Articles | Volume 26, issue 16
https://doi.org/10.5194/hess-26-4379-2022
https://doi.org/10.5194/hess-26-4379-2022
Research article
 | 
26 Aug 2022
Research article |  | 26 Aug 2022

A contribution to rainfall simulator design – a concept of moving storm automation

Ravi Kumar Meena, Sumit Sen, Aliva Nanda, Bhargabnanda Dass, and Anurag Mishra

Related authors

Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
Sudhanshu Dixit, Srikrishnan Siva Subramanian, Piyush Srivastava, Ali P. Yunus, Tapas Ranjan Martha, and Sumit Sen
Nat. Hazards Earth Syst. Sci., 24, 465–480, https://doi.org/10.5194/nhess-24-465-2024,https://doi.org/10.5194/nhess-24-465-2024, 2024
Short summary
Brief communication: Inclusiveness in designing an early warning system for flood resilience
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023,https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Instruments and observation techniques
Eye of Horus: a vision-based framework for real-time water level measurement
Seyed Mohammad Hassan Erfani, Corinne Smith, Zhenyao Wu, Elyas Asadi Shamsabadi, Farboud Khatami, Austin R. J. Downey, Jasim Imran, and Erfan Goharian
Hydrol. Earth Syst. Sci., 27, 4135–4149, https://doi.org/10.5194/hess-27-4135-2023,https://doi.org/10.5194/hess-27-4135-2023, 2023
Short summary
A comparison of tools and techniques for stabilising unmanned aerial system (UAS) imagery for surface flow observations
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021,https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow
Alonso Pizarro, Silvano F. Dal Sasso, Matthew T. Perks, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 24, 5173–5185, https://doi.org/10.5194/hess-24-5173-2020,https://doi.org/10.5194/hess-24-5173-2020, 2020
Short summary
Technical note: Space–time analysis of rainfall extremes in Italy: clues from a reconciled dataset
Andrea Libertino, Daniele Ganora, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 22, 2705–2715, https://doi.org/10.5194/hess-22-2705-2018,https://doi.org/10.5194/hess-22-2705-2018, 2018
Short summary
The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods
G. Blöschl, T. Nester, J. Komma, J. Parajka, and R. A. P. Perdigão
Hydrol. Earth Syst. Sci., 17, 5197–5212, https://doi.org/10.5194/hess-17-5197-2013,https://doi.org/10.5194/hess-17-5197-2013, 2013

Cited articles

Cai, J., Li, P., and Wang, P.: An approach to rainfall simulator automation and performance evaluation, in: Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 6–8 July 2012, Beijing, China, 3428–3433, https://doi.org/10.1109/WCICA.2012.6359040, 2012. a
Croke, J., Hairsine, P., and Fogarty, P.: Sediment transport, redistribution and storage on logged forest hillslopes in south-eastern Australia, Hydrol. Process., 13, 2705–2720, https://doi.org/10.1002/(SICI)1099-1085(19991215)13:17<2705::AID-HYP843>3.0.CO;2-Y, 1999. a
de Lima, J. L. and Singh, V. P.: The influence of the pattern of moving rainstorms on overland flow, Adv. Water Resour. 25, 817–828, https://doi.org/10.1016/S0309-1708(02)00067-2, 2002. a, b
de Lima, J. L. and Singh, V. P.: Laboratory experiments on the influence of storm movement on overland flow, Physics Chem. Earth, 28, 277–282, https://doi.org/10.1016/S1474-7065(03)00038-X, 2003. a, b, c, d, e, f
de Lima, J. L., Singh, V. P., and Lima, M. I. P. D.: The influence of storm movement on water erosion: Storm direction and velocity effects, Catena, 52, 39–56, https://doi.org/10.1016/S0341-8162(02)00149-2, 2003. a
Download
Short summary
We developed a mobile operated programmable rainfall simulator (RS) to simulate the near-natural moving storm rainfall condition and to study its impact on runoff, soil erosion, and nutrient transport. The designed RS can be used for variable velocity and slope conditions along with the three different soil types at a time. Moreover, the soil flume of the RS is associated with the surface, subsurface, and base flow components.