Articles | Volume 26, issue 13
https://doi.org/10.5194/hess-26-3477-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3477-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial extrapolation of stream thermal peaks using heterogeneous time series at a national scale
Aurélien Beaufort
RiverLy, INRAE, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, 69100, Villeurbanne, France
GéoHydrosystèmes COntinentaux, Université de Tours, Tours, 38000, France
Jacob S. Diamond
RiverLy, INRAE, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, 69100, Villeurbanne, France
GéoHydrosystèmes COntinentaux, Université de Tours, Tours, 38000, France
Eric Sauquet
RiverLy, INRAE, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, 69100, Villeurbanne, France
Florentina Moatar
CORRESPONDING AUTHOR
RiverLy, INRAE, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, 69100, Villeurbanne, France
Related authors
No articles found.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Tristan Jaouen, Lionel Benoit, Louis Héraut, and Eric Sauquet
Hydrol. Earth Syst. Sci., 29, 3629–3671, https://doi.org/10.5194/hess-29-3629-2025, https://doi.org/10.5194/hess-29-3629-2025, 2025
Short summary
Short summary
This study uses a multi-model approach to assess future changes in river flow intermittency across France under climate change. Combining projections from the Explore2 project with historical flow observations, logistic regressions estimate the daily probability of flow intermittency (PFI) under RCP2.6, RCP4.5, and RCP8.5 scenarios. Results suggest intensifying and prolonged dry spells throughout the 21st century, with southern France more affected, while uncertainty remains higher in northern regions.
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data, 17, 3411–3430, https://doi.org/10.5194/essd-17-3411-2025, https://doi.org/10.5194/essd-17-3411-2025, 2025
Short summary
Short summary
Many waterbodies undergo nutrient decline, called oligotrophication, globally, but a comprehensive dataset to understand ecosystem responses is lacking. The OLIGOTREND database comprises multi-decadal chlorophyll a and nutrient time series from rivers, lakes, and estuaries with 4.3 million observations from 1894 unique measurement locations. The database provides empirical evidence for oligotrophication responses with a spatial and temporal coverage that exceeds previous efforts.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Yves Tramblay, Guillaume Thirel, Laurent Strohmenger, Guillaume Evin, Lola Corre, Louis Heraut, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1635, https://doi.org/10.5194/egusphere-2025-1635, 2025
Short summary
Short summary
How climate change impacts floods in France? Using simulations for 3000 rivers in climate projections, results show that flood trends vary depending on the region. In the north, floods may become more severe, but in many other areas, the trends are mixed. Floods from intense rainfall are becoming more frequent, while snowmelt floods are strongly decreasing. Overall, the study shows that understanding what causes floods is key to predicting how they are likely to change with the climate.
An Truong Nguyen, Gwenaël Abril, Jacob S. Diamond, Raphaël Lamouroux, Cécile Martinet, and Florentina Moatar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1478, https://doi.org/10.5194/egusphere-2025-1478, 2025
Short summary
Short summary
This 32-year study of France’s Loire River shows cleaner water reduced carbon dioxide emissions by 62 %, despite increased contributions from aquatic plant activity. Seasonal emissions were higher in autumn than spring, while long-term declines were driven by reduced external carbon inputs from groundwater and soils. Results highlight how ecosystem changes influence rivers' role in global carbon cycles and climate management.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023, https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary
Short summary
Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023, https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Short summary
Mediterranean floods are causing major damage, and recent studies have shown that, despite the increase in intense rainfall, there has been no increase in river floods. This study reveals that the seasonality of floods changed in the Mediterranean Basin during 1959–2021. There was also an increased frequency of floods linked to short episodes of intense rain, associated with a decrease in soil moisture. These changes need to be taken into consideration to adapt flood warning systems.
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Stella Guillemot, Ophelie Fovet, Chantal Gascuel-Odoux, Gérard Gruau, Antoine Casquin, Florence Curie, Camille Minaudo, Laurent Strohmenger, and Florentina Moatar
Hydrol. Earth Syst. Sci., 25, 2491–2511, https://doi.org/10.5194/hess-25-2491-2021, https://doi.org/10.5194/hess-25-2491-2021, 2021
Short summary
Short summary
This study investigates the drivers of spatial variations in stream water quality in poorly studied headwater catchments and includes multiple elements involved in major water quality issues, such as eutrophication. We used a regional public dataset of monthly stream water concentrations monitored for 10 years over 185 agricultural catchments. We found a spatial and seasonal opposition between carbon and nitrogen concentrations, while phosphorus concentrations showed another spatial pattern.
Cited articles
Arismendi, I., Johnson, S. L., Dunham, J. B., Haggerty, R., and Hockman-Wert, D.: The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States, Geophys. Res. Lett., 39, L10401, https://doi.org/10.1029/2012GL051448, 2012.
Arismendi, I., Safeeq, M., Dunham, J. B., and Johnson, S. L.:
Can air temperature be used to project influences of climate change on stream temperature?, Environ. Res. Lett., 9, 084015, https://doi.org/10.1088/1748-9326/9/8/084015, 2014.
Beaufort, A., Moatar, F., Curie, F., Ducharne, A., Bustillo, V., and Thiéry, D.:
River Temperature Modelling by Strahler Order at the Regional Scale in the Loire River Basin, France, River Res. Appl., 32, 597–609, https://doi.org/10.1002/rra.2888, 2016a.
Beaufort, A., Curie, F., Moatar, F., Ducharne, A., Melin, E., and Thiery, D.:
T-NET, a dynamic model for simulating daily stream temperature at the regional scale based on a network topology, Hydrol. Process., 30, 2196–2210, 2016b.
Beaufort, A., Moatar, F., Sauquet, E., Loicq, P., and Hannah, D. M.:
Influence of landscape and hydrological factors on stream–air temperature relationships at regional scale, Hydrol. Process., 34, 583–597, https://doi.org/10.1002/hyp.13608, 2020a.
Beaufort, A., Moatar, F., Sauquet, E., and Magand, C.:
Thermie en rivière: Analyse géostatistique et description de régime: Application à l'échelle de la France, INRAE, 106 pp., https://hal.archives-ouvertes.fr/hal-03126527/ (last access: May 2022), 2020b.
Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B., and Bobée, B.:
A review of statistical water temperature models, Can. Water Resour. J., 32, 179–192, 2007.
Bishop, C. M.: Pattern recognition and machine learning, Springer, ISBN 978-1-4939-3843-8, 2006.
Breiman, L.:
Random forests, Mach. Learn., 45, 5–32, 2001.
Bruno, M. C., Siviglia, A., Carolli, M., and Maiolini, B.:
Multiple drift responses of benthic invertebrates to interacting hydropeaking and thermopeaking waves, Ecohydrology, 6, 511–522, 2013.
Buisson, L. and Grenouillet, G.:
Contrasted impacts of climate change on stream fish assemblages along an environmental gradient, Divers. Distrib., 15, 613–626, 2009.
Caissie, D.:
The thermal regime of rivers: a review, Freshwater Biol., 51, 1389–1406, 2006.
Carlson, S. M., Hendry, A. P., and Letcher, B. H.:
Growth rate differences between resident native brook trout and non-native brown trout, J. Fish Biol., 71, 1430–1447, 2007.
Casado, A., Hannah, D. M., Peiry, J. L., and Campo, A. M.:
Influence of dam-induced hydrological regulation on summer water temperature: Sauce Grande River, Argentina, Ecohydrology, 6, 523–535, 2013.
Catalogne, C.:
Amélioration des méthodes de prédétermination des débits de référence d'étiage en sites peu ou pas jaugés, Doctorat Ocean Atmosphere Hydrologie, Université Joseph Fourier, Grenoble, 2012.
Chandesris, A., Van Looy, K., Diamond, J. S., and Souchon, Y.:
Small dams alter thermal regimes of downstream water, Hydrol. Earth Syst. Sci., 23, 4509–4525, https://doi.org/10.5194/hess-23-4509-2019, 2019.
Chang, H. and Psaris, M.:
Local landscape predictors of maximum stream temperature and thermal sensitivity in the Columbia River Basin, USA, Sci. Total Environ., 461, 587–600, 2013.
Conti, L., Comte, L., Hugueny, B., and Grenouillet, G.:
Drivers of freshwater fish colonisations and extirpations under climate change, Ecography, 38, 510–519, 2015.
Daigle, A., St-Hilaire, A., Peters, D., and Baird, D.:
Multivariate modelling of water temperature in the Okanagan watershed, Can. Water Resour. J., 35, 237–258, 2010.
Ducharne, A.:
Importance of stream temperature to climate change impact on water quality, Hydrol. Earth Syst. Sci., 12, 797–810, https://doi.org/10.5194/hess-12-797-2008, 2008.
Dugdale, S. J., Malcolm, I. A., Kantola, K., and Hannah, D. M.:
Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes, Sci. Total Environ., 610, 1375–1389, 2018.
Durance, I. and Ormerod, S. J.:
Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates, Freshwater Biol., 54, 388–405, 2009.
Fullerton, A. H., Torgersen, C. E., Lawler, J. J., Faux, R. N., Steel, E. A., Beechie, T. J., Ebersole, J. L., and Leibowitz, S. G.:
Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures, Hydrol. Process., 29, 4719–4737, 2015.
Hannah, D. M., Malcolm, I. A., Soulsby, C., and Youngson, A. F.:
Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: seasonal and sub-seasonal dynamics, River Res. Appl., 20, 635–652, 2004.
Hare, D. K., Helton, A. M., Johnson, Z. C., Lane, J. W., and Briggs, M. A.:
Continental-scale analysis of shallow and deep groundwater contributions to streams, Nat. Commun., 12, 1–10, 2021.
Hawkins, C. P., Hogue, J. N., Decker, L. M., and Feminella, J. W.:
Channel morphology, water temperature, and assemblage structure of stream insects, J. N Am. Benthol. Soc., 16, pp.728-749, 1997.
Hill, R. A. and Hawkins, C. P.:
Using modelled stream temperatures to predict macro-spatial patterns of stream invertebrate biodiversity, Freshwater Biol., 59, 2632–2644, 2014.
Hrachowitz, M., Soulsby, C., Imholt, C., Malcolm, I., and Tetzlaff, D.:
Thermal regimes in a large upland salmon river: a simple model to identify the influence of landscape controls and climate change on maximum temperatures, Hydrol. Process., 24, 3374–3391, 2010.
Imholt, C., Soulsby, C., Malcolm, I. A., Hrachowitz, M., Gibbins, C. N., Langan, S., and Tetzlaff, D.:
Influence of scale on thermal characteristics in a large montane river basin, River Res. Appl., 29, 403–419, 2013.
INRAE: Présentation du projet TIGRE, INRAE [data set], https://thermie-rivieres.inrae.fr, last access: 25 May 2022.
Isaak, D. J. and Hubert, W. A.:
A hypothesis about factors that affect maximum summer stream temperatures across montane landscapes, J. Am. Water Resour. As., 37, 351–366, 2001.
Isaak, D. J., Wenger, S. J., Peterson, E. E., Ver Hoef, J. M., Nagel, D. E., Luce, C. H., Hostetler, S. W., Dunham, J. B., Roper, B. B., and Wollrab, S. P.:
The NorWeST summer stream temperature model and scenarios for the western US: A crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams, Water Resour. Res., 53, 9181–9205, 2017.
Isaak, D. J., Luce, C. H., Horan, D. L., Chandler, G. L., Wollrab, S. P., Dubois, W. B., and Nagel, D. E.:
Thermal regimes of perennial rivers and streams in the Western United States, J. Am. Water Resour. As., 56, 842–867, 2020.
Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P., and Malcolm, I. A.:
A spatio-temporal statistical model of maximum daily river temperatures to inform the management of Scotland's Atlantic salmon rivers under climate change, Sci. Total Environ., 612, 1543–1558, 2018.
Johnson, Z. C., Johnson, B. G., Briggs, M. A., Devine, W. D., Snyder, C. D., Hitt, N. P., Hare, D. K., and Minkova, T. V.: Paired air-water annual temperature patterns reveal hydrogeological controls on stream thermal regimes at watershed to continental scales, J. Hydrol., 587, 124929, https://doi.org/10.1016/j.jhydrol.2020.124929, 2020.
Jones, N. and Schmidt, B.:
Thermal regime metrics and quantifying their uncertainty for North American streams, River Res. Appl., 34, 382–393, 2018.
Kelleher, C., Wagener, T., Gooseff, M., McGlynn, B., McGuire, K., and Marshall, L.:
Investigating controls on the thermal sensitivity of Pennsylvania streams, Hydrol. Process., 26, 771–785, 2012.
Kirk, M. A. and Rahel, F. J.: Air temperatures over-predict changes to stream fish assemblages with climate warming compared with water temperatures, Ecol. Appl., 32, e02465, https://doi.org/10.1002/eap.2465, 2022.
Laanaya, F., St-Hilaire, A., and Gloaguen, E.:
Water temperature modelling: comparison between the generalized additive model, logistic, residuals regression and linear regression models, Hydrolog. Sci. J., 62, 1078–1093, 2017.
Lalot, E., Curie, F., Wawrzyniak, V., Baratelli, F., Schomburgk, S., Flipo, N., Piegay, H., and Moatar, F.:
Quantification of the contribution of the Beauce groundwater aquifer to the discharge of the Loire River using thermal infrared satellite imaging, Hydrol. Earth Syst. Sci., 19, 4479–4492, https://doi.org/10.5194/hess-19-4479-2015, 2015.
Liaw, A. and Wiener, M.:
Classification and regression by randomForest, R news, 2, 18–22, 2002.
Logez, M., Bady, P., and Pont, D.:
Modelling the habitat requirement of riverine fish species at the European scale: sensitivity to temperature and precipitation and associated uncertainty, Ecol. Freshw. Fish, 21, 266–282, 2012.
Loicq, P., Moatar, F., Jullian, Y., Dugdale, S. J., and Hannah, D. M.:
Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data, Sci. Total Environ., 624, 480–490, 2018.
Mayer, T. D.:
Controls of summer stream temperature in the Pacific Northwest, J. Hydrol., 475, 323–335, 2012.
McGarvey, D. J., Menon, M., Woods, T., Tassone, S., Reese, J., Vergamini, M., and Kellogg, E.:
On the use of climate covariates in aquatic species distribution models: are we at risk of throwing out the baby with the bath water?, Ecography, 41, 695–712, 2018.
Moatar, F. and Gailhard, J.:
Water temperature behaviour in the River Loire since 1976 and 1881, C. R. Geosci., 338, 319–328, https://doi.org/10.1016/j.crte.2006.02.011, 2006.
Moatar, F., Miquel, J., and Poirel, A.:
A quality-control method for physical and chemical monitoring data. Application to dissolved oxygen levels in the river Loire (France), J. Hydrol., 252, 25–36, https://doi.org/10.1016/s0022-1694(01)00439-5, 2001.
Mohseni, O. and Stefan, H. G.:
Stream temperature/air temperature relationship: a physical interpretation, J. Hydrol., 218, 128–141, 1999.
Mohseni, O., Stefan, H. G., and Erickson, T. R.:
A nonlinear regression model for weekly stream temperatures, Water Resour. Res., 34, 2685–2692, 1998.
Moore, R., Nelitz, M., and Parkinson, E.:
Empirical modelling of maximum weekly average stream temperature in British Columbia, Canada, to support assessment of fish habitat suitability, Can. Water Resour. J., 38, 135–147, 2013.
Moore, R. D., Spittlehouse, D. L., and Story, A.:
Riparian microclimate and stream temperature response to forest harvesting: a review, J. Am. Water Resour. As., 41, 813–834, 2005.
Morrill, J. C., Bales, R. C., and Conklin, M. H.:
Estimating stream temperature from air temperature: implications for future water quality, J. Environ. Eng., 131, 139–146, 2005.
Naiades: Données sur la qualité des eaux de surface, http://www.naiades.eaufrance.fr/acces-donnees#/temperature, last access: 25 March 2019.
Nash, J. E. and Sutcliffe, J. V.:
River flow forecasting through conceptual models part I—A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Nelson, K. C. and Palmer, M. A.:
Stream temperature surges under urbanization and climate change: data, models, and responses, J. Am. Water Resour. As., 43, 440–452, 2007.
Nimick, D. A., Gammons, C. H., and Parker, S. R.:
Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review, Chem. Geol., 283, 3–17, 2011.
O'Driscoll, M. A. and DeWalle, D. R.: Stream–air temperature relations to classify stream–ground water interactions in a karst setting, central Pennsylvania, USA, J. Hydrol., 329, 140–153, https://doi.org/10.1016/j.jhydrol.2006.02.010, 2006.
Olden, J. D. and Jackson, D. A.:
Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks, Ecol. Model., 154, 135–150, 2002.
Olden, J. D., Joy, M. K., and Death, R. G.:
An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data, Ecol. Model., 178, 389–397, 2004.
Ouellet, V., St-Hilaire, A., Dugdale, S. J., Hannah, D. M., Krause, S., and Proulx-Ouellet, S.: River temperature research and practice: Recent challenges and emerging opportunities for managing thermal habitat conditions in stream ecosystems, Sci. Total Environ., 736, 139679, https://doi.org/10.1016/j.scitotenv.2020.139679, 2020.
Pella, H., Lejot, J., Lamouroux, N., and Snelder, T.:
Le réseau hydrographique théorique (RHT) français et ses attributs environnementaux, Géomorphologie, 18, 317–336, 2012.
Sauquet, E., Gottschalk, L., and Leblois, E.:
Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation scheme, Hydrolog. Sci. J., 45, 799–815, 2000.
Sauquet E., Gottschalk L., and Krasovskaia I. Estimating mean monthly runoff at ungauged locations: an application to France, Hydrol. Res., 39, 403–423, 2008.
Segura, C., Caldwell, P., Sun, G., McNulty, S., and Zhang, Y.:
A model to predict stream water temperature across the conterminous USA, Hydrol. Process., 29, 2178–2195, 2015.
Seyedhashemi, H., Moatar, F., Vidal, J.-P., Diamond, J. S., Beaufort, A., Chandesris, A., and Valette, L.:
Thermal signatures identify the influence of dams and ponds on stream temperature at the regional scale, Sci. Total Environ., 766, 142667, https://doi.org/10.1016/j.scitotenv.2020.142667, 2021.
Song, C., Dodds, W. K., Rüegg, J., Argerich, A., Baker, C. L., Bowden, W. B., Douglas, M. M., Farrell, K. J., Flinn, M. B., Garcia, E. A., and Helton, A. M.:
Continental-scale decrease in net primary productivity in streams due to climate warming, Nat. Geosci., 11, 415–420, 2018.
Strauch, A. M., MacKenzie, R. A., and Tingley III, R. W.:
Base flow-driven shifts in tropical stream temperature regimes across a mean annual rainfall gradient, Hydrol. Process., 31, 1678–1689, 2017.
Tisseuil, C., Vrac, M., Grenouillet, G., Wade, A. J., Gevrey, M., Oberdorff, T., Grodwohl, J.-B., and Lek, S.:
Strengthening the link between climate, hydrological and species distribution modeling to assess the impacts of climate change on freshwater biodiversity, Sci. Total Environ., 424, 193–201, 2012.
Valette, L., Piffady, J., Chandesris, A., and Souchon, Y.: SYRAH-CE: description des données et modélisation du risque d'altération hydromorphologique des cours d'eau pour l'état des lieux DCE, Rapport Technique Onema-Irstea, http://oai.afbiodiversite.fr/cindocoai/download/PUBLI/1185/1/2012_108.pdf_4080Ko (last access: May 2022), 2012.
van Vliet, M. T. H. and Zwolsman, J. J. G.:
Impact of summer droughts on the water quality of the Meuse river, J. Hydrol., 353, 1–17, https://doi.org/10.1016/j.jhydrol.2008.01.001, 2008.
Venables, W. N. and Ripley, B. D.:
Modern Applied Statistics with S, fourth edn., Springer, New York, ISBN 0-387-95457-0, 2002.
Vidal, J. P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J. M.:
A 50-year high-resolution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, 2010.
Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E., and Nobilis, F.:
Recent advances in stream and river temperature research, Hydrol. Process., 22, 902–918, 2008.
Wehrly, K. E., Brenden, T. O., and Wang, L.:
A comparison of statistical approaches for predicting stream temperatures across heterogeneous landscapes, J. Am. Water Resour. As., 45, 986–997, 2009.
Wolter, C.:
Temperature influence on the fish assemblage structure in a large lowland river, the lower Oder River, Germany, Ecol. Freshw. Fish, 16, 493–503, 2007.
Xu, C. L., Letcher, B. H., and Nislow, K. H.:
Size-dependent survival of brook trout Salvelinus fontinalis in summer: effects of water temperature and stream flow, J. Fish Biol., 76, 2342–2369, 2010.
Short summary
We developed one of the largest stream temperature databases to calculate a simple, ecologically relevant metric – the thermal peak – that captures the magnitude of summer thermal extremes. Using statistical models, we extrapolated the thermal peak to nearly every stream in France, finding the hottest thermal peaks along large rivers without forested riparian zones and groundwater inputs. Air temperature was a poor proxy for the thermal peak, highlighting the need to grow monitoring networks.
We developed one of the largest stream temperature databases to calculate a simple, ecologically...