Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5835-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5835-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: On uncertainties in plant water isotopic composition following extraction by cryogenic vacuum distillation
Haoyu Diao
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
University of Chinese Academy of Sciences, Beijing 100049, China
Philipp Schuler
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
Gregory R. Goldsmith
Schmid College of Science and Technology, Chapman University, Orange, CA 92866 USA
Rolf T. W. Siegwolf
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
Matthias Saurer
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
Related authors
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
Olga V. Churakova (Sidorova), Marina V. Fonti, Matthias Saurer, Sébastien Guillet, Christophe Corona, Patrick Fonti, Vladimir S. Myglan, Alexander V. Kirdyanov, Oksana V. Naumova, Dmitriy V. Ovchinnikov, Alexander V. Shashkin, Irina P. Panyushkina, Ulf Büntgen, Malcolm K. Hughes, Eugene A. Vaganov, Rolf T. W. Siegwolf, and Markus Stoffel
Clim. Past, 15, 685–700, https://doi.org/10.5194/cp-15-685-2019, https://doi.org/10.5194/cp-15-685-2019, 2019
Short summary
Short summary
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing temperature-sensitive Siberian ecotones, to assess climatic impacts after six large stratospheric volcanic eruptions at 535, 540, 1257, 1640, 1815, and 1991 CE. Besides the well-documented effects of temperature derived from tree-ring width and latewood density, stable carbon and oxygen isotopes in tree-ring cellulose provide information about moisture and sunshine duration changes after the events.
Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, and Gregory R. Goldsmith
Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, https://doi.org/10.5194/hess-23-1199-2019, 2019
Short summary
Short summary
We used stable isotopes of xylem water to study differences in the seasonal origin of water in more than 900 individual trees from three dominant species in 182 Swiss forested sites. We discovered that midsummer transpiration was mostly supplied by winter precipitation across diverse humid climates. Our findings provide new insights into tree vulnerability to droughts, transport of water (and thus solutes) in soils, and the climatic information conveyed by plant-tissue isotopes.
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Kathrin M. Keller, Sebastian Lienert, Anil Bozbiyik, Thomas F. Stocker, Olga V. Churakova (Sidorova), David C. Frank, Stefan Klesse, Charles D. Koven, Markus Leuenberger, William J. Riley, Matthias Saurer, Rolf Siegwolf, Rosemarie B. Weigt, and Fortunat Joos
Biogeosciences, 14, 2641–2673, https://doi.org/10.5194/bg-14-2641-2017, https://doi.org/10.5194/bg-14-2641-2017, 2017
Arndt Piayda, Maren Dubbert, Rolf Siegwolf, Matthias Cuntz, and Christiane Werner
Biogeosciences, 14, 2293–2306, https://doi.org/10.5194/bg-14-2293-2017, https://doi.org/10.5194/bg-14-2293-2017, 2017
Short summary
Short summary
Complex plant–soil interactions in the hydrological cycle of a Mediterranean cork oak ecosystem are investigated with stable water isotopes. Trees largely foster infiltration due to altered microclimatic conditions below crowns but compete with understorey plants for the same water source in deeper soil layers. The presence of understorey plants does not alter water losses compared to bare soil, but water utilization for carbon sequestration and nitrogen fixation is largely increased.
Sonja G. Keel, Fortunat Joos, Renato Spahni, Matthias Saurer, Rosemarie B. Weigt, and Stefan Klesse
Biogeosciences, 13, 3869–3886, https://doi.org/10.5194/bg-13-3869-2016, https://doi.org/10.5194/bg-13-3869-2016, 2016
Short summary
Short summary
Records of stable oxygen isotope ratios in tree rings are valuable tools for reconstructing past climatic conditions. So far, they have not been used in global dynamic vegetation models. Here we present a model that simulates oxygen isotope ratios in tree rings. Our results compare well with measurements performed in European forests. The model is useful for studying oxygen isotope patterns of tree ring cellulose at large spatial and temporal scales.
M. S. Studer, R. T. W. Siegwolf, M. Leuenberger, and S. Abiven
Biogeosciences, 12, 1865–1879, https://doi.org/10.5194/bg-12-1865-2015, https://doi.org/10.5194/bg-12-1865-2015, 2015
Short summary
Short summary
We present a new technique to label organic matter (OM) at its place of formation by the application of 13C, 18O and 2H through the gaseous phase. The label diffused into leaves was incorporated into assimilates and was detected in plant tissues. This technique can be applied in soil sciences, e.g. to trace the decomposition pathways of soil OM inputs, or in plant physiology and palaeoclimatic reconstruction, e.g. to further investigate the origin of the 18O and 2H signal in tree ring cellulose.
M. S. Studer, R. T. W. Siegwolf, and S. Abiven
Biogeosciences, 11, 1637–1648, https://doi.org/10.5194/bg-11-1637-2014, https://doi.org/10.5194/bg-11-1637-2014, 2014
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Uncertainty analysis
Technical note: A procedure to clean, decompose, and aggregate time series
Macroinvertebrate habitat requirements in rivers: overestimation of environmental flow calculations in incised rivers
Impacts of non-ideality and the thermodynamic pressure work term pΔv on the surface energy balance
How to predict hydrological effects of local land use change: how the vegetation parameterisation for short rotation coppices influences model results
Modelling irrigated maize with a combination of coupled-model simulation and uncertainty analysis, in the northwest of China
Uncertainty in parameterisation and model structure affect simulation results in coupled ecohydrological models
François Ritter
Hydrol. Earth Syst. Sci., 27, 349–361, https://doi.org/10.5194/hess-27-349-2023, https://doi.org/10.5194/hess-27-349-2023, 2023
Short summary
Short summary
This study offers a method to clean
time series– data recorded at specific time intervals (hours, months, etc.). It cuts time series into small pieces (called bins) and rejects bins without enough data. Errors in each bin are then flagged with a popular method called the
box plot rule, which has been improved in this study. Finally, each bin can be averaged to produce a new time series with less noise, fewer gaps, and fewer errors. This procedure can be generalized to any discipline.
Renata Kędzior, Małgorzata Kłonowska-Olejnik, Elżbieta Dumnicka, Agnieszka Woś, Maciej Wyrębek, Leszek Książek, Jerzy Grela, Paweł Madej, and Tomasz Skalski
Hydrol. Earth Syst. Sci., 26, 4109–4124, https://doi.org/10.5194/hess-26-4109-2022, https://doi.org/10.5194/hess-26-4109-2022, 2022
Short summary
Short summary
The river incision significantly increased the values of e-flow calculations in relation to redeposited channels. The area of optimal habitat for macroinvertebrates decreased with the bed incision intensity. In highly incised rivers, the environmental flow values are close to the mean annual flow, suggesting that a high volume of water is needed to obtain good macroinvertebrate conditions. As a consequence, river downcutting processes and impoverishment of optimal habitats will proceed.
William J. Massman
Hydrol. Earth Syst. Sci., 24, 967–975, https://doi.org/10.5194/hess-24-967-2020, https://doi.org/10.5194/hess-24-967-2020, 2020
Short summary
Short summary
Studies of the surface energy balance of the earth (SEB) often show that measured incoming energy exceeds the sum of measured outgoing energy terms. The present study models two contributions to the outgoing terms of the SEB: (a) water vapor and dry air as non-ideal gases and (b) the contribution of evaporation to the convective heat. As anticipated, the results are insufficient to resolve the closure mystery, but they should provide insights into atmospheric thermodynamics and the SEB.
F. Richter, C. Döring, M. Jansen, O. Panferov, U. Spank, and C. Bernhofer
Hydrol. Earth Syst. Sci., 19, 3457–3474, https://doi.org/10.5194/hess-19-3457-2015, https://doi.org/10.5194/hess-19-3457-2015, 2015
Short summary
Short summary
Predicting hydrological effects of land use change, e.g. enhanced cultivation of short rotation coppices, requires an adequate parameterisation. Measurements and modelling results show that leaf area index, stomatal resistance and in particular start and length of growing season are most sensitive to soil hydrological quantities, like ground water recharge (GWR). Only simulations over 30 years, reflecting long-term climate variability, show even zero GWR, especially in succeeding dry years.
Y. Li, W. Kinzelbach, J. Zhou, G. D. Cheng, and X. Li
Hydrol. Earth Syst. Sci., 16, 1465–1480, https://doi.org/10.5194/hess-16-1465-2012, https://doi.org/10.5194/hess-16-1465-2012, 2012
S. Arnold, S. Attinger, K. Frank, and A. Hildebrandt
Hydrol. Earth Syst. Sci., 13, 1789–1807, https://doi.org/10.5194/hess-13-1789-2009, https://doi.org/10.5194/hess-13-1789-2009, 2009
Cited articles
Allen, S. T. and Kirchner, J. W.: Potential effects of cryogenic extraction biases on plant water source partitioning inferred from xylem water isotope ratios, Hydrol. Process., 36, e14483, https://doi.org/10.1002/hyp.14483, 2022.
Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019.
Barbeta, A., Gimeno, T. E., Clavé, L., Fréjaville, B., Jones, S. P., Delvigne, C., Wingate, L., and Ogée, J.: An explanation for the isotopic offset between soil and stem water in a temperate tree species, New Phytol., 227, 766–779, https://doi.org/10.1111/nph.16564, 2020.
Barbeta, A., Burlett, R., Martín-Gómez, P., Fréjaville, B., Devert, N., Wingate, L., Domec, J.-C., and Ogée, J.: Evidence for distinct isotopic compositions of sap and tissue water in tree stems: consequences for plant water source identification, New Phytol., 233, 1121–1132, https://doi.org/10.1111/nph.17857, 2022.
Bowers, W. H. and Williams, D. G.: Isotopic Heterogeneity of Stem Water in Conifers Is Correlated to Xylem Hydraulic Traits and Supports Multiple Residence Times, Frontiers in Water, 4, 861590, https://doi.org/10.3389/frwa.2022.861590, 2022.
Brinkmann, N., Eugster, W., Buchmann, N., and Kahmen, A.: Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil, Plant Biol., 21, 71–81, https://doi.org/10.1111/plb.12907, 2019.
Chen, Y., Helliker, B. R., Tang, X., Li, F., Zhou, Y., and Song, X.: Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water, P. Natl. Acad. Sci. USA, 117, 33345–33350, https://doi.org/10.1073/pnas.2014422117, 2020.
De Deurwaerder, H. P. T., Visser, M. D., Detto, M., Boeckx, P., Meunier, F., Kuehnhammer, K., Magh, R.-K., Marshall, J. D., Wang, L., Zhao, L., and Verbeeck, H.: Causes and consequences of pronounced variation in the isotope composition of plant xylem water, Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, 2020.
de la Casa, J., Barbeta, A., Rodríguez-Uña, A., Wingate, L., Ogée, J., and Gimeno, T. E.: Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments, Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022, 2022.
Ehleringer, J. R., Roden, J., and Dawson, T. E.: Assessing ecosystem-level water relations through stable isotope ratio analyses, in: Methods in ecosystem science, edited by: Sala, O. E., Jackson, R. B., Mooney, A. A.,
and Howarth, R. W., Springer, 181–198, https://doi.org/10.1007/978-1-4612-1224-9_13, 2000.
Evaristo, J. and McDonnell, J. J.: Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis, Sci. Rep.-UK, 7, 44110, https://doi.org/10.1038/srep44110, 2017.
Filot, M. S., Leuenberger, M., Pazdur, A., and Boettger, T.: Rapid online equilibration method to determine the ratios of non-exchangeable hydrogen in cellulose, Rapid Commun. Mass Sp., 20, 3337–3344, https://doi.org/10.1002/rcm.2743, 2006.
Flanagan, L. B. and Ehleringer, J. R.: Stable Isotope Composition of Stem and Leaf Water: Applications to the Study of Plant Water Use, Funct. Ecol., 5, 270–277, https://doi.org/10.2307/2389264, 1991.
Gessler, A., Bächli, L., Rouholahnejad Freund, E., Treydte, K., Schaub, M., Haeni, M., Weiler, M., Seeger, S., Marshall, J., Hug, C., Zweifel, R., Hagedorn, F., Rigling, A., Saurer, M., and Meusburger, K.: Drought reduces water uptake in beech from the drying topsoil, but no compensatory uptake occurs from deeper soil layers, New Phytol., 233, 194–206, https://doi.org/10.1111/nph.17767, 2022.
Goldsmith, G. R., Muñoz-Villers, L. E., Holwerda, F., McDonnell, J. J., Asbjornsen, H., and Dawson, T. E.: Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest, Ecohydrology, 5, 779–790, https://doi.org/10.1002/eco.268, 2012.
Goldsmith, G. R., Lehmann, M. M., Cernusak, L. A., Arend, M., and Siegwolf, R. T. W.: Inferring foliar water uptake using stable isotopes of water, Oecologia, 184, 763–766, https://doi.org/10.1007/s00442-017-3917-1, 2017.
Hu, H.-Y., Bao, W.-M., Wang, T., and Qu, S.-M.: Experimental study on stable isotopic fractionation of evaporating water under varying temperature, Water Sci. Eng., 2, 11–18, 2009.
Ingraham, N. L. and Shadel, C.: A comparison of the toluene distillation and vacuum/heat methods for extracting soil water for stable isotopic analysis, J. Hydrol., 140, 371–387, https://doi.org/10.1016/0022-1694(92)90249-U, 1992.
Koeniger, P., Gaj, M., Beyer, M., and Himmelsbach, T.: Review on soil water isotope-based groundwater recharge estimations, Hydrol. Process., 30, 2817–2834, https://doi.org/10.1002/hyp.10775, 2016.
Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B.: lmerTest Package: Tests in Linear Mixed Effects Models, J. Stat. Softw., 82, 1–26, https://doi.org/10.18637/jss.v082.i13, 2017.
Lécuyer, C., Royer, A., Fourel, F., Seris, M., Simon, L., and Robert, F.: fractionation during the sublimation of water ice, Icarus, 285, 1–7, https://doi.org/10.1016/j.icarus.2016.12.015, 2017.
Lehmann, M. M., Goldsmith, G. R., Mirande-Ney, C., Weigt, R. B., Schönbeck, L., Kahmen, A., Gessler, A., Siegwolf, R. T. W., and Saurer, M.: The 18O-signal transfer from water vapour to leaf water and assimilates varies among plant species and growth forms, Plant Cell Environ., 43, 510–523, https://doi.org/10.1111/pce.13682, 2020.
Lehmann, M. M., Vitali, V., Schuler, P., Leuenberger, M., and Saurer, M.: More than climate: Hydrogen isotope ratios in tree rings as novel plant physiological indicator for stress conditions, Dendrochronologia, 65, 125788, https://doi.org/10.1016/j.dendro.2020.125788, 2021.
Lin, G. and da S. L. Sternberg, L.: 31 – Hydrogen Isotopic Fractionation by Plant Roots during Water Uptake in Coastal Wetland Plants, in: Stable Isotopes and Plant Carbon-water Relations, edited by: Ehleringer, J. R., Hall, A. E., and Farquhar, G. D., Academic Press, San Diego, 497–510, https://doi.org/10.1016/B978-0-08-091801-3.50041-6, 1993.
Loader, N. J., McCarroll, D., Gagen, M., Robertson, I., and Jalkanen, R.: Extracting climatic information from stable isotopes in tree rings, in: Terrestrial Ecology, edited by: Dawson, T. E. and Siegwolf, R. T. W., Elsevier, 25–48, https://doi.org/10.1016/S1936-7961(07)01003-2, 2007.
Meier-Augenstein, W., Kemp, H. F., Schenk, E. R., and Almirall, J. R.: Discrimination of unprocessed cotton on the basis of geographic origin using multi-element stable isotope signatures, Rapid Commun. Mass Sp., 28, 545–552, https://doi.org/10.1002/rcm.6811, 2014.
Mortimer, J., Lécuyer, C., Fourel, F., and Carpenter, J.: fractionation during sublimation of water ice at low temperatures into a vacuum, Planet. Space Sci., 158, 25–33, https://doi.org/10.1016/j.pss.2018.05.010, 2018.
Nehemy, M. F., Benettin, P., Asadollahi, M., Pratt, D., Rinaldo, A., and McDonnell, J. J.: How plant water status drives tree source water partitioning, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2019-528, 2019.
Newberry, S. L., Nelson, D. B., and Kahmen, A.: Cryogenic vacuum artifacts do not affect plant water-uptake studies using stable isotope analysis, Ecohydrology, 10, e1892, https://doi.org/10.1002/eco.1892, 2017.
Orlowski, N., Frede, H.-G., Brüggemann, N., and Breuer, L.: Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis, J. Sens. Sens. Syst., 2, 179–193, https://doi.org/10.5194/jsss-2-179-2013, 2013.
Poca, M., Coomans, O., Urcelay, C., Zeballos, S. R., Bodé, S., and Boeckx, P.: Isotope fractionation during root water uptake by Acacia caven is enhanced by arbuscular mycorrhizas, Plant Soil, 441, 485–497, https://doi.org/10.1007/s11104-019-04139-1, 2019.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, https://www.R-project.org/ (last access: 15 November 2022), 2021.
Schoppach, R. and Klaus, J.: Is cryogenic vacuum distillation reliable for wood water extraction?, EGU General Assembly 2019, 7–12 April 2019, Vienna, Austria, 4901, 2019.
Schuler, P., Cormier, M.-A., Werner, R. A., Buchmann, N., Gessler, A., Vitali, V., Saurer, M., and Lehmann, M. M.: A high-temperature water vapor equilibration method to determine non-exchangeable hydrogen isotope ratios of sugar, starch and cellulose, Plant Cell Environ., 45, 12–22, https://doi.org/10.1111/pce.14193, 2022.
Sepall, O. and Mason, S. G.: Hydrogen exchange between cellulose and water: II. Interconversion of accessible and inaccessible regions, Can. J. Chem., 39, 1944–1955, https://doi.org/10.1139/v61-261, 1961.
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.: Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes, Rev. Geophys., 54, 674–704, https://doi.org/10.1002/2015RG000515, 2016.
Stewart, M. K.: Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes, J. Geophys. Res., 80, 1133–1146, https://doi.org/10.1029/JC080i009p01133, 1975.
Wen, M., Lu, Y., Li, M., He, D., Xiang, W., Zhao, Y., Cui, B., and Si, B.: Correction of cryogenic vacuum extraction biases and potential effects on soil water isotopes application, J. Hydrol., 603, 127011, https://doi.org/10.1016/j.jhydrol.2021.127011, 2021.
West, A. G., Patrickson, S. J., and Ehleringer, J. R.: Water extraction times for plant and soil materials used in stable isotope analysis, Rapid Commun. Mass Sp., 20, 1317–1321, https://doi.org/10.1002/rcm.2456, 2006.
White, J. W. C., Cook, E. R., Lawrence, J. R., and Wallace S, B.: The DH ratios of sap in trees: Implications for water sources and tree ring DH ratios, Geochim. Cosmochim. Ac., 49, 237–246, https://doi.org/10.1016/0016-7037(85)90207-8, 1985.
Zhao, L., Wang, L., Cernusak, L. A., Liu, X., Xiao, H., Zhou, M., and Zhang, S.: Significant difference in hydrogen isotope composition between xylem and tissue water in Populus Euphratica, Plant Cell Environ., 39, 1848–1857, https://doi.org/10.1111/pce.12753, 2016.
Zhao, P., Sprenger, M., Barzegar, R., Tang, X., and Adamowski, J.: Similar isotopic biases of plant stems bulk water from different water sources by cryogenic vacuum distillation demonstrated through rehydration experiments, Geophys. Res. Lett., 49, e2021GL096474, https://doi.org/10.1029/2021GL096474, 2022.
Zimmermann, U., Ehhalt, D., and Muennich, K. O.: Soil-water movement and evapotranspiration: Changes in the isotopic composition of the water, Isotopes in Hydrology, 567–585, https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=38061083 (last access: 15 November 2022), 1967.
Short summary
We systematically investigate the uncertainties in previously observed isotopic offsets between plant source water and water extracted by cryogenic vacuum distillation. Our results show that hydrogen isotope exchange between organic material and water is a real phenomenon. However, the isotopic offsets are rather influenced by the actual amount of extracted water, sublimation, and evaporation. Our findings will help improve interpretations of ecohydrological processes in isotope-based studies.
We systematically investigate the uncertainties in previously observed isotopic offsets between...