Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-221-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.Preprocessing approaches in machine-learning-based groundwater potential mapping: an application to the Koulikoro and Bamako regions, Mali
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Remote Sensing and GIS
Influence of intensive agriculture and geological heterogeneity on the recharge of an arid aquifer system (Saq–Ram, Arabian Peninsula) inferred from GRACE data
Evaluating downscaling methods of GRACE (Gravity Recovery and Climate Experiment) data: a case study over a fractured crystalline aquifer in southern India
Applicability of Landsat 8 thermal infrared sensor for identifying submarine groundwater discharge springs in the Mediterranean Sea basin
Unsaturated zone model complexity for the assimilation of evapotranspiration rates in groundwater modelling
Technical note: Water table mapping accounting for river–aquifer connectivity and human pressure
Hydrol. Earth Syst. Sci., 26, 5757–5771,
2022Hydrol. Earth Syst. Sci., 26, 4169–4186,
2022Hydrol. Earth Syst. Sci., 25, 4789–4805,
2021Hydrol. Earth Syst. Sci., 25, 2261–2277,
2021Hydrol. Earth Syst. Sci., 23, 4835–4849,
2019Cited articles
Adeyeye, O. A., Ikpokonte E. A., and Arabi, S. A.: GIS-based groundwater potential
mapping within Dengi area, North Central Nigeria, The Egyptian Journal of
Remote Sensing and Space Science, 22, 175–181, https://doi.org/10.1016/j.ejrs.2018.04.003, 2019.
Al-Djazouli, M. O., Elmorabiti, K., Rahimi, A., Amellah,
O., and Fadil, O. A. M.: Delineating of groundwater potential zones based on
remote sensing, GIS and analytical hierarchical process: a case of Waddai,
eastern Chad, GeoJournal, 86, 1881–1894, https://doi.org/10.1007/s10708-020-10160-0, 2021.
Al-Fugara, A., Pourghasemi, H. R., Al-Shabeeb, A. R., Habib, M., Al-Adamat,
R., Al-Amoush, H., and Collins, A. L.: A comparison of machine learning
models for the mapping of groundwater spring potential, Environ. Earth Sci.,
79, 206, https://doi.org/10.1007/s12665-020-08944-1, 2020.
Angelis, L. and Stamelos, I.: A simulation tool for efficient analogy based
cost estimation, Empir. Softw. Eng., 5, 35–68,
https://doi.org/10.1023/A:1009897800559, 2000.
Arneth, A., Barbosa, H., Benton, T., Calvin, K., Calvo, E., Connors,
S., Cowie, A., Davin, E., Denton, F., and van Diemen, R.: Summary
for policymakers, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., in: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, ISBN 978-92-9169-154-8, Geneva, Switzerland, The Intergovernmental Panel on Climate Change (IPCC), 2019.