Articles | Volume 26, issue 15
https://doi.org/10.5194/hess-26-4169-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4169-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating downscaling methods of GRACE (Gravity Recovery and Climate Experiment) data: a case study over a fractured crystalline aquifer in southern India
Claire Pascal
CORRESPONDING AUTHOR
Centre d'Étude Spatiale de la BIOsphère, CESBIO-UPS-CNRS-IRD-CNES-INRAE, 18 av. Ed. Belin, Toulouse CEDEX 9, 31401, France
Sylvain Ferrant
Centre d'Étude Spatiale de la BIOsphère, CESBIO-UPS-CNRS-IRD-CNES-INRAE, 18 av. Ed. Belin, Toulouse CEDEX 9, 31401, France
Adrien Selles
Bureau de Recherches Géologiques et Minières (BRGM), Université de Montpellier, 1039 rue de Pinville, Montpellier, 34000, France
Jean-Christophe Maréchal
Bureau de Recherches Géologiques et Minières (BRGM), Université de Montpellier, 1039 rue de Pinville, Montpellier, 34000, France
Abhilash Paswan
National Geophysical Research Institute, CSIR, Hyderabad, India
Olivier Merlin
Centre d'Étude Spatiale de la BIOsphère, CESBIO-UPS-CNRS-IRD-CNES-INRAE, 18 av. Ed. Belin, Toulouse CEDEX 9, 31401, France
Related authors
No articles found.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Yassine Khardi, Guillaume Lacombe, Benoit Dewandel, Abdelilah Taky, Jean-Christophe Maréchal, Ali Hammani, and Sami Bouarfa
Proc. IAHS, 385, 47–52, https://doi.org/10.5194/piahs-385-47-2024, https://doi.org/10.5194/piahs-385-47-2024, 2024
Short summary
Short summary
A 6400 m3 on-farm storage basin was built along a wadi in pre-Saharan Morocco to store floodwater for date palm irrigation. Its effect on the water table is confirmed by monitoring surface and groundwater levels and modeling the spatiotemporal variability of the recorded flood-induced piezometric mound. We show that beneficial replenishment of the water table is localized (radius < 360 m) and decreases over time due to the basin siltation reducing its storage capacity and permeability.
Bouchra Ait Hssaine, Olivier Merlin, Jamal Ezzahar, Nitu Ojha, Salah Er-Raki, and Said Khabba
Hydrol. Earth Syst. Sci., 24, 1781–1803, https://doi.org/10.5194/hess-24-1781-2020, https://doi.org/10.5194/hess-24-1781-2020, 2020
S. Ferrant, A. Selles, M. Le Page, A. AlBitar, S. Mermoz, S. Gascoin, A. Bouvet, S. Ahmed, and Y. Kerr
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 285–292, https://doi.org/10.5194/isprs-archives-XLII-3-W6-285-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-285-2019, 2019
J. Chirouze, G. Boulet, L. Jarlan, R. Fieuzal, J. C. Rodriguez, J. Ezzahar, S. Er-Raki, G. Bigeard, O. Merlin, J. Garatuza-Payan, C. Watts, and G. Chehbouni
Hydrol. Earth Syst. Sci., 18, 1165–1188, https://doi.org/10.5194/hess-18-1165-2014, https://doi.org/10.5194/hess-18-1165-2014, 2014
T. Reimann, M. Giese, T. Geyer, R. Liedl, J. C. Maréchal, and W. B. Shoemaker
Hydrol. Earth Syst. Sci., 18, 227–241, https://doi.org/10.5194/hess-18-227-2014, https://doi.org/10.5194/hess-18-227-2014, 2014
O. Merlin
Hydrol. Earth Syst. Sci., 17, 3623–3637, https://doi.org/10.5194/hess-17-3623-2013, https://doi.org/10.5194/hess-17-3623-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Remote Sensing and GIS
Influence of intensive agriculture and geological heterogeneity on the recharge of an arid aquifer system (Saq–Ram, Arabian Peninsula) inferred from GRACE data
Preprocessing approaches in machine-learning-based groundwater potential mapping: an application to the Koulikoro and Bamako regions, Mali
Applicability of Landsat 8 thermal infrared sensor for identifying submarine groundwater discharge springs in the Mediterranean Sea basin
Unsaturated zone model complexity for the assimilation of evapotranspiration rates in groundwater modelling
Technical note: Water table mapping accounting for river–aquifer connectivity and human pressure
Estimating long-term groundwater storage and its controlling factors in Alberta, Canada
Recent changes in terrestrial water storage in the Upper Nile Basin: an evaluation of commonly used gridded GRACE products
Mapping irrigation potential from renewable groundwater in Africa – a quantitative hydrological approach
How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions
Statistical analysis to characterize transport of nutrients in groundwater near an abandoned feedlot
Hydrogeological settings of a volcanic island (San Cristóbal, Galapagos) from joint interpretation of airborne electromagnetics and geomorphological observations
Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description
Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS
Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data
Groundwater use for irrigation – a global inventory
Pierre Seraphin, Julio Gonçalvès, Bruno Hamelin, Thomas Stieglitz, and Pierre Deschamps
Hydrol. Earth Syst. Sci., 26, 5757–5771, https://doi.org/10.5194/hess-26-5757-2022, https://doi.org/10.5194/hess-26-5757-2022, 2022
Short summary
Short summary
This study assesses the detailed water budget of the Saq–Ram Aquifer System using satellite gravity data. Spatial heterogeneities regarding the groundwater recharge were identified: (i) irrigation excess is great enough to artificially recharge the aquifer; and (ii) volcanic lava deposits, which cover 8% of the domain, contribute to more than 50% of the total natural recharge. This indicates a major control of geological context on arid aquifer recharge, which has been poorly discussed hitherto.
Víctor Gómez-Escalonilla, Pedro Martínez-Santos, and Miguel Martín-Loeches
Hydrol. Earth Syst. Sci., 26, 221–243, https://doi.org/10.5194/hess-26-221-2022, https://doi.org/10.5194/hess-26-221-2022, 2022
Short summary
Short summary
Many communities in the Sahel rely solely on groundwater. We develop a machine learning technique to map areas of groundwater potential. Algorithms are trained to detect areas where there is a confluence of factors that facilitate groundwater occurrence. Our contribution focuses on using variable scaling to minimize expert bias and on testing our results beyond standard metrics. This approach is illustrated through its application to two administrative regions of Mali.
Sònia Jou-Claus, Albert Folch, and Jordi Garcia-Orellana
Hydrol. Earth Syst. Sci., 25, 4789–4805, https://doi.org/10.5194/hess-25-4789-2021, https://doi.org/10.5194/hess-25-4789-2021, 2021
Short summary
Short summary
Satellite thermal infrared (TIR) remote sensing is a useful method for identifying coastal springs in karst aquifers both locally and regionally. The limiting factors include technical limitations, geological and hydrogeological characteristics, environmental and marine conditions, and coastal geomorphology. Also, it can serve as a tool to use for a first screening of the coastal water surface temperature to identify possible thermal anomalies that will help narrow the sampling survey.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Mathias Maillot, Nicolas Flipo, Agnès Rivière, Nicolas Desassis, Didier Renard, Patrick Goblet, and Marc Vincent
Hydrol. Earth Syst. Sci., 23, 4835–4849, https://doi.org/10.5194/hess-23-4835-2019, https://doi.org/10.5194/hess-23-4835-2019, 2019
Soumendra N. Bhanja, Xiaokun Zhang, and Junye Wang
Hydrol. Earth Syst. Sci., 22, 6241–6255, https://doi.org/10.5194/hess-22-6241-2018, https://doi.org/10.5194/hess-22-6241-2018, 2018
Short summary
Short summary
The paper presents groundwater storage conditions in all the major river basins across Alberta, Canada. We used remote-sensing data and investigate their performance using available ground-based data of groundwater level monitoring, storage coefficients, aquifer thickness, and surface water measurements. The water available for groundwater recharge has been studied in detail. Separate approaches have been followed for confined and unconfined aquifers for estimating groundwater storage.
Mohammad Shamsudduha, Richard G. Taylor, Darren Jones, Laurent Longuevergne, Michael Owor, and Callist Tindimugaya
Hydrol. Earth Syst. Sci., 21, 4533–4549, https://doi.org/10.5194/hess-21-4533-2017, https://doi.org/10.5194/hess-21-4533-2017, 2017
Short summary
Short summary
This study tests the phase and amplitude of GRACE TWS signals in the Upper Nile Basin from five commonly used gridded products (NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS) using in situ data and soil moisture from the Global Land Data Assimilation System. Resolution of changes in groundwater storage (ΔGWS) from GRACE is greatly constrained by the uncertain simulated soil moisture storage and the low amplitude in ΔGWS observed in deeply weathered crystalline rocks in the Upper Nile Basin.
Y. Altchenko and K. G. Villholth
Hydrol. Earth Syst. Sci., 19, 1055–1067, https://doi.org/10.5194/hess-19-1055-2015, https://doi.org/10.5194/hess-19-1055-2015, 2015
U. Mallast, R. Gloaguen, J. Friesen, T. Rödiger, S. Geyer, R. Merz, and C. Siebert
Hydrol. Earth Syst. Sci., 18, 2773–2787, https://doi.org/10.5194/hess-18-2773-2014, https://doi.org/10.5194/hess-18-2773-2014, 2014
P. Gbolo and P. Gerla
Hydrol. Earth Syst. Sci., 17, 4897–4906, https://doi.org/10.5194/hess-17-4897-2013, https://doi.org/10.5194/hess-17-4897-2013, 2013
A. Pryet, N. d'Ozouville, S. Violette, B. Deffontaines, and E. Auken
Hydrol. Earth Syst. Sci., 16, 4571–4579, https://doi.org/10.5194/hess-16-4571-2012, https://doi.org/10.5194/hess-16-4571-2012, 2012
F. Alkhaier, G. N. Flerchinger, and Z. Su
Hydrol. Earth Syst. Sci., 16, 1817–1831, https://doi.org/10.5194/hess-16-1817-2012, https://doi.org/10.5194/hess-16-1817-2012, 2012
F. Alkhaier, Z. Su, and G. N. Flerchinger
Hydrol. Earth Syst. Sci., 16, 1833–1844, https://doi.org/10.5194/hess-16-1833-2012, https://doi.org/10.5194/hess-16-1833-2012, 2012
U. Mallast, R. Gloaguen, S. Geyer, T. Rödiger, and C. Siebert
Hydrol. Earth Syst. Sci., 15, 2665–2678, https://doi.org/10.5194/hess-15-2665-2011, https://doi.org/10.5194/hess-15-2665-2011, 2011
S. Siebert, J. Burke, J. M. Faures, K. Frenken, J. Hoogeveen, P. Döll, and F. T. Portmann
Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, https://doi.org/10.5194/hess-14-1863-2010, 2010
Cited articles
Alin, A.: Multicollinearity, WIREs Comput. Stat., 2, 370–374,
https://doi.org/10.1002/wics.84, 2010. a
Asoka, A., Gleeson, T., Wada, Y., and Mishra, V.: Relative contribution of
monsoon precipitation and pumping to changes in groundwater storage in India, Nat. Geosci., 10, 109–117, https://doi.org/10.1038/ngeo2869, 2017. a, b
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
a
Breña‐Naranjo, J. A., Kendall, A. D., and Hyndman, D. W.: Improved methods
for satellite-based groundwater storage estimates: A decade of monitoring
the high plains aquifer from space and ground observations, Geophys. Res. Lett., 41, 6167–6173, https://doi.org/10.1002/2014GL061213, 2014. a
Cao, Y. and Roy, S. S.: Spatial patterns of seasonal level trends of groundwater in India during 2002–2016, Weather, 75, 123–128,
https://doi.org/10.1002/wea.3370, 2020. a
Chen, J., Li, J., Zhang, Z., and Ni, S.: Long-term groundwater variations in
Northwest India from satellite gravity measurements, Global Planet. Change, 116, 130–138, https://doi.org/10.1016/j.gloplacha.2014.02.007, 2014. a
Chen, L., He, Q., Liu, K., Li, J., and Jing, C.: Downscaling of GRACE-Derived Groundwater Storage Based on the Random Forest Model, Remote Sens., 11, 2979, https://doi.org/10.3390/rs11242979, 2019. a, b, c
Dewandel, B., Caballero, Y., Perrin, J., Boisson, A., Dazin, F., Ferrant, S.,
Chandra, S., and Maréchal, J.-C.: A methodology for regionalizing 3-D effective porosity at watershed scale in crystalline aquifers, Hydrol. Process., 31, 2277–2295, https://doi.org/10.1002/hyp.11187, 2017. a
ESA: Climate Change Initiative, https://www.esa-soilmoisture-cci.org, last access: 9 August 2022. a
Feng, W., Zhong, M., Lemoine, J.-M., Biancale, R., Hsu, H.-T., and Xia, J.:
Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements, Water Resour. Res., 49, 2110–2118, https://doi.org/10.1002/wrcr.20192, 2013. a
Frappart, F., Papa, F., Güntner, A., Tomasella, J., Pfeffer, J., Ramillien,
G., Emilio, T., Schietti, J., Seoane, L., da Silva Carvalho, J., Medeiros Moreira, D., Bonnet, M. P., and Seyler, F.: The spatio-temporal
variability of groundwater storage in the Amazon River Basin, Adv. Water Resour., 124, 41–52, https://doi.org/10.1016/j.advwatres.2018.12.005, 2019. a
Girotto, M., Lannoy, G. J. M. D., Reichle, R. H., and Rodell, M.: Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model, Water Resour. Res., 52, 4164–4183,
https://doi.org/10.1002/2015WR018417, 2016. a, b
Hora, T., Srinivasan, V., and Basu, N. B.: The Groundwater Recovery Paradox in South India, Geophys. Res. Lett., 46, 9602–9611, https://doi.org/10.1029/2019GL083525, 2019. a
Houborg, R., Rodell, M., Li, B., Reichle, R., and Zaitchik, B. F.: Drought
indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations, Water Resour. Res., 48, W07525, https://doi.org/10.1029/2011WR011291, 2012. a, b, c
Huang, Z., Pan, Y., Gong, H., Yeh, P. J.-F., Li, X., Zhou, D., and Zhao, W.:
Subregional-scale groundwater depletion detected by GRACE for both shallow
and deep aquifers in North China Plain, Geophys. Res. Lett., 42, 1791–1799, https://doi.org/10.1002/2014GL062498, 2015. a
Karunakalage, A., Sarkar, T., Kannaujiya, S., Chauhan, P., Pranjal, P., Taloor, A. K., and Kumar, S.: The appraisal of groundwater storage dwindling effect, by applying high resolution downscaling GRACE data in and around Mehsana district, Gujarat, India, Groundwater Sustain. Dev., 13, 100559, https://doi.org/10.1016/j.gsd.2021.100559, 2021. a, b, c, d, e, f, g
Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453, 2012. a, b, c
Lemoine, J.-M. and Mandea, M.: The MARVEL gravity and reference frame mission
proposal, in: EGU General Assembly Conference Abstracts, p. 13359,
https://ui.adsabs.harvard.edu/abs/2020EGUGA..2213359L (last access: 8 August 2022), 2020. a
Lemoine, J. M., Meyssignac, B., Mandea, M., Samain, E., Bourgogne, S.,
Blazquez, A., Balmino, G., Louise, L., and Michaud, J.: MARVEL Mission
Proposal: The Latest Update, 2020, in: AGU Fall Meeting Abstracts, G020-08,
https://ui.adsabs.harvard.edu/abs/2020AGUFMG020...08L (last access: 8 August 2022), 2020. a
Long, D., Scanlon, B. R., Longuevergne, L., Sun, A. Y., Fernando, D. N., and
Save, H.: GRACE satellite monitoring of large depletion in water storage in
response to the 2011 drought in Texas, Geophys. Res. Lett., 40, 3395–3401, https://doi.org/10.1002/grl.50655, 2013. a, b
Maréchal, J. C., Dewandel, B., Ahmed, S., Galeazzi, L., and Zaidi, F. K.:
Combined estimation of specific yield and natural recharge in a semi-arid
groundwater basin with irrigated agriculture, J. Hydrol., 329, 281–293, https://doi.org/10.1016/j.jhydrol.2006.02.022, 2006. a, b
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017. a
Massotti, L., Siemes, C., March, G., Haagmans, R., and Silvestrin, P.: Next
Generation Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design, Remote Sens., 13, 3935–3966, https://doi.org/10.3390/rs13193935, 2021. a
Merlin, O., Malbéteau, Y., Notfi, Y., Bacon, S., Khabba, S. E.-R. S., and
Jarlan, L.: Performance Metrics for Soil Moisture Downscaling Methods: Application to DISPATCH Data in Central Morocco, Remote Sens., 7, 3783–3807, https://doi.org/10.3390/rs70403783, 2015. a, b
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrology and Earth System Sciences, 15,
453–469, https://doi.org/10.5194/hess-15-453-2011, 2011. a
NASA: Measuring Earth's Surface Mass and Water Changes, http://grace.jpl.nasa.gov (last access: 9 August 2022), 2022a. a
NASA: Welcome to AρρEEARS!, https://appeears.earthdatacloud.nasa.gov (last access: 9 August 2022), 2022b. a
Nie, W., Zaitchik, B. F., Rodell, M., Kumar, S. V., Arsenault, K. R., Li, B.,
and Getirana, A.: Assimilating GRACE Into a Land Surface Model in the Presence of an Irrigation-Induced Groundwater Trend, Water Resour. Res., 55, 11274–11294, https://doi.org/10.1029/2019WR025363, 2019. a, b, c
Papa, F., Frappart, F., Malbeteau, Y., Shamsudduha, M., Vuruputur, V., Sekhar, M., Ramillien, G., Prigent, C., Aires, F., Pandey, R. K., Bala, S., and Calmant, S.: Satellite-derived surface and sub-surface water storage in the Ganges–Brahmaputra River Basin, J. Hydrol.: Reg. Stud., 4, 15–35, https://doi.org/10.1016/j.ejrh.2015.03.004, 2015. a
Pascal, C., Ferrant, S., Selles, A., Maréchal, J.-C., Gascoin, S., and Merlin, O.: High-Resolution Mapping of Rainwater Harvesting System Capacity from Satellite Derived Products in South India, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, July 2021, Brussels, 7011–7014, https://doi.org/10.1109/IGARSS47720.2021.9553131, 2021. a
Phani, R. C.: Mineral Resources of Telangana State, India: The Way Forward, Int. J. Innov. Res. Sci. Eng. Tech., 3, 15450–15459,
https://doi.org/10.15680/IJIRSET.2014.0308052, 2014. a
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., and Lo, M.-H.: Emerging trends in global freshwater
availability, Nature, 557, 651–659, https://doi.org/10.1038/s41586-018-0123-1, 2018. a, b
Rzepecka, Z. and Birylo, M.: Groundwater Storage Changes Derived from GRACE and GLDAS on Smaller River Basins – A Case Study in Poland, Geosciences, 10, 124, https://doi.org/10.3390/geosciences10040124, 2020. a
Sabaghy, S., Walker, J. P., Renzullo, L. J., Akbar, R., Chan, S., Chaubell, J., Das, N., Dunbar, R. S., Entekhabi, D., Gevaert, A., Jackson, T. J., Loew, A., Merlin, O., Moghaddam, M., Peng, J., Peng, J., Piepmeier, J., Rüdiger, C., Stefan, V., Wu, X., Ye, N., and Yueh, S.: Comprehensive analysis of
alternative downscaled soil moisture products, Remote Sens. Environ., 239, 111586, https://doi.org/10.1016/j.rse.2019.111586, 2020. a
Sahour, H., Sultan, M., Vazifedan, M., Abdelmohsen, K., Karki, S., Yellich,
J. A., Gebremichael, E., Alshehri, F., and Elbayoumi, T. M.: Statistical
Applications to Downscale GRACE-Derived Terrestrial Water Storage Data and to Fill Temporal Gaps, Remote Sens., 12, 533, https://doi.org/10.3390/rs12030533, 2020. a, b, c, d, e, f, g, h
Schmidt, R., Flechtner, F., Meyer, U., Neumayer, K.-H., Dahle, C., König, R., and Kusche, J.: Hydrological Signals Observed by the GRACE Satellites, Surv. Geophys., 29, 319–334, https://doi.org/10.1007/s10712-008-9033-3, 2008. a, b
Schumacher, M., Forootan, E., van Dijk, A. I. J. M., Müller Schmied, H.,
Crosbie, R. S., Kusche, J., and Döll, P.: Improving drought simulations
within the Murray-Darling Basin by combined calibration/assimilation of
GRACE data into the WaterGAP Global Hydrology Model, Remote Sens. Environ., 204, 212–228, https://doi.org/10.1016/j.rse.2017.10.029, 2018. a, b
Seyoum, W., Kwon, D., and Milewski, A.: Downscaling GRACE TWSA Data into
High-Resolution Groundwater Level Anomaly Using Machine Learning-Based Models in a Glacial Aquifer System, Remote Sens., 11, 824, https://doi.org/10.3390/rs11070824, 2019. a, b, c
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity
recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004. a, b, c
Tian, S., Tregoning, P., Renzullo, L. J., v. Dijk, A. I. J. M., Walker, J. P., Pauwels, V. R. N., and Allgeyer, S.: Improved water balance component
estimates through joint assimilation of GRACE water storage and SMOS soil
moisture retrievals, Water Resour. Res., 53, 1820–1840,
https://doi.org/10.1002/2016WR019641, 2017. a, b, c, d
Tian, S., Renzullo, L. J., van Dijk, A. I. J. M., Tregoning, P., and Walker, J. P.: Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response, Hydrol. Earth Syst. Sci., 23, 1067–1081, https://doi.org/10.5194/hess-23-1067-2019, 2019. a
Tiwari, V. M., Wahr, J., and Swenson, S.: Dwindling groundwater resources in
northern India, from satellite gravity observations, Geophys. Res. Lett., 36, L18401, https://doi.org/10.1029/2009GL039401, 2009. a, b
Vishwakarma, B. D., Zhang, J., and Sneeuw, N.: Downscaling GRACE total water
storage change using partial least squares regression, Scient. Data, 8, 95, https://doi.org/10.1038/s41597-021-00862-6, 2021. a, b
Vissa, N. K., Anandh, P. C., Behera, M. M., and Mishra, S.: ENSO-induced
groundwater changes in India derived from GRACE and GLDAS, J. Earth Syst. Sci., 128, 115, https://doi.org/10.1007/s12040-019-1148-z, 2019. a
Wada, Y., v. Beek, L. P. H., and Bierkens, M. F. P.: Nonsustainable groundwater sustaining irrigation: A global assessment, Water Resour. Res., 48, W00L06, https://doi.org/10.1029/2011WR010562, 2012. a
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geophys. Res.-Solid, 120, 2648–2671, https://doi.org/10.1002/2014JB011547, 2015. a, b
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing
leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res., 52, 7490–7502, https://doi.org/10.1002/2016WR019344, 2016. a
Zaitchik, B. F., Rodell, M., and Reichle, R. H.: Assimilation of GRACE
Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin, J. Hydrometeorol., 9, 535–548, https://doi.org/10.1175/2007JHM951.1, 2008. a, b, c
Zhang, J., Liu, K., and Wang, M.: Seasonal and Interannual Variations in
China's Groundwater Based on GRACE Data and Multisource Hydrological Models, Remote Sens., 12, 845, https://doi.org/10.3390/rs12050845, 2020. a
Short summary
This paper presents a new validation method for the downscaling of GRACE (Gravity Recovery and Climate Experiment) data. It measures the improvement of the downscaled data against the low-resolution data in both temporal and, for the first time, spatial domains. This validation method offers a standardized and comprehensive framework to interpret spatially and temporally the quality of the downscaled products, supporting future efforts in GRACE downscaling methods.
This paper presents a new validation method for the downscaling of GRACE (Gravity Recovery and...