Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5879-2022
https://doi.org/10.5194/hess-26-5879-2022
Research article
 | 
24 Nov 2022
Research article |  | 24 Nov 2022

All models are wrong, but are they useful? Assessing reliability across multiple sites to build trust in urban drainage modelling

Agnethe Nedergaard Pedersen, Annette Brink-Kjær, and Peter Steen Mikkelsen

Related authors

The Bellinge data set: open data and models for community-wide urban drainage systems research
Agnethe Nedergaard Pedersen, Jonas Wied Pedersen, Antonio Vigueras-Rodriguez, Annette Brink-Kjær, Morten Borup, and Peter Steen Mikkelsen
Earth Syst. Sci. Data, 13, 4779–4798, https://doi.org/10.5194/essd-13-4779-2021,https://doi.org/10.5194/essd-13-4779-2021, 2021
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Uncertainty analysis
Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model
Simone Ulzega and Carlo Albert
Hydrol. Earth Syst. Sci., 27, 2935–2950, https://doi.org/10.5194/hess-27-2935-2023,https://doi.org/10.5194/hess-27-2935-2023, 2023
Short summary
Multivariate autoregressive modelling and conditional simulation for temporal uncertainty analysis of an urban water system in Luxembourg
Jairo Arturo Torres-Matallana, Ulrich Leopold, and Gerard B. M. Heuvelink
Hydrol. Earth Syst. Sci., 25, 193–216, https://doi.org/10.5194/hess-25-193-2021,https://doi.org/10.5194/hess-25-193-2021, 2021
Short summary
The potential of historical hydrology in Switzerland
Oliver Wetter
Hydrol. Earth Syst. Sci., 21, 5781–5803, https://doi.org/10.5194/hess-21-5781-2017,https://doi.org/10.5194/hess-21-5781-2017, 2017
Short summary
Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models
Manoranjan Muthusamy, Alma Schellart, Simon Tait, and Gerard B. M. Heuvelink
Hydrol. Earth Syst. Sci., 21, 1077–1091, https://doi.org/10.5194/hess-21-1077-2017,https://doi.org/10.5194/hess-21-1077-2017, 2017
Short summary
Improving uncertainty estimation in urban hydrological modeling by statistically describing bias
D. Del Giudice, M. Honti, A. Scheidegger, C. Albert, P. Reichert, and J. Rieckermann
Hydrol. Earth Syst. Sci., 17, 4209–4225, https://doi.org/10.5194/hess-17-4209-2013,https://doi.org/10.5194/hess-17-4209-2013, 2013

Cited articles

Annus, I., Vassiljev, A., Kändler, N., and Kaur, K.: Automatic calibration module for an urban drainage system model, Water, 13, 1419, https://doi.org/10.3390/w13101419, 2021. 
Awol, F. S., Coulibaly, P., and Tolson, B. A.: Event-based model calibration approaches for selecting representative distributed parameters in semi-urban watersheds, Adv. Water Resour., 118, 12–27, https://doi.org/10.1016/j.advwatres.2018.05.013, 2018. 
Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., and Deletic, A.: A critical review of integrated urban water modelling – Urban drainage and beyond, Environ. Modell. Softw., 54, 88–107, https://doi.org/10.1016/j.envsoft.2013.12.018, 2014. 
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992. 
Download
Short summary
A framework for assessing the reliability of urban drainage models is developed in this paper. The method applies observation data from water level sensors and model results for up to 10 years of data for 23 sites in two case areas in Odense, Denmark. With the use of signatures as a method to extract information from the time series, it is possible to differentiate the performance for different model objectives.