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Abstract. Simulation models are widely used in urban
drainage engineering and research, but they are known to
include errors and uncertainties that are not yet fully re-
alised. Within the herein developed framework, we inves-
tigate model adequacy across multiple sites by comparing
model results with measurements for three model objectives,
namely surcharges (water level rises above defined critical
levels related to basement flooding), overflows (water levels
rise above a crest level), and everyday events (water levels
stay below the top of pipes). We use multi-event hydrologi-
cal signatures, i.e. metrics that extract specific characteristics
of time series events in order to compare model results with
the observations for the mentioned objectives through cate-
gorical and statistical data analyses. Furthermore, we assess
the events with respect to sufficient or insufficient categorical
performance and good, acceptable, or poor statistical perfor-
mance. We also develop a method to reduce the weighting of
individual events in the analyses, in order to acknowledge un-
certainty in model and/or measurements in cases where the
model is not expected to fully replicate the measurements.
A case study including several years of water level measure-
ments from 23 sites in two different areas shows that only few
sites score a sufficient categorical performance in relation to
the objective overflow and that sites do not necessarily obtain
good performance scores for all the analysed objectives. The
developed framework, however, highlights that it is possible
to identify objectives and sites for which the model is reli-
able, and we also suggest methods for assessing where the
model is less reliable and needs further improvement, which
may be further refined in the future.

1 Introduction

Danish utility companies invest EUR 800 million annually
to upgrade and rehabilitate urban drainage systems and
EUR 400 million annually for the operation of the existing
systems (DANVA, 2021), which corresponds to EUR 150
and EUR 75 per capita annually. The investments often
rely on simulations with physics-based deterministic mod-
els, which have been widely used in the urban drainage prac-
tice community for several decades. The model simulations
are applied for many different purposes, including, for exam-
ple, prioritising areas for redesign and optimisation, making
comparative assessments of optimal designs, and comparing
with measurement on a regular basis, and as important fea-
tures in digital twins (Pedersen et al., 2021a). The models
tends to gradually become more complex and include in-
creasing levels of detail, and the model software is increas-
ingly equipped with professional output presentation inter-
faces, and thus, expectations of the applicability of models
from stakeholders such as municipal regulators and utilities
are increasing (e.g. Fenicia and Kavetski, 2021). But still,
however, the uncertainty in the model results is not exhib-
ited with the models and, in practice, not explored. George
Box (1979) once said that “All models are wrong, but some
are useful”. With expectations increasing for the models, the
question with which to respond is “how useful are the mod-
els then?” The general aim of this paper is thus to explore
systematic methods that can potentially be upscaled (and au-
tomated) for use with hundreds of measurement sites when
evaluating site-specific performance of large, detailed, dis-
tributed urban drainage models across a range of different
model objectives.
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In the future, digital twins of urban drainage systems are
expected to be a part of the toolbox in many utility compa-
nies (SWAN, 2022). The model performance assessment tool
developed in this paper applies to a living operational digital
twin (Pedersen et al., 2021a) and is used to assess whether
the model used within the digital twin is suitable for repli-
cating certain events/situations. A living operational digital
twin is a virtual copy of the current physical system and can
be held up and compared with reality, as measured through
sensor observations from the system. The knowledge that are
obtained from the evaluation of the operation model in rela-
tion to the real-world observations can be transferred to other
models, such as planning or design models and even control
models, and thereby improve the basis for decision-making
regarding future investments and control decisions.

Several studies in the hydrology and environmental mod-
elling community have highlighted and discussed model per-
formance in relation to the diagnosing of model fidelity
(Gupta et al., 2014). This applies, for example, in relation
to scientific research reporting (Fenicia and Kavetski, 2021)
and in relation to choosing the best model parameters from
several sets of parameters based on principal component
analysis (PCA; e.g. Euser et al., 2013). Determining a best
model parameter set can be accommodated by, for exam-
ple, the post-processing of errors from historical data (Ehlers
et al., 2019) or a signature-based evaluation (Gupta et al.,
2008). Research has focused on quantifying the uncertainty
in model output (Deletic et al., 2012), for example, by us-
ing the generalized likelihood uncertainty estimator (GLUE)
method (Beven and Binley, 1992), which estimates the error
term (del Giudice et al., 2013) or looks into the timing errors
related to uncertainty procedures (Broekhuizen et al., 2021).
Recently, urban drainage modelling research has focused in-
creasingly on model calibration, i.e. reducing the uncertainty
contribution related to (lumped) model parameters based on
mostly relatively few measurement sites and events, and us-
ing classical statistical metrics (e.g. Annus et al., 2021; Awol
et al., 2018; Tscheikner-Gratl et al., 2016; Vonach et al.,
2019). Developing error models that compensate for the lack-
ing adequacy and calibrating lumped model parameters may
provide better model results in the short term and for certain
purposes, but the opportunity to detect the actual source of
the underlying errors that dominate a model may, however,
be missed (Gupta et al., 2014, 2008; Pedersen et al., 2022).
The approach we develop here focuses on reducing the un-
certainty of contributions related to (spatially distributed and
detailed) system attributes, using hydrological and hydraulic
signatures for the statistical evaluations, while in this process
accounting for the uncertainty stemming from spatially dis-
tributed rainfall, known system anomalies, and sensor limita-
tions (through weighting of individual events in the statistical
evaluation).

The assessment of model adequacy relies on comparison
with observations from the system. Monitoring is not always
easy, as urban drainage systems are rough environments, for

example, with particles that can settle and clog equipment,
and flow meters that have difficulties measuring flow cor-
rectly when the pipe is partly filled – a problem that could
be solved in the future with image-based flow monitoring
(Meier et al., 2022). Water level meters are acknowledged
to be fairly accurate, but they can suffer from missing data
values, which can be tackled using several methods, as de-
scribed in Clemens-Meyer et al. (2021). In the present paper,
a model evaluation is conducted for sites with only level me-
ters installed because, in the future, low-cost level meters are
expected to be installed at an increasing number of sites in
urban drainage systems (Eggimann et al., 2017; Kerkez et
al., 2016; Shi et al., 2021). This will provide an opportunity
for using all of these observations in the model evaluation,
provided that the model evaluation methodology is improved
and more structured than in hydrology (Gupta et al., 2012)
and urban drainage today.

In this paper, up to 11 years of level measurements from 23
measurement sites located in two case areas operated by VCS
Denmark (a Danish utility company) are used to demon-
strate several site-specific model evaluation methods. Every
site can provide information about the model performance.
However, manual inspection of the observations is practi-
cally impossible (too labour intensive), and the utility com-
pany therefore needs an automatic calculation of the model
performance (through the comparison of model results with
measurements) for specific conditions at each site. The util-
ity company’s aim is that such analyses will provide a geo-
graphical overview of the model performance across several
model objectives, which can, in future, be applied as an au-
tomatic and scalable tool across hundreds of measurement
sites to help prioritise information and determine where and
when further investigations are needed for error diagnosis of
the models.

Determining whether a modelled time series is replicable,
i.e. consistent with observations in real life, can be done by
applying hydrologic signatures. Signatures are metrics that
extract certain characteristics from the time series of hydro-
logical events, such as the peak level, or the duration of wa-
ter level above a given level. Signatures have been applied in
general hydrology for many years, and many different sig-
natures (primarily based on flow as the measured variable)
have been developed (McMillan, 2020, 2021). Applying sig-
natures from multiple events based on the time series of the
measured water level has recently proven to be a promising
tool for diagnosing errors in urban drainage models (Peder-
sen et al., 2022). By combining signatures with other vari-
ables characterising the direct (in-sewer) or indirect environ-
ment (surrounding states), the tendencies can potentially be
detected. With many sites and many signatures to analyse,
it is easy to lose one’s bearings, and an assessment of the
model adequacy is therefore needed to (1) obtain an overview
of model performance and (2) prioritise where further model
diagnosing efforts should be placed – for different model ob-
jectives and for different measurement sites.
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This paper provides an in-depth look at how model per-
formance can be assessed for large, detailed, distributed ur-
ban drainage models across a range of different model ob-
jectives. However, the recognition of acceptable model and
data uncertainties needs to be addressed. A model perfor-
mance assessment should not be affected by events that lie
way off target in relation to the known modelling capabilities
and limitations. The urban drainage community has only re-
cently started developing tools for anomaly detection in the
urban drainage system caused by physical events, e.g. pipe
blockage, pumps that did not start as planned, and other sud-
den activities in the system (Palmitessa et al., 2021; Clemens-
Meyer et al., 2021). Although many studies have shown that
rainfall varies spatially at scales significant to urban drainage
modelling (Gregersen et al., 2013; Thomassen et al., 2022), a
method that accounts for unrealistic representation of rainfall
spatial variability when using rainfall data from point gauges
in model assessment has not yet, to the authors’ awareness,
been investigated. This paper thus proposes a method for
identifying events that models are not expected to replicate
and that, therefore, should have less weight or be excluded
from the model evaluation.

The investigated methods are explained in Sect. 2, includ-
ing an overall framework for model adequacy assessment,
three model objectives studied in detail (surcharge, overflow,
and everyday events), the context definition (including signa-
ture definitions and the method for the weighting of individ-
ual events), the categorical and statistical methods used, and
the overall criteria employed for assessing overall model per-
formance. Section 3 describes the study area, model, and data
used, Sect. 4 presents and discusses our results, and Sect. 5
summarises our conclusions.

2 Methods

2.1 Framework for model adequacy assessment

To assess model performance, we suggest following five
steps (Fig. 1). A short introduction to each step will be pro-
vided here, and later subsections will go into the details. The
first step is to identify the overall model objective. We need
to start by determining which objective it is that we wish to
assess based on the model simulations. Is it, for example,
the model’s ability to replicate an overflow, or are we maybe
more interested in everyday rain events that cause only low
flows? The next step is to establish the context, based on the
model objective. Signatures related to overflows are not rel-
evant when looking at everyday rain events, and vice versa.
Categorical analysis is conducted as the next step, and here
the events are categorised in accordance with the chosen ob-
jectives. For instance, if modelling of overflows is the objec-
tive, then we can identify if the modelled and observed water
level of the event raises above a defined threshold, i.e. the
crest level of an overflow structure. The true positives are the

events where both model results and observations occur in
the same category, and a statistical analysis of the true posi-
tive events can be carried out in order to assess whether they
perform well. Finally, an assessment is made as to which traf-
fic light categories the model belongs for each site, where
green is for good performance, yellow (orange) is for ac-
ceptable performance, and red (purple) is for poor perfor-
mance. Although we prefer quantitative and objective statis-
tical methods, we accept that, for this initial step of method
development, the distinction between the traffic light cate-
gories relies on subjective expert judgement.

The model adequacy assessment outlined in Fig. 1 does
not serve to reduce model uncertainty directly, as is usu-
ally the case for calibration methods. Rather, the aim is to
assess how well the model is able to replicate reality (by
comparing with observations) for defined model objectives.
When acknowledging that a model has poor performance for
a specific objective in a given area, the end-user may wish
to identify the location of the apparent uncertainties. Model
uncertainty assessment is a large field, and many terminol-
ogy frameworks have been suggested in the scientific litera-
ture, which are, however, not always perfectly aligned across
modelling fields and purposes. In our prior work (Pedersen
et al., 2022), we combined the content of two well-cited pa-
pers by Walker et al. (2003; focusing on uncertainty loca-
tions) and Gupta et al. (2012; focusing on the uncertainty
in model structure) into a unified framework explaining the
locations of uncertainties present in the semi-distributed in-
tegrated urban drainage models, which our work focuses on
(i.e. a lumped conceptual rainfall–runoff module that calcu-
lates runoff to a distributed, physics-based high-fidelity pipe
flow module). Figure 2 is designed to illustrate this uncer-
tainty classification framework in an easy-to-refer-to manner,
so that our discussions related to model uncertainty can be-
come clearer and more structured. Specific symbols are used
to illustrate context uncertainty (here buildings that are not
part of the model), input uncertainty in external forces (here
rainfall) and system attributes (here a pipe), model structure
uncertainty related to physical attributes (here the network
structure), processes (here infiltration), spatiotemporal un-
certainty (here a comparison of two hydrographs), equations
and computation (here binary sequences), and, finally, pa-
rameter uncertainty (here as illustrated by adjusting different
parameters on a control board).

2.2 Model objectives

The utility company defined the objectives based on their in-
terest in model output. The reliability of the operation model
is analysed for the following three objectives in this paper:
surcharges (water level rises above defined critical levels
related to basement flooding), overflows (water levels rise
above an overflow weir crest level), and everyday rain events
(water levels stay below the top of the pass-forward pipe).
These objectives are especially important, as model results
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Figure 1. Identified steps (blue boxes) for assessing model performance. With respect to accommodating colour-blindness, the yellow and
red colours are changed to orange and purple.

Figure 2. Classification of the location of uncertainties in models, based on Walker et al. (2003) and Gupta et al. (2012). Adapted graphically
from Pedersen et al. (2022).

are used to support decision-making in relation to future in-
vestments. If the model does not mirror physical behaviour
adequately, investments can be made based on false premises
– potentially leading to human injury or environmental dam-
age that could have been prevented.

A more in-depth description of the objectives that will be
investigated in the paper is given below (see the illustration
in Fig. 3).

– Surcharges – situations in which peak water levels in
manholes rise above defined critical surcharge levels
(CSLs). In VCS Denmark, the CSL is generally set at
1.5 m below ground level to mirror the typical level of
basements, unless the crest level (CL) or top-of- pipe
(TOP) is within the range of 1.5 m. The CSL must not
be exceeded more often than every second year in order
to provide the optimal service level as required by the
utility company (Odense Kommune, 2011).

– Overflow – situations in which the water level rises
above the crest level and overflows occur. The overflow
criterion only applies to sites equipped with an overflow
weir (either internal or external).

– Everyday rain – situations in which water levels are be-
low the top of the pass-forward pipe (TOP) or a crest
level (CL) if this is lower. Such events occur for minor

rain events that do not lead to exceedance of the pipe ca-
pacity, overflow, or surcharge but that occur quite often.
In Denmark, the design of a full-flowing pipe is based
on rainfall design events for a 2-year return period. The
terminology relating to everyday rain is adopted from
Sørup et al. (2016) and Madsen et al. (2018).

The above definition of the model objectives means that
the water levels in the range between the critical surcharge
level (CSL)/overflow crest level (CL) and the top of the pipe
(TOP) are not included in the analyses. This is intentional
because water levels in this range are often very dynamic due
to the limited volume available in the manholes, and model-
to-observation fits are thus expected to be poor in this range.

2.3 Context definition

Methods for handling unrealistic anomalies can be found
in the literature (e.g. Clemens-Meyer et al., 2021). For this
study, the simple data-cleaning approach by Pedersen et
al. (2021b) was applied, using five techniques (low data qual-
ity determined by the supervisory control and data acquisi-
tion (SCADA) system manufacturer, manually removed data,
out of physical bounds considering the specific sensor, frozen
sensor signal, and outlier data as assessed by an operator). Er-
roneous observation data were interpolated up to 5 min and
otherwise replaced with NaN (not a number) values.

Hydrol. Earth Syst. Sci., 26, 5879–5898, 2022 https://doi.org/10.5194/hess-26-5879-2022
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Figure 3. Illustration of the three model objectives (surcharge, overflow, and everyday events) in relation to water levels in the system (left),
explanations of the symbols used for specific water levels in the figure (middle), and cross sections through a structure equipped with an
overflow weir (right). Overflow occurs for events where the water level rises above the crest level (CL). Surcharge occurs for events where
the water level rises above the critical surcharge level (CSL), which is defined as 1.5 m below ground level (GL) – or if the crest level (CL) or
the top of pipe (TOP) is within the range of 1.5 m, then that level will be the CSL. Everyday events are when the water levels being observed
or modelled are below the top of the pipe (or CL if this level is lower) and above the invert level (IL, or zero point, ZP, i.e. a lower sensor
limit if this level is higher).

Since the three model objectives are related to rain-
induced events and not dry weather conditions, a time-
varying event definition was applied for the time series, with
a focus on water levels that are above the water level varia-
tions on a normal dry weather day influenced by infiltration
inflow (Pedersen et al., 2022). These events were found for
the observed and modelled time series, both separately and
jointly; the joint events were applied in this study.

2.3.1 Signatures

Signatures are metrics that extract specific characteristics of a
time series event, as illustrated for water levels in Fig. 4. Peak
level, duration, and area under curve (AUC) were previously
described in Pedersen et al. (2022). The two first are standard
metrics used in common practice, the third (AUC) calculates
a surrogate volume for an event from a reference level (sim-
ilar to the area under a flow hydrograph but with a different
unit). Relevant signatures must be selected for each model
objective in order to evaluate the model performance. A se-
lection of signatures (Table 1) was based here on an assess-
ment conducted by the author group, including discussion of
this topic with a group of utility experts in hydraulic mod-
elling. The relevant signatures for the objective surcharge are
peak level, duration above the CSL, and AUC above CSL.
Signatures relevant for the objective overflow are duration
above CL and AUC above CL. Peak level is not of interest
for the overflow objective, and therefore, it is not included.
The relevant signatures for the objective everyday events are
peak level, number of peaks, the AUC between the zero point
(ZP)/invert level (IL), and the TOP/CL (the range of rele-

Figure 4. Simple representation of the signatures.

vance; see Fig. 3) and the maximum level rate of change
(5 min smoothing window). These were chosen based on an
assessment that they will provide valuable insights into the
everyday event. Further analyses could have been conducted
to support the relevance, but that lies outside the scope of this
paper.

2.3.2 Weighting of individual events in the categorical
and statistical analyses

A model should, in theory, be able to replicate all measured
events. However, in practice, this is often not the case be-
cause uncertainties can potentially be identified in several
model locations (Fig. 2) and because the system and the
sensors can exhibit abnormal behaviour not included in the
model set-up. These events, where anomalies occur, consti-
tute an outlier in relation to a model’s performance, as the
model is not made to handle these issues. Referring to Fig. 2,
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Table 1. Relevant signatures included for the analysis of three defined model objectives. Units are L= for length and T = for time.

Signature name Unit Description

Surcharge

Peak level L The peak level of the event
Duration above CSL T Duration of time that the level is above the CSL
AUC above CSL L · T Area under curve, calculated with reference to the CSL

Overflow

Duration above CL T Duration of time that the level is above the CL
AUC above CL L · T Area under curve, calculated with reference to the CL

Everyday event

Peak level L The peak level of the event
No. of peaks – Number of local peaks identified. The time series is

converted to a rolling median of 5 min, and peaks are
identified by applying the SciPy code find_peaks, with
a prominence of 3 cm and a width of 2 min (Virtanen et
al., 2020)

AUC between ZP/IL and TOP/CL L · T Area under curve, calculated with lower threshold
(maximum level of either ZP or IL) and upper thresh-
old (minimum level of either TOP or CL)

Max level rate of change (5 min resolution) L/T The maximum level rate of change within a rolling win-
dow of 5 min duration

this would indicate a location of uncertainty in the context
area, as the model does not have the primary focus to handle
all situations. It is also generally accepted that the model out-
put is very sensitive to the input of rain, in terms of spatial
coverage. When an intense storm event only affects a lim-
ited physical area, where only few rain gauges are monitor-
ing the rainfall, the corresponding rainfall input may not be
correct, generating high degrees of uncertainties in the model
grounded in the location input (Fig. 2). This uncertainty may
be reduced with rain radar input, but this possibility has not
been investigated in this study. The same occurs for the sen-
sors. If the sensor’s range is shorter than the water level that
it is measuring, then this may affect the time series of the
observations, but not necessarily all the signatures would be
affected. An upper limit of the sensors may furthermore be
exceeded by the water level, and the peak level will reach
a limitation and thereby be wrong. However, the signature
duration above CL may not be wrong if only the sensor is
placed above the crest level. Depending on the importance
of the model investigated, quantitative measures of different
uncertainty locations can be included in the weights.

In this study, a method was developed to reduce the
weighting of individual events in the categorical and sta-
tistical analyses in order to acknowledge the uncertainty in
model and/or measurements in cases where the model is not
expected to fully replicate the measurements. The weights
for each event were, for this analysis, calculated based on the
following rules.

– Events for which the peak level has reached the upper
sensor limitation were given a weight of zero for the
signatures, i.e. peak level, AUC above CL, and AUC
above CSL.

– Events for which there is a known system anomaly were
given a weight of zero for all signatures. Known system
anomalies were identified based on manual inspection
of the outlier events.

– Events for which the rain input uncertainty is partic-
ularly high, quantified by the coefficient of variation
(CV) of the rain depth of the rain gauges within a
5 km surrounding (Pedersen et al., 2022), were given a
weight from zero to one. The weight w was calculated
as w = 1−CV (for CV≤ 0.5), w = 0.5 · (1−CV) (for
0.5<CV≤ 1) and w = 0 (for CV>1).

2.4 Categorical analysis

Analysing model performance for specific objectives sug-
gests that events can fall into different categories (e.g. over-
flow or no overflow). For relevant signatures, the categori-
cal analysis aims to identify, for each event, if observed and
modelled results are above or below a given threshold, for
example, the crest level for the objective overflow (Fig. 5).
If both a modelled and observed event is above the thresh-
old, then the event is categorised as a true positive (TP).
If the number of TPs, relative to the false positives (FPs –
modelled, but not observed, threshold exceedance) and false
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negatives (FNs – not modelled, but observed, threshold ex-
ceedance), is too low, then the model simulation of the events
is not correct, categorically speaking, and the confidence, or
trust, in the model is low.

Several metrics can be applied to assess the categorical
performance of the model; however, for this analysis, where
we are dealing with rare events, the metrics should not in-
clude the true negatives (TNs). The metrics chosen is thus
the critical success index (CSI; Bennett et al., 2013), which
takes the true positives (TPs) compared to all observed or
modelled positives (TPs, FPs, and FNs).

CSI=
TP

TP+FP+FN
. (1)

For this categorical analysis, the weights introduced above
were considered so that events withw<0.5 were disregarded.

2.5 Statistical analysis

The events categorised as true positives can be assessed sta-
tistically. Scatterplots of multi-event signature comparisons
can be made with observation signature values for each event
on the horizontal axis and modelled values on the vertical
axis. A 1 : 1 line indicates the perfect model-to-observation
fit (Fig. 6), and three different ways of analysing the scat-
terplots were assessed in this paper, namely linear regression
(Fig. 6, left), an indicator function (Fig. 6, middle), and the
normalised root mean square error (RMSE) method (Fig. 6,
right).

2.5.1 Linear regression

Linear regression is a simple statistical method to assess
whether there is a correlation between two variables, in this
case the observed and modelled signature values. If there is
a cluster along a straight line, then this will indicate a corre-
lation of the two variables. A weighted least squares (WLS)
regression model was used to include the individual event
weights (see Sect. 2.3.2). A fixed intercept of zero was used,
as the theory indicates that this would be the optimal solu-
tion. The slope β was found by minimizing the weighted sum
of squares (WSSs) as follows (Eq. 2):

β from min
(

WSS(β,we)=
∑n

e=1
we
(
ym,e− yo,eβ

)2)
, (2)

where yo is the signature observation value, ym is the sig-
nature modelled value, e is the event number, and we is the
weight of event e. The model is found adequate if the slope is
1, and a slope different from 1 (and indicated by a dashed line
in Fig. 6, left) may suggest there is room for improving the
model. In practical terms, the WLS regression was conducted
with the Python package, scikit-learn, linear regression with
sample weights (Pedregosa et al., 2011).

Four assumptions need to be valid to conduct weighted lin-
ear regression, namely linearity (linear relationship between

yo and ym), homoscedasticity (the variance of the residuals is
the same for all yo), independence (the residuals are indepen-
dent of each other), and normality (the residuals are normally
distributed; Olive, 2009).

2.5.2 Indicator function

The score for the indicator function has a binary output of
I . If the event is within the acceptance criteria (AC; Eq. 3;
Taboga, 2021), indicated by the purple area in Fig. 6 (mid-
dle), then I will have a value of 1 (Eq. 3), and a total score
across all events was calculated by considering the weights
introduced in Sect. 2.3.2 as follows (Eq. 4):

IAC (e) :=

{
1 if e ∈ AC
0 if e 6∈ AC (3)

score=
∑n
e=1IAC · we∑n

e=1we
. (4)

A good comparison gives a value of 1, as all events will be
within the indicator function’s acceptance bounds. The ac-
ceptance bounds were, for this analysis, made by a combina-
tion of a relative and an absolute criterion and were, for all
sites, assessed to be the same as indicated in Table 2.

2.5.3 Normalised RMSE

The RMSE function calculates the vertical distance (of mod-
elled values) to the 1 : 1 line to find the residuals in the model
performance (Fig. 6, right). RMSE is directly related to data
and needs to be normalised to be (meaningfully) compared
across sites and signatures. This can be achieved by dividing
with, for example, the maximum value of the observations
or the interquartile range (IQR(y0)) of the observations (the
difference between the 75th and the 25th percentiles). As the
maximum value relies on extreme events, it is not consid-
ered to constitute a robust normalisation solution, and the
IQR was thus chosen, as follows (see Eq. 5):

RMSE(IQR)=

√
1
n

∑n
e=1(ym− y0)2

IQR (y0)
. (5)

The smaller the RMSE(IQR) value, the better the model per-
formance.

2.5.4 Score

An individual score (slope, score, or normalised RMSE, re-
spectively) for each signature was calculated, which can be
summarised to one score for the following given objective:

Objective scorem =

∑z
s=1scores,m

z
, (6)

where score is the different score functions given by Eqs. (2),
(4), and (5), s denotes signature, m is the method (either lin-
ear regression, indicator function, or normalised RMSE), and
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Figure 5. Contingency tables (b) are used to categorise each event according to whether it is above or below a given threshold. The solid
line (a) is the 1 : 1 line, the blue points are the calculated signatures for each event (modelled vs. observed value), and the dotted lines
represent the threshold used to distinguish positives from negatives.

Figure 6. Three methods of statistical analyses of the true positive events, where both simulated and observed values are in the same (true
positive) category. Linear regression (a), an indicator function defined using an absolute scale (b), and normalised root mean square errors
(RMSEs) are shown (c). The solid lines are the 1 : 1 lines, and the blue points are the calculated signatures for each event (modelled vs.
observed values).

z is the total number of relevant signatures for the given ob-
jective. The optimal score is individual for the three methods,
and direct comparison is therefore not possible.

2.6 Assessment criteria of the model performance score

As a last – and illustrative – step, the scoring of the model
performance was categorised, as indicated in Fig. 1. The cat-
egorical analysis outcome was classified as either sufficient
or insufficient, and the statistical analysis outcome was clas-
sified by means of a traffic light assessment (green is good
performance, yellow (orange) is acceptable performance, and
red (purple) is poor performance). The criteria for which
score falls into each assessment category were here solely
based on the subjective experience from the author group
(Table 3). One consideration was not to be too hard on the
model, as it is expected that several other factors affecting the
weights were not included in the calculations. These distinc-
tion criteria can potentially differ, depending on the model
objective, and be tuned to yield results that support the end-
user’s preferences. However, there is limited prior experience
with dealing with criteria as such, as the method and the am-
bition to conduct multi-site analysis is new. Prospectively, fu-

ture experience with the methods will strengthen the choice
of criteria.

3 Study area, model, and data

The analysis covers two case areas of Bellinge and Dalum,
which are in the service area of the utility company, VCS
Denmark. The areas are characterised by being suburban ar-
eas with minor surface gradients. The urban drainage sys-
tem analysed is a combined system, and both areas are up-
stream from a main collecting pipe transporting the com-
bined sewage to the treatment plant. The case areas for this
study includes 23 sites with water level meters installed, as
highlighted in Fig. 7. The site naming is systematic and in-
cludes a reference to where the manhole is located (charac-
ters 1–3), which system type it is (character 4; F is a com-
bined system, and R is a rainwater system), a forthcom-
ing number (characters 5–6), an indication (character 7) of
whether it is a basin (B), if it is being regulated (R), or if
it is an overflow structure (Y), and a further suffix in some
cases to indicate the location of this manhole within a larger
hydraulic structure. Some sites contain more than one level
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Table 2. Values representing the acceptance criteria for different signatures. The acceptance bounds are based on the combination of both the
relative and absolute acceptance criteria. The absolute values relate to the 1 : 1 line, and the relative scale gives the slope range of acceptance.
rv is the relative value which is, in this case, set to 0.7, ym is the modelled signature value, and yo is the observed signature value.

Relative scale

rv> ym
yo
< 1

rv
0.7> ym

yo
<1.43

Absolute scale

Signature

Peak level (m) ym = yo± 0.1
Duration above CSL (min) ym = yo± 20
Duration above CL (min) ym = yo± 20
AUC above CSL (m ·min) ym = yo± 2
AUC above CL (m ·min) ym = yo± 5
AUC between ZP/IL and TOP/CL (m ·min) ym = yo± 10
No. of peaks (–) ym = yo± 2
Max level rate of change (5 min resolution; m /min) ym = yo± 0.01

Table 3. The criteria for the categorisation of the model performance, solely based on the utility company’s preferences. x denotes the output
from each method (slope, score, and RMSE(IQR)).

Categorical analysis

Sufficient CSI≥ 0.6
Insufficient CSI< 0.6

Statistical analysis

Linear regression Indicator function Normalised RMSE

Ideal value 1 1 0
Green 0.70>x<1.43 x>0.70 x<0.60
Yellow (orange) 0.40>x<2.50 x>0.40 x<1.20
Red (purple) 0.40≤ x ≥ 2.50 x ≤ 0.40 x ≥ 1.20

meter. The normal flow direction of the wastewater is illus-
trated, as are the combined sewer overflow locations (green
dots). In Dalum, there are many ring connections, where the
combined sewage can be directed to several catchment areas
in the case of high water levels. This is, however, not indi-
cated in the sketch.

The applied model is a semi-distributed “integrated urban
drainage model” (Bach et al., 2014). It includes a lumped
conceptual rainfall–runoff module that calculates runoff to
a distributed, physics-based pipe flow module, computa-
tionally carried out in the software MIKE URBAN (DHI,
2020). The model set-up is described in detail in Pedersen
et al. (2021b) and is openly accessible. The rainfall–runoff
calculations are based on the time–area model (model A)
– infiltration–inflow to pipes is not included. The model in-
cludes approximately 3500 nodes, and the imperviousness of
sub-catchments was calculated based on a categorisation of
the surface from satellite data using spectral analysis. Rain
input was measured by two rain gauges in the proximity of

the study area (Fig. 1). The hydraulic reduction factor was
set at 0.9, and the model was run continuously for approxi-
mately 10 years (2010–2021), with a time step of 5 s in the
pipe flow module. Water level time series from 23 sites in
the study area are included in the analyses; these have dura-
tions between 2 and 11 years and include between 127 and
2246 rain-induced events, with the event definition described
in Pedersen et al. (2022). Observations and model output are
in this paper presented in water level time series with a tem-
poral resolution of 1 min.

Further description of sites and models implemented in
MIKE URBAN and the Storm Water Management Model
(SWMM) are available in Pedersen et al. (2021b) for
Bellinge, and Pedersen et al. (2022) provides a description
of three sites in these areas of F67F47Y, G73F010, and
G71F05R_LevelBasin, including information about the hor-
izontal area of the structure, the levels, crest widths and im-
perviousness, and total areas.
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Figure 7. Observation sites in the case areas. Many internal connections between the different areas are present in Dalum, but these are not
illustrated in the figure. The node names in the centre of the sub-catchments refer to the connected manholes downstream. The background
map is from OpenStreetMap (2022).

4 Results and discussion

4.1 Direct time series comparisons for different
objectives

The time series analysed were split into events, as illustrated
for six examples of events in Fig. 8. The different events are
examples of surcharge, overflow, and everyday events in the

different columns, and the rows indicate two different sites
(F64F46Y, Fig. 8a–c, and F70F70Y_LevelSump, Fig. 8d–f).
Observed water levels (red dots and line) and modelled water
levels (blue lines) are plotted, and weights (see Sect. 2.3.2)
and signatures related to the specific objectives are shown
in the top right-hand corner of each panel. The grey areas
illustrate the range in which the peak of the observed and
modelled water levels should be in order to be considered
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true positives and be included in the statistical analysis. Each
event can be visually interpreted, and different model repli-
cations can be seen for the events. Figure 8e illustrates how
the model replicates the objective overflow, even though the
model does not replicate the rest of the event. In this spe-
cific case, the event is not replicated well below crest level
due to a missing global control setting for the pump emp-
tying this site. The opposite is seen for Fig. 8a, where the
objective surcharge is not replicated very well (a heavy over-
estimation of the peak level by the model), but the rest of the
event shows better performance. However, this is not criti-
cal if we are aiming to figure out the performance for critical
surcharge levels. Figure 8d–f clearly illustrate that the lower
sensor limitation (zero point, ZP) differs from the invert level
(IL). As illustrated in Fig. 8f, the area of interest is limited to
the level between ZP and TOP. This also illustrates that, with
the given objectives in this paper, the water level range be-
tween TOP to CL for site F70F70Y_LevelSump will not be
included in the analyses.

In the top right-hand corner of all panels in Fig. 8, the
weights of the events are indicated (see Sect. 2.3.2). The
term weight rain refers to weights calculated from the spatial
rainfall information, and weight obs. refers to weights deter-
mined from information about known system anomalies and
the sensor upper limitation. Figure 8b and d show a very low
weight on the rain, indicating that these events will not be
valued highly in the further analysis. Furthermore, Fig. 8d
shows that the water level has reached the upper sensor limi-
tation, and the entire event therefore receives a weight equal
to 0 for peak level and AUC above CSL. The duration is not
affected by the sensor upper limitation, and therefore, this
signature will still count in the further analysis of this signa-
ture; however, it will still have a weight of 0.23 from the rain
gauge uncertainty.

4.2 Illustration of different categorical and statistical
scores

To illustrate the procedure of the categorical and statistical
analysis, multi-event signature comparison plots are shown
for three sites for the objective overflow in Fig. 9. Multi-
event signature comparison plots for all signatures and ob-
jectives across all 23 sites can be found in the Supplement.
Each column in Fig. 9 illustrates a signature, i.e. peak level,
duration above CL, and AUC above CL, respectively. The
grey areas on the peak level comparison plots illustrate the
range of true positives for the objective overflow. The weight
of the events is indicated by the coloured scale, where events
assigned a weight of 0 (red colour) do not have any influence
on the output of the methods. The true positives for the objec-
tive overflow are plotted in the last two columns. Important
elements are illustrated for the three investigated statistical
analyses (see Fig. 6), namely linear regression (with slope as
a black dashed line), indicator function (with the purple area
defining the acceptance bounds), and the normalised RMSE

(with the IQR indicated by vertical blue lines, Q25 and Q75).
The score values from the three methods are indicated below
each subplot.

For linear regression, Fig. 9c illustrates an event at mod-
elled value 15, which is identified with an uncertain rain
gauge input that is given the weight of zero and therefore
does not affect the slope. The slope from the linear regres-
sion is, on the other hand, affected in Fig. 9i, where a few
very large observation values force a low slope gradient even
though modelled values seem to be higher at low observa-
tion values. For Fig. 9e and f, the slope is very close to the
1 : 1 line, indicating a close-to-perfect fit with the model.
For the indicator function, the purple area illustrates the area
where the acceptance criteria are met. Events that are within
this area have an indictor value of 1, and their weights are
counted in the numerator of Eq. (4), whereas the sum of all
the weights are counted in the denominator. The area of ac-
ceptance is of great importance, as can be seen for F64F46Y
(Fig. 9c), where many events are inside the acceptance crite-
ria, which is also indicated by the score of 0.99. The abso-
lute acceptance criteria are the same for all sites for each sig-
nature. It can be discussed if the acceptance criteria should
be the same for all sites or if there is site-specific interest
that should be taken into account, especially when the utility
company sets this evaluation into operation. The IQR are il-
lustrated with the vertical blue lines, and looking at Fig. 9f,
a range of approximately 15 m ·min is seen, which is applied
to normalise the RMSE. If the error is larger than the IQR,
the normalised RMSE will not be within zero to one, and
it is therefore difficult to compare values between sites and
signatures.

The last site G80F66Y_Level1, in Fig. 9g–i, does not show
any weights. For this site, there is only one rain gauge within
a 5 km distance of the upstream catchment, and the coeffi-
cient of variation cannot be calculated for a single rain gauge.
All events thus have the same weight of 1.

4.3 Comparison of methods for statistical analysis

Each categorical and statistical method relies on different
metrics, as shown in Fig. 9. In Table 4, the results from for
the objective overflow based on the three statistical methods
are shown with hatched and colour-coded scorings (Fig. 1;
Table 3). Here results are shown only for the 14 sites where
overflow is either modelled or measured. The overflow scores
are highlighted and were calculated as the average of the two
signatures indicated with more transparent colours (Eq. 6).
The differences between the methods are large, e.g. where
the normalised RMSE method does not generate a very low
and optimal score. The first thing to notice is that we have
two sites, F70F10R and F71F10F_LevelInlet, where the cat-
egorical analysis shows sufficient performance (cells with no
hatch; CSI>0.6). From the CSI values provided in Table 4,
many values appear above 0.5, indicating that at least half
of both modelled and observed positive events were simu-
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Figure 8. Examples of time series plotted for two sites (rows). F64F46Y (a–c) and F70F70Y_LevelSump (d–f). The objectives are illustrated
in the columns as surcharge, overflow, and everyday events, respectively. The values indicated in the top right-hand corner of each subplot
indicate the values of the signatures for the three objectives for the modelled event (blue) and the observed event (red). The weights of the
rain gauge uncertainty are indicated, in addition to the weight obs., which is a combination of the weights from known system anomalies and
indications of whether the sensor reached an upper limitation.

lated in the same category. However, the threshold for CSI
was set to be above 0.6 to have sufficient categorical per-
formance (Table 3), and therefore, it is not enough. Two of
the sites, F70F10R and F71F10F_LevelInlet, perform cate-
gorically well (no hatched cells) and are acceptable or good
for all three statistical methods (yellow/orange and green
colours only) when focusing on the objective overflow (Ta-
ble 4). Looking at G80F66Y_Level1 in Table 4 illustrates
that the duration is assessed to be good for the linear regres-
sion method. However, when looking at Fig. 9h, a different
reality emerges. The variance of data is large, and because of
three large observation values below the 1 : 1 line, the slope
is, coincidentally, within the ideal range. The linear regres-
sion method could therefore potentially be further improved
by including the variance in data in the assessment.

Each method has advantages and disadvantages, as they
are based on selected statistical metrics favouring specified
features in the modelled and observed signatures. The iden-
tified pros and cons for each method are indicated in Table 5,
together with suggestions for improvements in the methods.

4.4 Model performance for all sites and for all
objectives

In Table 6, the results for all three objectives using the linear
regression statistical analysis method are summarised across
all 23 sites. Looking at the performance score for all objec-
tives, it can be easily highlighted where the model performs
well for different objectives. What is first seen is that, for
many sites, a better performance score is obtained for the ob-
jective of everyday events than for the objectives of surcharge
and overflow. This is not a surprising result for VCS Den-
mark, as until now the utility company has compared model
results with observations manually. Events falling within the
range of the everyday events were much more often applied
in comparisons, as they, by nature, occur more often. And
when they fit – or detective work showed no more misun-
derstandings in the model – it was simply assumed that this
also applied to the surcharge and overflow events. This was
not a correct assumption, as is seen in Table 6. When the
model is primarily applied for planning and design purposes,
i.e. for the overflow and surcharge, then this is a wake-up call
for the utility company to change its practices. The sites fur-
thest upstream in the catchment area (F67F47Y, F64F45Y,
F73F038, F74F040, and G80F66Y_Level1; see Fig. 7) gen-
erally perform more poorly than the rest of the sites. This
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Figure 9. Multi-event signature comparison plots for different sites (rows) and signatures (columns). (a, d, g) The true positive ranges are
indicated (grey area), where peak level is above CL for both observed and modelled events. (b, c, e, f, h, i) The true positive events are the
only events plotted for the two signatures, where the duration above CL and AUC above CL is seen. An illustration of important elements for
the three methods, i.e. linear regression (dashed black line), indicator function (acceptance areas with purple), and normalised RMSE (blue
lines indicating IQR), is given. The weight of each event is illustrated with the colour bar. The 1 : 1 line is plotted with a solid grey line. The
score of the statistical methods is indicated below the multi-event signature comparison plot.
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Table 4. Results from the categorical and the three statistical analysis methods for the objective overflow. Colour-coding as described in
Fig. 1 and Table 3.

can be due to the fact that the outliers observed cannot be
averaged-out downstream, also that the upstream structures
(pipes and manholes) most often are much smaller in diam-
eter than the structures at downstream sites, and that water
level variations are thus most probably more dynamic at up-
stream sites. In theory, the model should be able to simulate
the system just as well in the upstream sites, and there should
be an increasing awareness of this issue.

For surcharge, many blank fields are seen in Table 6, as not
much data are available for these more extreme events. The
categorical analysis shows an insufficient performance for
many sites, indicated by a hatched white cell – often mean-
ing that the model simulated a surcharge event that was not
observed in reality.

Regarding the different signatures, the number of peaks
and the different AUCs generally perform more poorly than
the other signatures. The AUC is a combination of both a
level and a time unit and can therefore be, due to complexity,
harder to simulate, but it could also be that diagnostic tools
(Pedersen et al., 2022) can identify where the errors occur so
that the model can be improved.

The overall score for each objective was calculated as the
average of the relevant signatures (as described in Eq. 6).
However, when regression slopes are extreme, as, for ex-
ample, for the number of peaks for everyday events at the
site F70F20P_LevelPS (regression slope is 240), the overall
score will naturally be affected. A very low score of, for ex-
ample, 0.02 will not affect the objective score as much but
is naturally an extreme as well. It can be discussed if the ob-
jective score should be an average of the relevant signatures,
the maximum or the minimum, or if more advanced calcu-
lations should be implemented, but no matter what is agreed
upon, one must also have an eye on the regression slopes for
different signatures and on the uncertainty in these.

The assessment of the traffic light could have been analyt-
ically conducted by interviewing several experts or making
further analysis. Because the methodology is rather new, as
is the signature method that the work is based on, the hy-
pothesis is that experts would not yet be familiar with this
analysis, and efforts to obtain input from more experts would
thus not be fruitful. For now, this final step was limited to be
an assessment based on the authors’ experience.
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Table 5. The advantages, disadvantages, and improvements are outlined for the three methods.

Linear regression

Advantages – Illustrates nicely the direction of the error (above or below slope 1)
– Few parameters, easy to understand
– Weights are easy to include

Disadvantages – The large values count too much
– Heteroscedasticity occurs, and confidence intervals cannot be applied

Improvements – Include the variance of the slope
– The weight function could include the signature value to downgrade the
importance of the large ones

Indicator function

Advantages – Weights are easy to include
– Do include an acceptable residual

Disadvantages – General absolute values in acceptance criteria are hard to set
– Do not tell anything about the size of the residual

Improvements – Make site-specific acceptance criterion instead of the general
acceptance criteria

Normalised RMSE

Advantages – Include the size of residual

Disadvantages – Hard to make comparable if the residual is larger than the variance in data
– If normalised by max value, dependent on very extreme value
– Do not apply weights
– Truncated data which are not distributed normally
– Hard to find an optimal normalisation range. If we rely on maximum val-
ues, they do not occur that often and would make a skewness towards long-
monitored sites. The residuals are larger than the IQR. This makes it hard to
compare across sites and signatures, as the score will be above 1

Improvements – Finding a suited normalisation value would improve the method

Histograms of the linear regression slopes and potential
correlations of these slopes with different catchment charac-
teristics were investigated without finding clear tendencies,
and these preliminary investigations are thus placed in the
Supplement.

4.5 Communication to utilities

This analysis is intended to be applied in the service area
of the utility company VCS Denmark for at least 165 sites,
and an easy-to-understand overview is therefore needed. To
communicate the performance score, maps will be gener-
ated because these provide a good overview of performance
in relation to where the sites are located (see the example
in Fig. 10). Together with score tables (Table 6) and multi-
event signature comparison plots (Fig. 9), these will provide
a strong basis for communication concerning the reliabil-
ity of models and a basis for improving the models and the
attribute representation of the physical assets. Performance
scores for the three statistical methods can be found in the

Supplement, together with performance maps for all objec-
tives using the linear regression method.

4.6 Useful models?

With increasing digitalisation, where the amount of observa-
tion data increases and operational simulation models in dig-
ital twins need to be accurate (Fuertes et al., 2020; Karmous-
Edwards et al., 2019), the modelling community – across
practice and research – needs to discuss how we evaluate
whether the simulation models are sufficient for a given
task. We suggest, in this paper, a structured methodology
for model evaluation, in which there is room for further im-
provement. How do we, for example, obtain a variety of sen-
sor types incorporated into the framework? In this paper, we
furthermore introduce weights to consider input-dependent
uncertainty that affects our models, but how can other uncer-
tainty contributions, as described in Fig. 2, be considered in
an evaluation, and how can the assessment be used to guide
model improvement? In Pedersen et al. (2022), we showed,

https://doi.org/10.5194/hess-26-5879-2022 Hydrol. Earth Syst. Sci., 26, 5879–5898, 2022



5894 A. N. Pedersen et al.: All models are wrong, but are they useful? Assessing reliability across multiple sites

Table 6. Table of scores for linear regression with weighted events. The colours refer to the overall performance score; good (green),
acceptable (yellow/orange) and poor (red/purple). The white area is where there are not enough true positives to evaluate a score (no.<3; see
Fig. 2). The hatched areas refer to the categorical analysis where too many events are not true positive, meaning that they are not modelled or
observed. The grey/black area indicates where analysis is not possible due to physical constraints at the site; for example, not all sites have a
crest level, and evaluation of overflow is thus not possible.

for example, that soil moisture (which is not included as a
model state in the simple rainfall–runoff model from paved
areas used and thus can be denoted a surrounding state that is
outside the model context) had a systematic impact on the re-
sults of the model-to-observation comparison. Soil moisture
variability is in the present work not included in the weight-
ing of events, but we could discuss if it should be, or if its in-
fluence is better addressed by using a more complex rainfall–

runoff model formulation. This may end up in an assessment
that there is still residual parameter uncertainty, and we then
first suggest performing aa responsibly calibration, as, for ex-
ample, Deletic et al. (2012) also suggest.
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Figure 10. Map of the performance for overflow using the method of linear regression. The upstream catchment area of the site is mapped,
and the naming in the catchment refers to the overflow structure that is mapped. The catchment area represents the case areas. The urban
areas in between the catchment areas are not connected to the case areas, as they have a separate storm water system. Background map is
from OpenStreetMap (2022).

5 Conclusions

Large, detailed, distributed simulation models are widely ap-
plied in utility companies. When routinely comparing model
results with in-sewer-level measurements from an increasing
number of sites, uncertainties previously not realised become
visible. The slightly provocative question (how useful are the
models then?) highlights the need for methods to systemati-
cally assess and investigate model performance. The herein-
developed assessment method focuses on highlighting and
potentially reducing uncertainty contributions related to (spa-
tially distributed and detailed) system attributes based on the
following five consecutive analysis steps: objective identifi-
cation, context identification, categorical analysis, statistical
analysis, and assessment. The method is based on hydrologic
and hydraulic signatures, which are metrics extracting cer-
tain characteristics of (modelled and measured) time series
events. Three model objectives were identified for this study,
namely surcharge, overflow, and everyday events, and rele-
vant signatures for each of these objectives were determined.
Three methods of multi-event statistical analysis of signa-

tures were furthermore proposed and investigated, i.e. linear
regression, an indicator function, and a normalised RMSE
method. The results highlighted the differences between the
statistical methods but also areas in which further improve-
ments can be made, notably including tests for statistical sig-
nificance, inclusion of site-specific assessment criteria, and
normalising performance scores across methods, objectives,
and sites. The final step includes a signature-based assess-
ment for each measurement site with sufficient or insufficient
categorical performance and for true positive events also with
good, acceptable, or poor statistical performance. Individual
events were weighted in the statistical analyses by acknowl-
edging uncertainty due to spatial rainfall variability in the
proximity of the site, known system anomalies, and sensor
limitations.

A case study covering 23 sites in two areas was conducted
using the developed framework, which highlighted a num-
ber of model uncertainties for certain sites. For the objec-
tive overflow, only three among 14 investigated sites were
categorised as exhibiting sufficient categorical performance,
whereas the remaining 11 sites had too many events where
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the observed and modelled signatures fell into different cat-
egories. Generally, the model performed better for everyday
events, compared to surcharge and overflow events, which is
not surprising due to the previous tradition of the model vali-
dation in the local utility company (VCS Denmark). With the
developed method, the models are useful for some signatures
but clearly inadequate for others, especially for some sites.
Further improvements may include a general assessment of
the performance criteria and more elaborate statistical anal-
ysis, as suggested in the paper. Our results point to a general
need for more research on model performance and error de-
tection methods that can be applied when comparing simu-
lation results from large, detailed, distributed urban drainage
models with observations from tens, hundreds, and perhaps
thousands of sensor locations.
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