Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-407-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-407-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aquifer recharge in the Piedmont Alpine zone: historical trends and future scenarios
Elisa Brussolo
Research Center, Società Metropolitana Acque Torino S.p.A., Turin, Italy
Institute of Atmospheric Sciences and Climate, National Research Council of Italy (CNR), Turin, Italy
Department of Physics, Università di Torino, Turin, Italy
Jost von Hardenberg
Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Turin, Italy
Institute of Atmospheric Sciences and Climate, National Research Council of Italy (CNR), Turin, Italy
Giulio Masetti
Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR), Pisa, Italy
Gianna Vivaldo
Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR), Pisa, Italy
Maurizio Previati
Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino and Università di Torino, Turin, Italy
Davide Canone
Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino and Università di Torino, Turin, Italy
Davide Gisolo
Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino and Università di Torino, Turin, Italy
Ivan Bevilacqua
Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino and Università di Torino, Turin, Italy
Antonello Provenzale
Institute of Geosciences and Earth Resources, National Research Council of Italy (CNR), Pisa, Italy
Stefano Ferraris
Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino and Università di Torino, Turin, Italy
Related authors
No articles found.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
Weather Clim. Dynam., 6, 43–112, https://doi.org/10.5194/wcd-6-43-2025, https://doi.org/10.5194/wcd-6-43-2025, 2025
Short summary
Short summary
Western disturbances (WDs) are storms that predominantly affect north India and Pakistan during the winter months, where they play an important role in regional water security, but can also bring a range of natural hazards. In this review, we summarise recent literature across a range of topics: their structure and lifecycle, precipitation and impacts, interactions with large-scale weather patterns, representation in models, how well they are forecast, and their response to changes in climate.
Chalachew Muluken Liyew, Elvira Di Nardo, Rosa Meo, and Stefano Ferraris
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 173–194, https://doi.org/10.5194/ascmo-10-173-2024, https://doi.org/10.5194/ascmo-10-173-2024, 2024
Short summary
Short summary
Global warming is a big issue: it is necessary to know more details to make a forecast model and plan adaptation measures. Warming varies in space and time and models often average it over large areas. However, it shows great variations between months of the year. It also varies between regions of the world and between lowland and highland regions. This paper uses statistical and machine learning techniques to quantify such differences between Italy and the UK at different altitudes.
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024, https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary
Short summary
Can we leverage high-resolution and low-cost EC measurements and biweekly δ18O data to estimate the young water fraction at higher temporal resolution? Here, we present the EXPECT method that combines two widespread techniques: EC-based hydrograph separation and sine-wave models of the seasonal isotope cycles. The method is not without its limitations, but its application in three small Swiss catchments is promising for future applications in catchments with different characteristics.
Matteo Pesce, Alberto Viglione, Jost von Hardenberg, Larisa Tarasova, Stefano Basso, Ralf Merz, Juraj Parajka, and Rui Tong
Proc. IAHS, 385, 65–69, https://doi.org/10.5194/piahs-385-65-2024, https://doi.org/10.5194/piahs-385-65-2024, 2024
Short summary
Short summary
The manuscript describes an application of PArameter Set Shuffling (PASS) approach in the Alpine region. A machine learning decision-tree algorithm is applied for the regional calibration of a conceptual semi-distributed hydrological model. Regional model efficiencies don't decrease significantly when moving in space from catchments used for the regional calibration (training) to catchments used for the procedure validation (test) and, in time, from the calibration to the verification period.
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024, https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Short summary
In hydrology, the probability distributions are used to determine the probability of occurrence of rainfall events. In this study, two different methods for modeling rainfall time characteristics have been applied: a direct method and an indirect method that make it possible to relax the assumptions of the renewal process. The analysis was extended to two additional time variables that may be of great interest for practical hydrological applications: wet chains and dry chains.
Saverio Vicario, Marta Magnani, Maria Adamo, Gianna Vivaldo, Chiara Richiardi, Mariasilvia Giamberini, and Antonello Provenzale
EGUsphere, https://doi.org/10.5194/egusphere-2023-2824, https://doi.org/10.5194/egusphere-2023-2824, 2024
Preprint archived
Short summary
Short summary
The high altitude Alpine grassland in Gran Paradiso National Park is a productive ecosystem key in the conservation of Alpine Ibex, in the preservation the practice transhumance relevant for alpine economy. The article develop an empirical model to robustly estimate primary productivity. In the analysis, the ratio of chlorophyll over total leaf pigments stand as a powerful addition, once climate model estimate of soil moisture fail to correctly follow real trends in the alpine valley of Nivolet.
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023, https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary
Short summary
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than 2–3 months), variations with elevation? Why is F*yw counterintuitively low in high-elevation catchments, in spite of steeper topography? In this paper, we present a perceptual model explaining how the longer low-flow duration at high elevations, driven by the persistence of winter snowpacks, increases the proportion of stored (old) water contributing to the stream, thus reducing F*yw.
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023, https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary
Short summary
The long-term comparison between observed and simulated outgoing longwave radiances represents a strict test to evaluate climate model performance. In this work, 9 years of synthetic spectrally resolved radiances, simulated online on the basis of the atmospheric fields predicted by the EC-Earth global climate model (v3.3.3) in clear-sky conditions, are compared to IASI spectral radiance climatology in order to detect model biases in temperature and humidity at different atmospheric levels.
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023, https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Short summary
Reliable seasonal forecasts of the abundance of mountain snowpack over the winter/spring ahead provide valuable information for water management, hydropower production and ski tourism. We present a climate service prototype to generate multi-model ensemble seasonal forecasts of mountain snow depth, based on Copernicus seasonal forecast system meteorological data used to force the SNOWPACK model. The prototype shows skill at predicting snow depth below and above normal and extremely dry seasons.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Twan van Noije, Tommi Bergman, Philippe Le Sager, Declan O'Donnell, Risto Makkonen, María Gonçalves-Ageitos, Ralf Döscher, Uwe Fladrich, Jost von Hardenberg, Jukka-Pekka Keskinen, Hannele Korhonen, Anton Laakso, Stelios Myriokefalitakis, Pirkka Ollinaho, Carlos Pérez García-Pando, Thomas Reerink, Roland Schrödner, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021, https://doi.org/10.5194/gmd-14-5637-2021, 2021
Short summary
Short summary
This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in CMIP6. We give an overview of the model and describe in detail how it differs from its predecessor and the other EC-Earth3 configurations. The model's performance is characterized using coupled simulations conducted for CMIP6. The model has an effective equilibrium climate sensitivity of 3.9 °C and a transient climate response of 2.1 °C.
Katja Weigel, Lisa Bock, Bettina K. Gier, Axel Lauer, Mattia Righi, Manuel Schlund, Kemisola Adeniyi, Bouwe Andela, Enrico Arnone, Peter Berg, Louis-Philippe Caron, Irene Cionni, Susanna Corti, Niels Drost, Alasdair Hunter, Llorenç Lledó, Christian Wilhelm Mohr, Aytaç Paçal, Núria Pérez-Zanón, Valeriu Predoi, Marit Sandstad, Jana Sillmann, Andreas Sterl, Javier Vegas-Regidor, Jost von Hardenberg, and Veronika Eyring
Geosci. Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-3159-2021, https://doi.org/10.5194/gmd-14-3159-2021, 2021
Short summary
Short summary
This work presents new diagnostics for the Earth System Model Evaluation Tool (ESMValTool) v2.0 on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The ESMValTool v2.0 diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) with a focus on the ESMs participating in the Coupled Model Intercomparison Project (CMIP).
Michela Angeloni, Elisa Palazzi, and Jost von Hardenberg
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-245, https://doi.org/10.5194/gmd-2020-245, 2020
Preprint withdrawn
Short summary
Short summary
We compare the Planet Simulator, an Earth-system Model of Intermediate Complexity, using a 3D dynamical ocean, with two configurations using a simpler mixed-layer ocean. A tuning of oceanic parameters allows a reasonable mean climate in all cases. Model equilibrium climate sensitivity in abrupt CO2 concentration change experiments is found to be significantly affected by the sea-ice feedbacks and by the parameterization of meridional oceanic heat transport in the mixed-layer configurations.
Cited articles
Agnese, C., Baiamonte, G., Cammalleri, C., Cat Berro, D., Ferraris, S., and Mercalli, L.: Statistical analysis of inter-arrival times of rainfall events for Italian Sub-Alpine and Mediterranean areas, Adv. Sci. Res., 8, 171–177, https://doi.org/10.5194/asr-8-171-2012, 2012. a
Aguilar, C., Herrero, J., and Polo, M. J.: Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale, Hydrol. Earth Syst. Sci., 14, 2479–2494, https://doi.org/10.5194/hess-14-2479-2010, 2010. a
Allen, D., Cannon, A., Toews, M., and Scibek, J. Variability in simulated recharge using different GCMs, Water Resour. Res., 46, https://doi.org/10.1029/2009WR008932, 2010. a
ARPA Piemonte: Metodologia dell'Optimal Interpolation, Tech. rep., Arpa
Piemonte, Dipartimento Sistemi Previsionali, available at:
http://rsaonline.arpa.piemonte.it/meteoclima50/pdf/metodologia.pdf
(last access: 14 August 2020), 2010b. a
Baiamonte, G., Mercalli, L., Cat-Berro, D., Agnese, C., and Ferraris, S.:
Modelling the frequency distribution of interarrival times from daily
precipitation time-series in North-West Italy, Hydrol. Res., 50, 339–357,
https://doi.org/10.2166/nh.2018.042, 2019. a, b, c
Bastiancich, L., Lasagna, M., Mancini, S., Falco, M., and Luca, D. A. D.:
Temperature and discharge variations in natural mineral water springs due to
climate variability: a case study in the Piedmont Alps (NW Italy),
Environ. Geochem. Health, 1-24, https://doi.org/10.1007/s10653-021-00864-8, 2021. a
Baudena, M., Bevilacqua, I., Canone, D., Ferraris, S., Previati, M., and
Provenzale, A.: Soil water dynamics at a midlatitude test site: Field
measurements and box modeling approaches, J. Hydrol., 414–415,
329–340, https://doi.org/10.1016/j.jhydrol.2011.11.009, 2012. a
Bertrand, G., Siergieiev, D., Ala-Aho, P., and Rossi, P.: Environmental tracers
and indicators bringing together groundwater, surface water and
groundwater-dependent ecosystems: importance of scale in choosing relevant
tools, Environ. Earth Sci., 72, 813–827, https://doi.org/10.1007/s12665-013-3005-8,
2014. a
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka,
J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A.,
Boháč, M., Bonacci, O., Borga, M., Čanjevac, I.,
Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D.,
Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M.,
Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O.,
Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P.,
Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas,
J. L., Sauquet, E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D.,
Zaimi, K., and Živković, N.: Changing climate both increases and
decreases European river floods, Nature, 573, 108–111,
https://doi.org/10.1038/s41586-019-1495-6, 2019. a, b, c, d
Blyth, E. M., Martinez-de la Torre, A., and Robinson, E. L.: Trends in evapotranspiration and its drivers in Great Britain: 1961 to 2015, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2018-153, 2018. a
Brunetti, M., Maugeri, M., Nanni, T., Auer, I., Bohm, R., and Schoner, W.:
Precipitation variability and changes in the greater Alpine region over the
1800-2003 period, J. Geophys. Res.-Atmos., 111, D11107,
https://doi.org/10.1029/2005JD006674, 2006. a
Canone, D., Previati, M., and Ferraris, S.: Evaluation of stem-flow effects on
the spatial distribution of soil moisture using TDR monitoring and an
infiltration model, Asce J. Irrig. Drain. Eng., 143,
04016075–1–04016075–14, https://doi.org/10.1061/(ASCE)IR.1943-4774.0001120,
2016. a, b
CH2018 Project Team: CH2018 – Climate Scenarios for Switzerland, Technical Report, National Centre for Climate Services, Zurich,
ISBN 978-3-9525031-4-0, 2018. a
Ciccarelli, N., von Hardenberg, J., Provenzale, A., Ronchi, C., Vargiu, A., and
Pelosini, R.: Climate variability in north-western Italy during the second
half of the 20th century, Global Planet. Change, 63, 185–195,
https://doi.org/10.1016/j.gloplacha.2008.03.006, 2008. a, b
Condon, L., Atchley, A., and Maxwell, R.: Evapotranspiration depletes
groundwater under warming over the contiguous United States, Nat.
Commun., 11, 873, 1–8, https://doi.org/10.1038/s41467-020-14688-0, 2020. a, b
Confortola, G., Soncini, A., and Bocchiola, D.: Climate change will affect hydrological regimes in the Alps, J. Alp. Res., 101-3, https://doi.org/10.4000/rga.2176, 2013. a
Crosbie, R., Scanlon, B., Mpelasoka, F., Reedy, R., and Gates, J.: Potential
climate change effects on groundwater recharge in the High Plains
Aquifer, USA, Water Resour. Res., 49, 3936–3951,
https://doi.org/10.1002/wrcr.20292, 2013. a, b, c
De Luca, D., Lasagna, M., and Debernardi, L.: Hydrogeology of the western Po
plain (Piedmont, NW Italy), J. Maps, 16, 265–273,
https://doi.org/10.1080/17445647.2020.1738280, 2020. a, b
Desiato, F., Fioravanti, G., Fraschetti, P., Perconti, W., and Piervitali, E.:
Il clima futuro in Italia: analisi delle proiezioni dei modelli regionali.
Stato dell'Ambiente 58/2015, ISPRA, Tech. rep., 2015. a
DeWalle, D. and Rango, A.: Principles of snow hydrology, Cambridge Univ. Press,
Cambridge, UK, 2008. a
Doveri, M., Menichini, M., and Scozzari, A.: Protection of groundwater
resources: worldwide regulations, scientific approaches and case study, Springer, Berlin, DEU,
40, 13–30, https://doi.org/10.1007/698_2015_421, 2016. a
Epting, J., Huggenberger, P., Radny, D., Hammes, F., Hollender, J., Page,
R. M., Weber, S., Bänninger, D., and Auckenthaler, A.: Spatiotemporal
scales of river-groundwater interaction – The role of local interaction
processes and regional groundwater regimes, Sci Total Environ., 618,
1224–1243, https://doi.org/10.1016/j.scitotenv.2017.09.219, 2018. a, b
Fatichi, S. and Ivanov, V.: Interannual variability of evapotranspiration and
vegetation productivity, Water Resour. Res., 50, 3275–3294,
https://doi.org/10.1002/2013WR015044, 2014. a, b
Fellini, S., Vesipa, R., Boano, F., and Ridolfi, L.: Multipurpose Design of the
Flow-Control System of a Steep Water Main, J. Water Resour.
Plan. Manag. ASCE, 144, 05017018-1, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000867,
2018. a
Giorgi, F., Jones, C., and Asrar, G.: Addressing climate information needs at
the regional level: the CORDEX framework, World Meteorological
Organization (WMO) Bulletin, 58, 175, 2009. a
Gudmundsson, L., Seneviratne, S., and Zhang, X.: Anthropogenic climate change
detected in European renewable freshwater resources, Nat. Climate Change, 7,
813–817, https://doi.org/10.1038/NCLIMATE3416, 2017. a, b, c
Haslinger, K., Hofstatter, M., Schoener, W., and Bloeschl, G.: Changing summer
precipitation variability in the Alpine region: on the role of scale
dependent atmospheric drivers, Clim. Dynam., 57, 1009–1021,
https://doi.org/10.1007/s00382-021-05753-5, 2021. a
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013. a
IPCC: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and
Hanson, C. E., Cambridge University Press, Cambridge, UK, ISBN 978 0521 88010-7, 2007. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013. a, b
Kalbus, E., Reinstorf, F., and Schirmer, M.: Measuring methods for groundwater – surface water interactions: a review, Hydrol. Earth Syst. Sci., 10, 873–887, https://doi.org/10.5194/hess-10-873-2006, 2006. a
Konapala, G., Mishra, A. K., Wada, Y., and Mann, M. E.: Climate change will affect global
water availability through compounding changes in seasonal precipitation and
evaporation, Nat. Commun., 11, 3044, https://doi.org/10.1038/s41467-020-16757-w, 2020. a, b
Kumar, S., Zwiers, F., Dirmeyer, P., Lawrence, D., Shresta, R., and Werner, A. T.:
Terrestrial contribution to the heterogeneity in hydrological changes under
global warming, Water Resour. Res., 52, 3127–3142, 2016. a
Lasagna, M., Luca, D. D., and Franchino, E.: Nitrate contamination of
groundwater in the western Po Plain (Italy): the effects of groundwater
and surface water interactions, Environ. Earth Sci., 75, 240,
https://doi.org/10.1007/s12665-015-5039-6, 2016. a, b
Li, B., Rodell, M., and Famiglietti, J. S.: Groundwater variability across
temporal and spatial scales in the central and northeastern U.S., J.
Hydrol., 525, 769–780, https://doi.org/10.1016/j.jhydrol.2015.04.033, 2015. a
Libertino, A., Ganora, D., and Claps, P.: Evidence for increasing rainfall
extremes remains elusive at large spatial scales: the case of Italy,
Geophys. Res. Lett., 46, 7437–7446, https://doi.org/10.1029/2019GL083371, 2019. a, b
Maraun, D.: Bias correction, quantile mapping, and downscaling: revisiting the
inflation issue, J. Climate, 26, 2137–2143, 2013. a
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., Thiele-Eich, I., and Thiele-Eich, I.: Precipitation downscaling under climate change: Recent
developments to bridge the gap between dynamical models and the end user,
Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010. a
Moeck, C., Grech-Cumbo, N., Podgorski, J., Bretzler, A., and Gurdak, J.: A
global-scale dataset of direct natural groundwater recharge rates: a review
of variables, processes and relationships, Sci. Total Environ.,
717, 1–19, https://doi.org/10.1016/j.scitotenv.2020.137042, 2020. a
Moench, M., Burke, J., and Moench, Y.: Rethinking the Approach to
Groundwater and Food Security, Tech. Rep. Water Reports 24, Food and
Agriculture Organization of the United Nations, Rome, Italy, 2003. a
Moss, R. H., Edmonds, J. A., Hibbard, K. A. , Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios
for climate change research and assessment, Nature, 463, 747–756,
https://doi.org/10.1038/nature08823, 2010. a, b
Pangle, L., Gregg, J., and McDonnell, J.: Rainfall seasonality and an
ecohydrological feedback offset the potential impact of climate warming on
evapotranspiration and groundwater recharge, Water Resour. Res., 50,
1308–1321, https://doi.org/10.1002/2012WR013253, 2014. a, b, c
Pavan, V., Antolini, G., Barbiero, R., Berni, N., Brunier, F., Cacciamani, C., Cagnati, A., Cazzuli, O., Cicogna, A., De Luigi, C., Di Carlo, E., Francioni, M., Maraldo, L., Marigo, G., Micheletti, S., Onorato, L., Panettieri, E., Pellegrini, U., Pelosini, R., Piccinini, D., Ratto, S., Ronchi, C., Rusca, L., Sofia, S., Stelluti, M., Tomozeiu, R., and Torrigiani Malaspina, T.: High resolution climate
precipitation analysis for north-central Italy, 1961–2015, Clim.
Dynam., 52, 3435–3453, https://doi.org/10.1007/s00382-018-4337-6, 2019. a
Persaud, E., Levison, J., MacRitchie, S., Berg, S., Parker, B., and Sudicky,
E.: Integrated modelling to assess climate change impacts on groundwater and
surface water in the Great lakes Basin using diverse climate forcing,
J. Hydrol., 584, 1–15, https://doi.org/10.1016/j.jhydrol.2020.124682, 2020. a, b, c
Pradier, S., Chong, M., and Roux, F.: Radar observations and numerical modeling
of a precipitation line during MAP IOP 5, Mon. Weather Rev., 130,
2533–2553, 2002. a
Raco, B., Vivaldo, G., Doveri, M., Menichini, M., Masetti, G., Battaglini, R.,
Irace, A., Fioraso, G., Marcelli, I., and Brussolo, E.: Geochemical,
geostatistical and time series analysis techniques as a tool to achieve the
Water Framework Directive goals: An example from Piedmont region (NW Italy),
J. Geochem. Explor., 229, 106832,
https://doi.org/10.1016/j.gexplo.2021.106832, 2021. a
Raffelli, G., Previati, M., Canone, D., Gisolo, D., Bevilacqua, I., Capello,
G., Biddoccu, M., Cavallo, E., Deiana, R., Cassiani, G., and Ferraris, S.:
Local- and Plot-Scale Measurements of Soil Moisture: Time and Spatially
Resolved Field Techniques in Plain, Hill and Mountain Sites, Water, 9, 706, https://doi.org/10.3390/w9090706, 2017. a
Regione Piemonte: SIBI Sistema Informativo della Bonifica e
Irrigazione, retrieved online from Regional Irrigation Information System
Archive Center, Regione Piemonte [data set], available at:
https://www.regione.piemonte.it/web/temi/agricoltura/agroambiente-meteo-suoli/bonifica-irrigazione-sibi
(last access: 14 August 2020), 2016. a, b
Regione Piemonte: BDTRE, Base Dati Territoriale di
Riferimento degli Enti, cartographic reference material, 1:250 000,
retrieved online from Sistema informativo territoriale e ambientale Archive
Center, Regione Piemonte [data set], available at: https://www.geoportale.piemonte.it/geonetwork/srv/ita/catalog.search#/metadata/r_piemon:94379297-e72a-41f8-918d-f497a956eb39 (last access: 13 January 2022), 2018a. a, b
Regione Piemonte: Piano di Tutela delle Acque – Revisione 2018, Tech. rep.,
Regione Piemonte, Direzione Ambiente, Governo e Tutela del territorio,
Settore Tutela delle Acque, available at:
https://www.regione.piemonte.it/web/sites/default/files/media/documenti/2019-01/pta2018_tavole_di_piano.pdf
(last access: 7 May 2021), 2018b. a
Rolland, C.: Spatial and seasonal variations of air temperature lapse rates in
Alpine regions, J. Climate, 16, 1032–1046,
https://doi.org/10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2, 2003. a, b, c
Rumsey, C. A., Miller, M., Susong, D., Tillman, F., and Anning, D.: Regional
scale estimates of baseflow and factors influencing baseflow in the Upper
Colorado River Basin, J. Hydrol.-Regional Studies, 4,
91–107, https://doi.org/10.1016/j.ejrh.2015.04.008, 2015. a
Schaap, M., Leij, F., and van Genuchten, M.: Rosetta: a computer program for
estimating soil hydraulic parameters with hierarchical pedotransfer
functions, J. Hydrol., 251, 163–176,
https://doi.org/10.1016/S0022-1694(01)00466-8, 2001. a
Smerdon, B. D.: A synopsis of climate change effects on groundwater recharge,
J. Hydrol., 555, 125–128, https://doi.org/10.1016/j.jhydrol.2017.09.047,
2017. a
Società Metropolitana Acque Torino: Consolidated financial statement and
fiscal year financial statement, Tech. rep., available at:
https://www.smatorino.it/wp-content/uploads/2020/07/EN-BILANCIO_SMAT_31_12_2019.pdf
(last access: 9 August 2021), 2019. a
Sorland, S., Schar, C., Luthi, D., and Kjellstrom, E.: Bias patterns and climate
change signals in GCM-RCM model chains, Environ. Res. Lett., 13, 074717,
https://doi.org/10.1088/1748-9326/aacc77, 2018. a
Stoll, S., Hendricks Franssen, H. J., Butts, M., and Kinzelbach, W.: Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods, Hydrol. Earth Syst. Sci., 15, 21–38, https://doi.org/10.5194/hess-15-21-2011, 2011. a
Strandberg, G., Bärring, L., Hansson, U., Jansson, C., Jones, C.,
Kjellström, E., Kolax, M., M. Kupiainen, M., Nikulin, G., Samuelsson, P.,
Ullerstig, A., and Wang, S.: CORDEX scenarios for Europe from
the Rossby Centre regional climate model RCA4, available at:
http://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-2839 (last access: 14 August 2020), 2014. a, b, c
Taylor, K., Stouffer, R., and Meehl, G.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Taylor, R., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.: Ground water and climate change,
Nat. Clim. Change, 3, 322–329, https://doi.org/10.1038/nclimate1744, 2013. a, b, c, d
van der Gun, J.: Groundwater and Global Change: Trends, Opportunities
and Challenges, Tech. rep., United Nations Educational, Paris, France,
2012. a
van Vuuren, D. P., Stehfest, E., den Elzen, M. G. J., Kram, T., van Vliet, J., Deetman, S., Isaac, M., Klein Goldewijk, K., Hof, A., Mendoza Beltran, A., Oostenrijk, R., and van Ruijven, B.: RCP2.6: Exploring the possibility to keep global mean temperature
change below 2 ∘C, Clim. Change, 109, 95–116,
https://doi.org/10.1007/s10584-011-0152-3, 2011. a
WCRP: CORDEX data access, retrieved online from ESGF
Archive Center, available at: https://cordex.org/data-access/esgf/ (last access:
14 August 2020), 2009. a
WHO: Protecting groundwater for health: Managing the quality of
drinking-water sources, IWA Publishing for World Health Organization, ISBN 92 4 154668 9, 2006. a
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, vol. 100,
Academic Press, third edn.,
available at: http://www.sciencedirect.com/science/bookseries/00746142/100/supp/C (last access: 14 August 2020),
2011.
a
Short summary
In this study, we evaluate the past, present and future quantity of groundwater potentially available for drinking purposes in the metropolitan area of Turin, north-western Italy. In order to effectively manage water resources, a knowledge of the water cycle components is necessary, including precipitation, evapotranspiration and subsurface reservoirs. All these components have been carefully evaluated in this paper, using observational datasets and modelling approaches.
In this study, we evaluate the past, present and future quantity of groundwater potentially...