Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5879-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.All models are wrong, but are they useful? Assessing reliability across multiple sites to build trust in urban drainage modelling
Related authors
Related subject area
Subject: Urban Hydrology | Techniques and Approaches: Uncertainty analysis
Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model
Multivariate autoregressive modelling and conditional simulation for temporal uncertainty analysis of an urban water system in Luxembourg
Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models
Improving uncertainty estimation in urban hydrological modeling by statistically describing bias
Hydrol. Earth Syst. Sci., 27, 2935–2950,
2023Hydrol. Earth Syst. Sci., 25, 193–216,
2021Hydrol. Earth Syst. Sci., 21, 1077–1091,
2017Hydrol. Earth Syst. Sci., 17, 4209–4225,
2013Cited articles
Annus, I., Vassiljev, A., Kändler, N., and Kaur, K.: Automatic
calibration module for an urban drainage system model, Water,
13, 1419, https://doi.org/10.3390/w13101419, 2021.
Awol, F. S., Coulibaly, P., and Tolson, B. A.: Event-based model calibration
approaches for selecting representative distributed parameters in semi-urban
watersheds, Adv. Water Resour., 118, 12–27,
https://doi.org/10.1016/j.advwatres.2018.05.013, 2018.
Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., and Deletic, A.:
A critical review of integrated urban water modelling – Urban drainage and
beyond, Environ. Modell. Softw., 54, 88–107,
https://doi.org/10.1016/j.envsoft.2013.12.018, 2014.
Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton,
S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P.,
Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B.
D., and Andreassian, V.: Characterising performance of environmental models,
Environ. Modell. Softw., 40, 1–20,
https://doi.org/10.1016/j.envsoft.2012.09.011, 2013.
Beven, K. and Binley, A.: The future of distributed models: Model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–298,
https://doi.org/10.1002/hyp.3360060305, 1992.