,D = 4h,T = 0.5 years). (a) Rainfall and (c) corresponding singularities from
observational dataset PD3. (b) Rainfall, (d) corresponding singularities, (e) aggregated rainfall from member m10 and (f) events with 16 mm
cumulative rainfall of 4 h duration from the ensemble double-cascade simulation.

4.2.4 CCM

The main drawbacks of the MCM, RCM and SCM are that
they focus only on either the maximum rainfall values or the
maximum singularities. By contrast, a range of values rather
than threshold values can be used. For instance, the codimen-
sion of singularity c(γ ) takes into account a range of singu-
larities larger than γ , following Schertzer and Lovejoy 1987,

Pr[Rλ ≥ λγ ] ≈ λ−c(γ ), (14)

meaning that c(γ ) can be obtained as the negative of the
slope of a straight line fitted to log–log plot of Pr[Rλ ≥
λγ ] with respect to λ. Equation (14) (where ≈ indicates an
asymptotic equivalence) implies that c(γ ) is almost scale in-
dependent and any metric defined using it should also be not
very scale-sensitive. The CCM is defined as

CCM=
1

3n

3∑
j=1

n∑
i=1

∣∣∣∣cobs(j)(γ3(obs(j))(i))

−
1

10

10∑
k=1

csim(j,k)(γ3(obs(j))(i))

∣∣∣∣, (15)

where γ3(obs(j))(i) =min[γ3(obs(j))] +
1
n
(i− 1)

(max[γ3(obs(j))] −min[γ3(obs(j))]), the indices j,k have
the same meaning as in the MCM, whereas i indexes the
singularities (here n= 10 singularities are used for the
comparison procedure).

The CCM is dependent on P , D, T via the singulari-
ties γ3, therefore in an almost scale-independent manner.
As shown in Fig. 7, the SCM and CCM values are consis-
tently low, implying that it is possible to simulate reference
rainfall ensembles characterized by the required properties
(P,D,T ) while taking into account temporal variability. It is
worth noting here that autocorrelation or its inverse Fourier
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Figure 7. Multi-fractal comparison metric, rainfall comparison met-
ric, singularity comparison metric and codimension comparison
metric for all the different reference rainfall simulations. P , D, and
T are in units of mm, hours and years respectively.

transform i.e. spectral density are generally just second or-
der statistics. Comparing the scaling moment function K(q)
for q = 2 of observed and simulated rainfall is the same as
comparing their respective spectra and therefore their auto-
correlation. The CCM compares c(γ ) instead of K(q) since
they are just the Legendre transforms of each other and each
order of singularity γ corresponds to an order of statistical
moment q. Therefore, the CCM is a more generalized metric
as it readily considers the second-order statistics and more.

5 Discussion

The α,C1 estimates for the second scaling regime and the
scaling breaks listed in Table 4 are quite comparable with
those of earlier studies (Hubert et al., 1993; Ladoy et al.,
1993). These breaks in temporal scaling can be attributed
to the synoptic maximum (Tessier et al., 1996) or in other
words the lifetime of planetary-scale atmospheric structures.
The similarity of scaling breaks observed in all the datasets
justifies the dependence of the scaling break on the value of
the largest planetary spatial scale and its corresponding eddy
turnover time or lifetime. Furthermore, like in earlier studies
(Hoang et al., 2014), the negligible H estimates suggest that
the process is conservative in both scaling regimes. It can be
seen that, while the first, low-frequency scaling regime has a
larger α and a smaller C1, the reverse is true for the second,
high-frequency scaling regime. A similar pattern seems to be
followed for all three conurbations irrespective of the dataset
considered in this study. For a conservative process, this
seemingly inverse relation between α and C1 could be rea-
soned as follows: a larger C1 value implies that the processes
contributing dominantly to the mean occur rarely, since the

probability of the occurrence of singularities contributing to
the mean is highest; this in turn implies that other singular-
ities occur even more rarely or in other words the range of
singularities is rather limited, resulting in the process hav-
ing a reduced degree of multi-fractality, i.e. smaller α values.
On the other hand, C1 values close to 0 in the low-frequency
scaling regime could be because at timescales larger than the
synoptic maximum it can be expected to rain almost always.
Comparing the UM parameter estimates in the corresponding
scaling regimes of all three conurbations, it can be seen that
they are somewhat similar to one another. Similarity of the
parameter values confirms that rainfall at the three different
locations has some common properties, e.g. intermittency. At
the same time, small differences in parameter values can re-
sult in significant changes in the probability of occurrence
of events exceeding a given threshold and therefore possi-
ble location-dependent processes, for instance, different lev-
els of intermittency. Based on the above discussion, it seems
that the rainfall can be considered to be the most intermit-
tent (i) over smaller timescales in Aix, closely followed by
Paris and finally by Nantes, and (ii) over larger timescales in
Aix, closely followed by both Paris and Nantes. This might at
least partially explain why the reference rainfall rules for Aix
seem to be too focused on extreme rainfall events, as seen in
Table 2.

The classical UM framework does not address seasonality
because it assumes a form of statistical stationarity. However,
this framework can be generalised to include a given type of
seasonality (Tchiguirinskai et al., 2007). To keep the present
paper as focused as possible, we only wanted to take into
account a question on possible biases of UM simulation vs.
empirical data due to the difference of periodicity. This is
why we use this simple indicator |nms,obs−nms,sim|

11 , which when
close to 0 implies that the time gap, i.e. the number of months
nms between the maximum and minimum monthly rainfall, is
similar for both observed and simulated rainfall. From Fig.2b
it can be seen that nms,obs for all the three conurbations is
2, and from the simulated scenarios it is found that nms,sim
for Paris, Nantes and Aix are 2.3,1.8 and 2.6 respectively,
resulting in the following indicator values for Paris, Nantes
and Aix: 0.027,0.018 and 0.055, which are closer to 0 than
to 1. With respect to the traditional coefficient of variation,
this simple indicator has the advantage of not being limited
to quasi-Gaussian/second-order statistics.

The idea of defining the comparison metrics was to make a
quantitative, robust yet quick comparison of the simulations
with observed datasets, and they seem quite adequate con-
sidering the objective of this paper. It should be noted that
these metrics (MCM, SCM, CCM) are defined across scales,
unlike the usual scores (such as RCM) which are limited to
the estimation of a given scale. One main limitation in this
paper is that of discrete UM cascades, since they use inte-
ger scale ratios which can be considered to be a non-physical
assumption. The method proposed here can only do what it
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was developed for, i.e. simulating realistic reference rainfall
scenarios to design storm-water management infrastructure.
Simulating rainfall in real time and/or forecasting rain is not
the goal of this method. Furthermore, it cannot be used di-
rectly to simulate additional related variables such as tem-
perature that could be relevant in the design of urban storm-
water management devices including green roofs.

6 Conclusions

Even though several earlier studies have attempted to simu-
late rainfall using a UM approach, we are unaware of UM-
based studies that have proposed procedures to simulate ref-
erence rainfall scenarios. A novel method is proposed here to
simulate reference rainfall scenarios that are indispensable
for hydrological applications, such as designing green roofs
and other generic storm-water management devices. The
suggested discrete-in-scale universal multi-fractal cascade-
based method is used here to stochastically simulate an en-
semble of reference rainfall scenarios with rainfall events ex-
ceeding or equal to P mm within D hours’ duration with a
return period of T years as specified by regional storm-water
management regulations for three conurbations in France.
The extreme variability of P , D and T values, which is a di-
rect result of the extreme space–time variability of precipita-
tion and the underlying atmospheric processes, not only jus-
tifies, but also makes the choice of UM framework rather cru-
cial in producing computationally cheap, realistic reference
rainfall ensembles that have the right statistics and probably
the right physics due to its physically meaningful parame-
ters. Furthermore, four new metrics are proposed to quantify
the performance of the suggested procedure and analyse their
effectiveness. The three metrics (MCM, SCM and CCM),
which are not too scale-dependent, seem to indicate that the
simulations are good. CCM being almost scale-independent
and utilizing a range of values rather than just maxima for
comparison seems to be the most reliable comparison met-
ric. Therefore, the consistently low CCMs show that the
proposed method is indeed an attractive choice to stochas-
tically simulate physically based reference rainfall scenarios.
Although only purely temporal, discrete-in-scale, conserva-
tive simulations over Paris, Nantes and Aix are considered
in this study, this approach could possibly be generalized to
spatiotemporal, continuous-in-scale, non-conservative simu-
lations over other locations as well. While it is true that the
proposed approach is for hydrological applications such as
designing green roofs for rainwater management, observa-
tional data of not only rainfall, but also discharge from the
green roof, will be necessary to validate the entire hydro-
meteorological modelling approach. This would require the
setting up of experimental green roof prototypes designed us-
ing green roof models capable of simulating the hydrologi-
cal behaviour of both substrate and drainage layers with ref-
erence rainfall scenarios as input and defining metrics that

quantify compliance with regulations. These prototypes can
then be monitored to estimate how much they comply with
discharge rules via the compliance metrics. All these ele-
ments will therefore be the subjects of separate publications
in future.
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