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Abstract. Groundwater is crucial for domestic supplies in
the Sahel, where the strategic importance of aquifers will in-
crease in the coming years due to climate change. Ground-
water potential mapping is a valuable tool to underpin water
management in the region and, hence, to improve drinking
water access. This paper presents a machine learning method
to map groundwater potential. This is illustrated through its
application in two administrative regions of Mali. A set of ex-
planatory variables for the presence of groundwater is devel-
oped first. Scaling methods (standardization, normalization,
maximum absolute value and max—min scaling) are used
to avoid the pitfalls associated with reclassification. Noisy,
collinear and counterproductive variables are identified and
excluded from the input dataset. A total of 20 machine learn-
ing classifiers are then trained and tested on a large borehole
database (n = 3345) in order to find meaningful correlations
between the presence or absence of groundwater and the ex-
planatory variables. Maximum absolute value and standard-
ization proved the most efficient scaling techniques, while
tree-based algorithms (accuracy >0.85) consistently outper-
formed other classifiers. The borehole flow rate data were
then used to calibrate the results beyond standard machine
learning metrics, thereby adding robustness to the predic-
tions. The southern part of the study area presents the bet-
ter groundwater prospect, which is consistent with the geo-
logical and climatic setting. Outcomes lead to three major
conclusions: (1) picking the best performers out of a large
number of machine learning classifiers is recommended as a

good methodological practice, (2) standard machine learning
metrics should be complemented with additional hydrogeo-
logical indicators whenever possible and (3) variable scaling
contributes to minimize expert bias.

1 Introduction

Today, 2.5 billion people across the world depend on ground-
water for domestic supply (Gronwall and Danert, 2020).
Groundwater is crucial in arid regions, such as the Sahel,
where aquifers provide a permanent source of good-quality
water during the months of the year in which rainfall and sur-
face water are absent (Llamas and Martinez-Santos, 2005;
Diaz-Alcaide et al., 2017). In a context of climate change,
with rainfall expected to decrease and droughts likely to be-
come more intense (Arneth et al., 2019), groundwater re-
sources will be increasingly relied upon. This could well be
the case in rural Mali, where access to drinking water and
sanitation is a concern. In 2017, only 68 % of the rural popu-
lation had “at least basic” drinking water access, while 24 %
relied on unimproved water sources like unprotected springs
and wells (UNICEF/WHO, 2019).

Groundwater potential mapping (GPM) is recognized as
a valuable tool to underpin the planning and exploration of
groundwater resources (Elbeih, 2015). There is no univer-
sal consensus as to what groundwater potential means. Thus,
GPM may consist of developing spatial estimates of ground-
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water storage in a given region, measuring the probability of
finding groundwater or predicting where the highest borehole
yields may occur (Diaz-Alcaide and Martinez-Santos, 2019).
Recent years have witnessed a growing interest in groundwa-
ter potential studies across Africa, largely as a result of the
need to achieve Sustainable Development Goal 6. The major-
ity of these studies rely on a combination of remote sensing,
geographic information systems and geophysics (Delgado,
2018; Adeyeye et al., 2019; Magaia et al., 2018; Mpofu et al.,
2020; Owolabi et al., 2020; Saadi et al., 2021; Al-Djazouli et
al., 2021), whereas others directly interpret the information
from borehole databases (Diaz-Alcaide et al., 2017).

There are two main approaches to GPM, namely expert-
based decision systems and machine learning methods.
Expert-based techniques have been used for a long time
(DEP, 1993) and include multi-influencing factor approaches
(Magesh et al., 2012; Nasir et al., 2018; Martin-Loeches
et al., 2018), analytical hierarchy processes (Mohammadi-
Behzad et al., 2019; Al-Djazouli et al., 2021) and Dempster—
Shafer models (Mogaji and Lim, 2018; Obeidavi et al.,
2021). Other frequently used expert methods are weight of
evidence and frequency ratio analysis (Falah and Zeinivand,
2019; Boughariou et al., 2021). Machine learning is compar-
atively newer. A major difference between machine learn-
ing and expert approaches is that machine learning classifi-
cation uses the advantages of artificial intelligence to find in-
tricate associations among explanatory variables that might
otherwise pass unnoticed. Hence, machine learning is well
suited to map complex spatially distributed variables such
as groundwater occurrence. The GPM literature showcases a
wide variety of supervised classification approaches. For in-
stance, Al-Fugara et al. (2020) used mixed discriminant anal-
ysis to map spring potential in a watershed of Jordan, much
like Odzemir (2011) mapped spring potential in a Turkish
basin by means of a logistic regression method. Random
forests have proved adept at mapping groundwater potential,
both in mountain bedrock aquifers (Moghaddam et al., 2020)
and large metasedimentary basins (Martinez-Santos and Re-
nard, 2020). Other supervised classification methods used in
the field of GPM include boosted regression trees (Naghibi et
al., 2016), support vector machines (Naghibi et al., 2017b),
neural networks (Lee et al., 2012; Panahi et al., 2020) and en-
semble methods (Naghibi et al., 2017a; Martinez-Santos and
Renard, 2020; Nguyen et al., 2020b).

GPM is founded on the assumption that groundwater oc-
currence can be partially inferred from surface features.
Some of the most frequently used explanatory variables in
GPM studies include lithology, geological lineaments, land-
forms, topography, soil, land use/land cover, drainage and
slope-related variables, rainfall, and vegetation indices (Jha
et al., 2007). Supervised classification algorithms are trained
to find the associations between these variables and known
groundwater data. Once the algorithms yield accurate predic-
tions, their findings are extrapolated to estimate groundwater
potential across a given study area.
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The majority of machine learning GPM studies face two
major shortcomings. First, as the number of available bore-
holes to train and test the algorithms is usually “small” and
the number of explanatory variables can be comparatively
high, a crucial issue is how to reclassify explanatory variables
to minimize noise and decrease the variability of each con-
ditioning factor. Ultimately, categorical and continuous vari-
ables need to be reclassified either as integers or in intervals.
As reclassification relies heavily on the operator, this implies
that bias may be incorporated from the beginning (Martinez-
Santos and Renard, 2020).

A second problem is that the outcomes of machine learn-
ing studies are almost invariably assessed by means of stan-
dard big data metrics such as precision, recall, and area under
the receiver operating characteristic curve (Pradhan, 2013;
Naghibi et al., 2016; Chen et al., 2019). While useful, these
may be of limited value in cases where the input dataset con-
sists solely of unambiguous examples. Furthermore, there are
question marks as to whether these metrics are truly rep-
resentative when developing spatially distributed estimates
(Martinez-Santos et al., 2021a). In some instances, using ad
hoc calibration elements such as complementary borehole in-
formation can contribute to a better interpretation of the re-
sults.

The objective of this research is to build on the exist-
ing literature by presenting two methodological additions to
machine learning GPM. First, we explore different scaling
methods to avoid the pitfalls associated with the reclassifi-
cation of explanatory variables; more specifically, we com-
pare several automated approaches to data scaling, including
standardization, normalization, maximum absolute value and
max—min optimization (Pedregosa et al., 2011). The second
novelty has to do with the way that the outcomes of this re-
search are evaluated. In this context, borehole flow rates are
used as a means to complement standard machine learning
metrics, thereby providing additional robustness to predic-
tions. Our method is described in Fig. 1 and is demonstrated
through its application to map groundwater potential across
two regions of Mali. The geographical setting also represents
an added value to the literature because there are consider-
ably fewer machine learning studies in Africa than on other
continents (Naghibi et al., 2017a; Chen et al., 2018; Panahi
et al., 2020).

2 Material and methods
2.1 Study area

This work pertains to the Koulikoro and Bamako regions
of Mali (Fig. 2), which span a joint surface in excess of
90000km?. The study area features three distinct climate
zones, including tropical savannah in the south, hot arid
steppe in the central and northern parts, and hot arid desert
in the north (Traore et al., 2018). Mean yearly temperatures
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Figure 1. Conceptual model of the predictive mapping procedure with MLMapper v2.0.

are relatively uniform from a spatial perspective (27 °C), al-
though seasonal oscillations are observed. The coolest tem-
peratures occur in the south in the month of January (19 °C),
and the hottest temperatures occur in the north in May
(41°C). There is a clear rainfall gradient, from 300 mm/yr
in the north to 1200 mm/yr in the south.

Figure 3 shows the major geological domains of the
study area (BGS, 2021). The rocks that make up the Pre-
cambrian craton (south) are composed mainly of gneiss,
schist and quartzite, representing metamorphosed volcanic—
sedimentary sequences. The original sedimentary layers,
which include shale, arkose, gravel and conglomerate, were
intercalated with volcanic rocks, such as basalt, gabbro, do-
lerite, rhyolite and tuff. Further north, metasedimentary rocks
of the Proterozoic age, predominantly low to medium grade
metamorphosed sandstones, with varying amounts of mud-
stone and limestone, take up over 50 % of the study area. Vol-
canic outcrops (basalts and gabbros) are located in the cen-
tral sector and at the northern end. Sedimentary rocks (sand-
stone, limestone and shale) of the Cambrian—Carboniferous
age and Cretaceous—Tertiary age occur in the northern third
of the study area. Quaternary fluvial deposits associated with
the Niger River are observed along the riverbed (Traore et
al., 2018).

From a hydrogeological perspective, four major aquifer
units can be distinguished (Traore et al., 2018). These in-
clude basement aquifers, aquifers linked to fractures and in-
tergranular porosity of consolidated sedimentary rocks (Pre-
cambrian and Paleozoic), aquifers formed in intrusive vol-
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canic rocks, and aquifers in unconsolidated sedimentary ma-
terials (Fig. 4).

Basement aquifers are mostly located towards the south
of the Koulikoro region. These are characterized by a thick
weathered mantle. The average thickness of the weath-
ered formation over the basement in this region is 10-
50 m. Groundwater flows preferentially through the weath-
ered mantle. Within this mantle, the lower part is generally
more transmissive due to the lower clay content, and the
upper part is less permeable to flow but can still be impor-
tant as a groundwater reservoir. Fractures increase reservoir
permeability, although their storage capacity is typically low
(Martin-Loeches et al., 2018). Borehole yields range from 4
to 6 m3/h (Traore et al., 2018).

The Precambrian metasedimentary materials are located in
the central part of the Koulikoro region. Metasediments are
considered a mixed-permeability aquifer: low-permeability
layers provide higher storage, whereas more fractured layers
present higher permeability and lower storage. Mean aquifer
thickness ranges from 30 to 50m, and the average yield
varies from 5 to 10 m3/h; however, some boreholes exceed
100 m3/h. In the north, the fractured Paleozoic rocks allow
water to flow through the sandstone and limestone layers.
Average borehole yields are around 6 m3/h, and the fractured
horizons are about 40-45m thick. Finally, unconsolidated
sedimentary materials are composed of shales and argilla-
ceous sandstone interbedded with limestone. The average
borehole yields around 7 m3/h. The thickness of the saturated
zone ranges from less than 100 to over 400 m (Traore et al.,
2018).
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Figure 2. Study area: the Koulikoro and Bamako regions located in south-western Mali (map data © 2015 Google).
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Figure 3. Geological map showing the main units with outcrops in the study area (adapted from BGS, 2021).
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Figure 4. Main aquifer units of the study area (adapted from Traore et al., 2018).

2.2 Data

Borehole data were provided by the National Directorate of
Water, Mali (DNH, 2010). The database contains information
on 5387 boreholes (3772 successful and 1615 unsuccessful),
distributed across 1605 human settlements. The smallest unit
of data aggregation is the village level. Available informa-
tion includes the total number of boreholes per settlement,
the borehole success rate, the mean flow rate (m3/h) and the
number of boreholes within a given flow rate range (less
than 5m?3/h, between 5 and 10 m3/h, and over 10 m3/h). In
most cases, there is also information on the mean borehole
depth (m), mean static water table depth (m) and mean elec-
tric conductivity (uS/cm). Figure 5 shows that the most com-
mon yields range between 1.5 and 4.5 m3/h, while the mean
borehole depth ranges between 50 and 80 m. This can be as-
sumed to be the thickness of the weathered formation over
the fresh granite and is roughly consistent with studies con-
ducted in Burkina Faso (Courtois et al., 2010). Water table
depth ranges mostly between 5 and 15 m.

There is a considerable number of villages with a 100 %
success rate (530), many of which have a single bore-
hole (452). This raises the question of whether villages with
a small number of boreholes are statistically representative,
particularly in cases where the mean yield is low. Moreover,
it creates an imbalance in the input dataset. Therefore, vil-
lages with fewer than five boreholes were omitted from the
sample.

https://doi.org/10.5194/hess-26-221-2022

2.2.1 Target variable

For the purpose of algorithm training, groundwater potential
is defined as the likelihood of a drilled borehole being suc-
cessful. Successful boreholes are those that yield sufficient
water to justify the installation of a hand pump (>0.5 m3/h)
(Foster et al., 2006). Therefore, the target variable is binary
and can be interpreted as the presence or absence of ground-
water.

Villages where more than 50 % of wells were known to be
successful were labelled “positive”. The positive classifica-
tion also applies to those villages with more than one high-
yield borehole (>10m?3/h). The others were labelled “nega-
tive”. The resulting input dataset consisted of 650 villages:
390 were labelled positive and 260 were labelled negative.
This comprises information from 3345 boreholes: 2101 were
successful and 1244 were unsuccessful.

2.2.2 Explanatory variables

Groundwater potential depends largely on groundwater
recharge. In turn, recharge is influenced by five main factors
(Kumar, 1997; Jyrkama et al., 2002), namely climate (e.g.
precipitation, temperature and potential evapotranspiration),
soils (e.g. texture, saturated hydraulic conductivity and mois-
ture capacity), land cover (e.g. vegetation density and type),
geomorphology (e.g. surface slope and drainage density) and
hydrology (e.g. streamflow and water table depth).

Hydrol. Earth Syst. Sci., 26, 221-243, 2022
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Figure 5. Frequency analysis of the four borehole-related variables: (a) borehole success rate, (b) average borehole yield, (c) average borehole

depth and (d) water table depth.

Rainfall is the principal source of groundwater recharge.
Recharge depends on the precipitation rate as well as on the
surface and subsurface factors that will allow or prevent in-
filtration. Soil is important because its characteristics (per-
meability, grain shape, grain size and the void ratio) con-
trol percolation. Higher infiltration potential is associated
with sandy and gravelly soils, whereas clayey and silty soils
rank among the least favourable for recharge (Diaz-Alcaide
and Martinez-Santos, 2019). Integration of land use and land
cover is often used in groundwater potential mapping stud-
ies because land use changes, which are mostly induced
by human activities, affect hydrological dynamics (Diaz-
Alcaide and Martinez-Santos, 2019). For instance, croplands
and forests, located in the southern part of the study area,
could be associated with high groundwater potential because
ploughing, root development and biological activity favour
infiltration. Areas close to permanent water bodies also tend
to correlate with a higher groundwater potential (Naghibi et
al., 2017a). In contrast, urban settlements and wastelands are
assumed to have low groundwater potential due to the pres-
ence of impervious surfaces as well as to the absence of mois-
ture (Magesh et al., 2012). Geomorphology may be useful
in identifying features that may be favourable for ground-
water infiltration and storage (Diaz-Alcaide and Martinez-
Santos, 2019). Alluvial fans, sand dunes, weathering man-
tles, floodplains and other accumulations of unconsolidated
materials are generally recognized as the most interesting ge-
omorphological features from a groundwater point of view
(Venkateswaran and Ayyandurai, 2015). In contrast, land-
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forms such as inselbergs, scarps and ridges may be consid-
ered of little interest.

Hydrological factors such as drainage density or wa-
ter table depth also play an important role in groundwa-
ter recharge. High drainage density means that runoff can
be evacuated quickly; therefore, infiltration is less likely.
(Magesh et al., 2012; Fashae et al., 2014). In addition, a high
drainage density can be assimilated to a higher erosion po-
tential. Meijerink (2007) shows that parallels can be found
between drainage density and soil permeability in certain ge-
ological settings. Water table depth is useful for mapping wa-
ter tables to determine the main recharge and discharge zones
of an aquifer.

A total of 19 explanatory variables were selected from an
extensive review of the literature on GPM (Diaz-Alcaide and
Martinez-Santos, 2019). Explanatory variables (Table 1) in-
clude lithology (Fig. 2), landforms, land use, soil, expected
thickness (Fig. 5), rainfall, water table depth, vegetation-
related indices (the normalized difference vegetation index,
NDVI, and the normalized difference water index, NDWI),
slope curvature, slope, topographic wetness index, stream
power index, drainage density, distance from channels, clay
content and the clay mineral alteration ratio (Fig. 6). An ad-
ditional layer with mean borehole flow rates per village was
developed for the purpose of calibrating the results.

The QGIS 3.0 r.geomorphon plugin (Jasiewicz and Stepin-
ski, 2013) was used to prepare the landform map. This ap-
proach uses a digital elevation model (DEM) for the classifi-
cation and mapping of landform features based on the princi-
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Table 1. Explanatory variables used in GPM. The scale/resolution, acquisition time and source of data for each factor are provided.
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Explanatory variables Scale/resolution Time period Source of data
Alteration band ratio 30m 7-16 March 2020 Own elaboration from Landsat 8
Clay content 250 m n/a SoilGrids250m 2.0
Curvature 30.53m n/a Own elaboration from DEM
Saturated thickness 30.53m n/a Own elaboration from DEM and borehole database
Water table depth 30m 2010 Own elaboration from borehole database
Distance from channels  30.53 m n/a Own elaboration from DEM
Geology 1 million: 5 million n/a British Geological Survey
Geomorphology 30.53m n/a Own elaboration from DEM
Land use 300 m 2009 ESA Climate Change
Initiative
Soil 1 million: 3 million n/a European Soil Data Centre
Rainfall 0.5° 1950-2009 CRU TS 3.21 dataset (University of East Anglia)
Drainage density 30.53m n/a Own elaboration from DEM
Thickness matrix 30.53m n/a Derived from DEM and borehole database
Elevation (DEM) 30.53 m 23 September 2014  SRTM
NDVI 30m 7-16 March 2020 Own elaboration from Landsat 8
NDWI 30m 7-16 March 2020 Own elaboration from Landsat 8
Slope 30.53m n/a Own elaboration from DEM
SPI 30.53m n/a Own elaboration from DEM
TWI 30.53m n/a Own elaboration from DEM

The abbreviations used in the table are as follows: DEM — digital elevation model; NDVI — normalized difference vegetation index; NDWI — normalized difference water
index; SPI — stream power index; TWI — topographic wetness index; ESA — European Space Agency; CRU TS — Climatic Research Unit (CRU) Time Series (TS);

SRTM - Shuttle Radar Topography Mission; n/a — not applicable.

ple of pattern recognition, rather than on differential geome-
try. By default, the r.geomorphon plugin classifies landforms
into 10 different categories. Because some of them can be
expected to play a similar role in the context of GPM, these
were subsequently regrouped into four categories (Fig. 6a):
flat areas, gentle slopes, steep slopes and ridges.

Soil descriptions (Fig. 6b) of the study area were obtained
from the European Soil Data Centre (Dewitte et al., 2013).
About 45 % of the region is characterized by the presence
of pisoplinthic Plinthosols, a type of soil with plinthite (Fe-
rich), strongly cemented to indurated concretions or nodules,
a humus-poor mixture of kaolinitic clay, and other products
of strong weathering (IUSS Working Group, 2015). It usu-
ally changes irreversibly to a layer with hard concretions or
nodules or to a hardpan on exposure to repeated wetting and
drying. Hypoluvic Arenosols are present in 20 % of the to-
tal surface and are characterized by deep sandy soils, which
explains their generally high permeability. These are resid-
ual sandy soils following weathering of rocks, generally rich
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in quartz, in situ. Nearly 13 % of the study area is character-
ized by petric Plinthosols, which share multiple features with
pisoplinthic Plinthosols but which, unlike the latter, are ar-
ranged into continuous or fractured sheets of connected con-
cretions or nodules and are strongly cemented to an indurated
layer starting < 100 cm from the soil surface. Lithic Lep-
tosols (very thin soils on continuous rock that are extremely
rich in coarse fragments with continuous rock from < 10cm
from the soil surface), haplic Lixisols (higher clay content in
the subsoil than in the topsoil, as a result of pedogenetic pro-
cesses) and eutric Regosols (very weakly developed mineral
soils in unconsolidated materials) constitute about 15 % of
the study area.

Land cover seems to present a clear association with the
precipitation gradient (Fig. 6¢). The southern part is char-
acterized by open broadleaf deciduous forests (ESA, 2010).
The central part is characterized by an alternation of shrub-
lands, mosaics of cropland vegetation and rainfed cropland.
West of Bamako, in the sparsely populated mountains, there

Hydrol. Earth Syst. Sci., 26, 221-243, 2022
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are forests mixed with shrublands. The northern part of the
study area is dominated by cropland mosaics; further north,
the landscape is made up of open grasslands, sparse vegeta-
tion and bare areas.

Boreholes in the study area are often drilled until the unal-
tered bedrock is reached. As a result, borehole depth can be
a suitable proxy for aquifer thickness (Fig. 6d). Because the
borehole database includes static level measurements, an ex-
pected saturated thickness layer was computed by subtract-
ing one measurement from the other (Fig. 6d).

Satellite monitoring does not penetrate deep into the
ground, but it provides information about features that may
be associated with shallow groundwater (Diaz-Alcaide and
Martinez-Santos, 2019). This can be important in the case
at hand, where the borehole database shows that the static
level remains at around 5-15 m below the surface (Fig. 7b).
Vegetation-related indices can be useful in this context, par-
ticularly when computed at the end of the dry season (Fig. 7c,
d). Take, for instance, the normalized difference vegetation
index (NDVI; Fig. 7¢), which is an estimate of vegetation
vigour. This index is derived from the response of vegetation
to red and visible infrared wavelengths (Xie et al., 2008).
Similarly, the normalized difference water index (NDWI,;
Fig. 7d) is used as a measure of the amount of water in the
vegetation or soil moisture (Xu, 2006). Based on Landsat
8 products, the NDVI and the NDWI are computed as per
Egs. (1) and 2 respectively, where B3 represents the green
band (0.53-0.59 um), B4 is the red band (0.64-0.67 pym) and
BS5 is the near-infrared band (0.85-0.88 pum).

NDVI (Landsat 8) = (B5 — B4) /(B5 + B4) N
NDWI (Landsat 8) = (B3 — BS)/(B3 + B5) 2)

The digital elevation model (DEM) was obtained from the
radar-based Shuttle Radar Topography Mission (SRTM),
with a resolution of 1 arcsec (30 m). Topography is a relevant
factor in groundwater distribution, storage and flow. Surface
runoff and infiltration are also constrained by surface features
(Elbeih, 2015). In this case, the DEM was used to develop the
curvature (Fig. 7e), slope (Fig. 7f), topographic wetness in-
dex (TWI; Fig. 7g) and stream power index (SPI; Fig. 7h).
The topographic wetness index (TWI) represents the ease
with which water may accumulate at the surface (Beven and
Kirkby, 1979). Similarly, the stream power index provides
a measure of the erosive power of flowing water (Moore et
al., 1991). Other features computed from topographic data
include the landforms (Fig. 6a) and drainage-related layers
(Fig. 71, j).

The channels extracted from the DEM are used to de-
velop the drainage density and distance from channels maps.
Drainage density is computed as the total length of the
streams per catchment unit area. Distance from channels was
developed by extracting all major channels into a separate
layer and developing 500 m, 1500 m and 2500 m buffers.
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Clay content in the first few metres of the surface largely
determines the percolation of water into the aquifer. There-
fore, an additional clay content layer (g/kg) in the top 2 m of
the terrain was considered (Poggio and de Sousa, 2020). This
layer is obtained by state-of-the-art machine learning meth-
ods that use global soil profile information and covariate data
to model the spatial distribution of soil properties around the
world. (Fig. 7k). This layer provides information about sub-
surface clay content. To complement the information on clay
content on the subsurface, an additional layer has been de-
veloped by combining bands 6 (short-wave infrared 1) and 7
(short-wave infrared 2) of Landsat 8 (Ourhzif et al., 2019).
This layer provides information on clay content on the sur-
face and the relationship with infiltration (Fig. 71).

2.3 Predictive mapping software

MLMapper v2.0 is an upgrade of the software developed by
Martinez-Santos and Renard (2020). MLMapper is a QGIS3
plugin that allows for the development of predictive maps of
a given target variable based on a series of explanatory vari-
ables (Fig. 1). It relies on a variety of supervised learning
classifiers from the scikit-learn 0.24.1 toolbox (Pedregosa
et al., 2011). Version 2.0 uses 19 different algorithms, in-
cluding support vector machines (SVC), linear support vec-
tor machines (LVC), logistic regression (LRG), the decision
tree classifier (DTC), the random forest classifier (RFC), K-
neighbour classification (KNN), linear discriminant analysis
(LDA), Gaussian naive Bayes classification (NBA), multi-
layer perceptron neural network (MLP), the AdaBoost clas-
sifier (ABC), quadratic discriminant analysis (QDA), gradi-
ent boosting classification (GBC), the Gaussian process clas-
sifier (GPC), the ridge classifier (RID), the stochastic gra-
dient descent linear classifier (SGD), perceptron (PER), the
passive-aggressive classifier (PASSI), the nu-support vector
classifier (nuSVC) and the extra trees classifier (ETC).

2.4 Preprocessing of explanatory variables

Machine learning algorithms are designed to find meaningful
associations between the explanatory variables and a given
target variable. A preprocessing of explanatory variables is
important to avoid bias. Take, for instance, the issue of
ranges. Rainfall in the study area oscillates between 300 and
1200 mm/yr, whereas NDVI and NDWTI values only range
between —1 and +1. As some algorithms attribute weight to
explanatory variables based on sheer magnitude, scaling is
advisable to prevent the rainfall layer from having an undue
bearing on the results. Furthermore, those algorithms that use
gradient descent as an optimization technique (logistic re-
gression and neural networks) require data to be scaled, as
range differences lead to different step sizes in the gradient
descent formula for each feature and, as a result, computa-
tion time increases. Algorithms such as K-neighbours and
support vector machines are affected by different ranges be-
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Figure 6. Explanatory variables used to predict the GPM: (a) geomorphology, (b) land use (A.a: artificial areas; W.b: water bodies; M.c.v:
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cause these classifiers rely on distances between data points
to determine their similarity.

Scaling is advocated as an essential part of algorithm train-
ing, as each subsequent procedure depends on the choice of
unit for each feature (Huang et al., 2015). Furthermore, scal-
ing is expected to transform feature values based on a defined
rule, so that all scaled features have the same degree of influ-
ence (Angelis and Stamelos, 2000).

In this context, the rationale behind using preprocessing
approaches is to rely on raw data as much as possible, in-
stead of reclassifying them into intervals generated statisti-
cally or by expert criteria. Thus, four scaling methods were
used: standardization, maximal absolute scaler (MaxAbs),
maximal-minimal scaler (MaxMin) and normalization (Pe-
dregosa et al., 2011).

The standardized explanatory variables are obtained by re-
moving the mean and scaling to unit variance (Zheng and
Casari, 2018). Centring and scaling happen independently on
each explanatory variable by computing the relevant statistics
on the samples in the training set. The mean and standard de-
viation are then stored to be employed on later data using
transform. This is obtained by means of Eq. (3), where X is
the new value of the sample, x is the old value of the sample,
u is the mean of the training samples and s is the standard
deviation of the training samples:

3

X=x—-u)/s.
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The MinMax method transforms features by scaling each ex-
planatory variable to a given range. This estimator scales and
translates each feature individually so that it lies within the
range given in the training set (between 0 and 1 in the case at
hand). Thus, this scaling method is robust to small standard
deviations in feature data (Pedregosa et al., 2011). MinMax
scaling is performed as per Eq. (4):

“4)

The MaxAbsScaler works in a similar way, but the training
data are scaled to fall within the [—1, 1] range by dividing by
the largest maximum value of each feature. Finally, under the
normalizer procedure, each sample is rescaled regardless of
other samples so that its norm (“L1”, “L2” or “max”) equals
1 (Pedregosa et al., 2011). The L1 norm attempts to mini-
mize the sum of the absolute differences between the target
value and the estimated values. In turn, the L2 norm uses
least squares, whereas the L-max norm rescales by the max-
imum of the absolute values. The L2 norm is by far the most
common and was adopted as the procedure of choice.

X = (x — min(x)) (max(x) — min(x)).

2.5 Supervised classification routine

MLMapper incorporates a series of routines to enhance the
conventional training and testing process (Fig. 1); these in-
clude collinearity checks, random search parameter fitting
and recursive feature elimination. A selection of the best al-
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(B6/B7).

gorithms and a basic arithmetic ensemble is also performed
at the end in order to appraise the degree of agreement among
classifiers.

Collinearity occurs when two or more variables are highly
correlated. This can affect the performance of the classi-
fiers by attributing extra weight to an input variable or by
adding noise to the final outcomes. Interpretability can also
be impaired because the regression coefficients of certain al-
gorithms are not uniquely determined (Martinez-Santos et
al., 2021a). MLMapper incorporates a collinearity analysis
function to prevent collinearity from adversely affecting the
results. Collinearity analysis is performed before running
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the algorithms. Pairwise correlation among explanatory vari-
ables is computed, and correlation coefficients are expressed
in a range between —1.0 (inverse correlation) and 1.0 (direct
correlation). Highly correlated explanatory variables may be
excluded from the algorithm training procedure

Random search parameter fitting increases the accuracy
of the predictions by identifying the best combination of
those parameters that govern each algorithm. The random
search cross-validation function needs an algorithm, a scor-
ing metric to evaluate the performance of the different hyper-
parameters, and a dictionary with the hyperparameter names
and values. In regard to the previous version of MLMapper,
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which used grid search cross-validation, this provides addi-
tional flexibility and reduces computation time. A sensitiv-
ity analysis of the number of iterations was performed. The
best compromise between the results and computation cost
was obtained by fixing the number of iterations at 500. No
significant improvement in scoring metrics was observed for
higher values, but running times increased considerably.

Once the optimal parameter distributions have been
selected, recursive feature elimination cross-validation
(RFECV) is performed. RFECV is only available for those
algorithms that use feature importance or coefficient weight
attributes. The goal of RFECYV is to identify the most impor-
tant explanatory variables for each algorithm as well as to
eliminate those features that either incorporate noise or de-
tract from the accuracy of predictions.

Classifiers are trained first on the initial set of explana-
tory variables. The weight of each feature is obtained, either
through a coefficient attribute or through a feature impor-
tance attribute. The least important explanatory variables are
then pruned from the model. This procedure is recursively
repeated on the pruned set until the optimal number of fea-
tures to be selected is eventually reached (Pedregosa et al.,
2011). Once RFECYV is complete, algorithms are run again
on the input dataset (excluding noise and counterproductive
variables) and hyperparameters are re-optimized. This step
yields important information for the purpose of interpreting
the maps, as it provides the user with the relative weight of
explanatory variables.

Each algorithm predicts groundwater potential throughout
the study area, assigning a value of 1 to pixels with posi-
tive groundwater potential and O to pixels where groundwa-
ter is expected to be absent. Each algorithm operates differ-
ently and relies on a different combination of explanatory
variables, which inevitably leads to discrepancies in the pre-
dictions. In order to analyse the degree of agreement between
the classifiers, an ensemble map is developed by computing
the arithmetic mean at the pixel scale of those algorithms
exceeding 0.85 predictive accuracy. Green pixels mean that
all of the best-performing algorithms agreed on a positive
groundwater potential outcome (arithmetic mean of 1). Con-
versely, red zones represent those pixels where all of the best-
performing algorithms agreed on a negative groundwater po-
tential (arithmetic mean of 0). Intermediate colours represent
various degrees of agreement among the algorithms.

2.6 Machine learning metrics for algorithm evaluation

Outcomes of machine learning studies are often evaluated on
the grounds of accuracy (test score) and the area under the
receiver operating characteristic curve (AUC). The test score
is calculated as the number of successful predictions over the
total number of attempts in the test dataset, thereby providing
a direct measure of predictive accuracy. In turn, the receiver
operating characteristic curve shows the performance of a
classification model at all classification thresholds. The AUC
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is a probabilistic metric that assesses the degree to which
algorithms can distinguish between classes. Test score and
AUC rank algorithms on a scale of O to 1, with a higher score
implying better performance. If the classes are balanced, a
score of 0.5 on either metric suggests that the prediction is
no better than a random estimate.

Because the ratio between positive and negative classes in
the input dataset is approximately 3 : 2, the F1 metric was
also used to analyse the quality of the predictions in each of
the classes separately. The F1 score is the harmonic mean
of precision and recall. Precision is calculated like the ra-
tio of true positives over the sum of true and false positives.
Therefore, precision shows the classifier’s ability not to label
a sample that is negative as positive. In turn, recall is the ra-
tio of true positives over the sum of true positives and false
negatives. In other words, recall represents the ability of the
classifier to find all positive samples.

3 Results and discussion
3.1 Collinearity analysis

Figure 8 presents the results of the collinearity analysis. Pair-
wise correlation coefficients are expressed as a colour palette
ranging from —1.0 (inverse correlation) to 1.0 (direct corre-
lation). There is no hard threshold as to what is an accept-
able level of correlation between two variables, although the
literature shows that values between 0.4 and 0.85 may be
acceptable (Dormann et al., 2013). In this case, no strong
correlations were found among explanatory variables except
when appraising the expected saturated thickness versus the
expected thickness matrix. This pair renders a correlation co-
efficient of 0.85, which is close to the upper acceptability
threshold. Because the number of non-surface features in the
explanatory dataset is limited, a closer look was taken at the
importance of these two variables. RFECV reveals that both
are relied upon by the best-performing algorithms. In addi-
tion, the thickness matrix has seldom been used in the lit-
erature. These reasons led to the decision of keeping both
variables.

3.2 Model evaluation and scaling method selection

Table 2 shows the results of the best algorithms for each scal-
ing method. The five best algorithms for each scaling method
were selected, and the mean of each metric was computed
to analyse performance. All scaling methods render a mean
test score for the top five algorithms in excess of 0.85, which
implies that the predictions are accurate in all cases. The
standardization scaling method presents the highest value
(0.867), followed by the MaxAbs method (0.866), the nor-
malization method (0.860) and the MaxMin method (0.857).
All algorithms render a higher F1 score for the positive out-
come, which is the most common one in the input database.
However, the F1 score for the negative class is always higher
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Figure 8. Pairwise collinearity analysis for all explanatory variables.

than 0.81. This indicates that the algorithms are capable of
distinguishing positive and negative classes accurately.

AUC exceeds 0.90 in all cases except for the AdaBoost
algorithm (0.898) and decision tree algorithm (0.893). This
implies that all of the best-performing algorithms have a
high probability of adequately predicting the target variable.
When comparing the scaling methods, the standardized one
presents the highest test score and F1 score for the negative
class, while the MaxAbs method presents the second-best
performance in terms of the test score, F1 score for the nega-
tive class and AUC metrics. Hyperparameter optimization by
the random search procedure led to the scores in Table 3.

The results in Table 2 show that the best scaling methods
based on the score obtained in machine learning metrics are
the standardized and MaxAbs techniques. Therefore, the fo-
cus of ensuing analyses will be placed on these two methods.

Noticeably, the best-performing classifiers all belong in
the family of tree-based algorithms. Decision tree (DTC),
random forest (RFC), AdaBoost classifier (ABC), gradient
boosting (GBC) and extra trees (ETC) consistently outper-
formed other classification methods throughout the process.
While tree-based algorithms do not necessarily require fea-
ture scaling (Li et al., 2017), the outcomes of this experience
show that different scaling methods lead to slightly different
performances. The best test scores were obtained by the ETC
algorithm (0.878 and 0.872 for the standardized and MaxAbs
methods respectively), whereas the test scores of the other al-
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gorithms remained above 0.85. The F1 score for the positive
groundwater potential is above 0.87 in all cases, whereas the
F1 score for the negative potential decreases slightly (0.82 to
0.85). AUC scores oscillate between 0.89 and 0.91, which re-
inforces the idea that the best-performing classifiers are able
to accurately predict the target.

By nature, tree-based algorithms can be expected to yield
good results in groundwater potential studies. DTC is a pop-
ular technique, largely due to the ease with which the inter-
nal logic of the algorithm can be interpreted (Naghibi et al.,
2016; Moghaddam et al., 2020). In turn, RFC is a combina-
tion of tree predictors where each tree depends on the val-
ues of a random vector sampled independently and with the
same distribution for all trees in the forest (Breiman, 2001).
RFC is generally one of the most powerful machine learn-
ing classifiers and typically renders useful outcomes in pre-
dictive mapping (Naghibi et al., 2017b; Martinez-Santos and
Renard, 2020). The GBC algorithm is an ensemble method
in which multiple weak classifier trees are used to build a
strong classifier (Friedman, 2001). In the same way, the ba-
sic principle of ABC (Freund and Schapire, 1997) is to fit a
sequence of weak learners into repeatedly modified versions
of the data. The predictions of all of them are combined by
a weighted majority vote to produce the final prediction. The
data modifications at each iteration of the so-called boost-
ing consist of applying weights to each of the training sam-
ples (Pedregosa et al., 2011). The literature shows that GBC
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Table 2. Results of the top five algorithms for each scaling method. Refer to section 2.6 for the definition of each metric: test score is the
optimized test score, an F1 score of 0 means that the F1 score is false, an F1 score of 1 means that the F1 score is true and AUC refers to the
area under the curve. The mean of each metric has been calculated for the different reclassification methods to compare the results.

Scaling Better algorithms Test Test F1 F1 F1 F1 ~AUC AUC
method score  score score score ) score score | mean
mean 0 mean 1 mean

Decision tree 0.872 0.850 0.890 0.893

Random forest 0.852 0.820 0.870 0911
Standardized AdaBoost 0.862 0.867 0.830 0.836  0.880 0.886 0912 0.909

Gradient boosting ~ 0.872 0.840 0.890 0.914

Extra trees 0.878 0.840 0.900 0914

Random forest 0.847 0.810 0.870 0.901

Gradient boosting ~ 0.857 0.830 0.880 0.905
Normalization SGD 0.857 0.860 0.830 0.828 0.880 0.882 - 0.907

Passive-aggressive  0.862 0.830 0.880 -

Extra trees 0.878 0.840 0.900 0.916

Decision tree 0.857 0.820 0.880 0.913

Random forest 0.857 0.830 0.880 0912
MaxMin Gradient boosting  0.847  0.857  0.820 0.824 0.870 0.880 0.903 00911

Ridge classifier 0.842 0.800 0.870 -

Extra trees 0.883 0.850 0.900 0.918

Decision tree 0.867 0.840 0.890 0912

Random forest 0.852 0.820 0.870 0911
MaxAbs AdaBoost 0.867 0.866 0.830 0.834 0.890 0.886 0.898 0910

Gradient boosting ~ 0.872 0.840 0.890 0.916

Extra trees 0.872 0.840 0.890 0914

and ABC have been successfully used as ensemble meth-
ods in the development of GPM maps (Nguyen et al., 2020a;
Martinez-Santos and Renard, 2020). Finally, for the ETC al-
gorithm (Geurts et al., 2006), randomization goes a step fur-
ther in the way splits are computed. As in random forests,
a random subset of candidate features is used, but instead
of looking for the most discriminative thresholds, random
thresholds are extracted for each candidate feature and the
best of these randomly generated thresholds is chosen as the
splitting rule. This usually allows the variance of the model
to be reduced somewhat further (Pedregosa et al., 2011).
Other algorithm families have been successfully applied
in GPM research. Support vector machines (Martinez-Santos
and Renard, 2020), logistic regression (Ozdemir, 2011; Chen
et al., 2018) and neural networks (Moghaddam et al., 2020;
Panahi et al., 2020) have all been demonstrated to be effi-
cient predictors of groundwater potential, even when pitched
against tree-based algorithms. This suggests that differences
in input databases and the choice of explanatory variables
may constrain the applicability of each algorithm in each
given context. Furthermore, the inherent complexity of su-
pervised classification makes it difficult for users to under-
stand the internal logic of the algorithms, which means it is
frequently impossible to predict which one will perform best
in a given situation. Therefore, incorporating various algo-
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rithm families in GPM is perceived as a suitable course of
action in GPM studies.

3.3 Importance of explanatory variables

Naghibi and Pourghasemi (2015) indicate that the impor-
tance of explanatory variables in groundwater potential map-
ping is considerably influenced by the approach used in
an investigation and the study area properties. Outcomes
show that elevation, rainfall, geology and drainage density,
among others, are the most important factors conditioning
the groundwater potential, which is in agreement with results
obtained by other authors in different geographical contexts
(Ozdemir, 2011; Naghibi and Pourghasemi, 2015; Nguyen et
al., 2020b).

A major advantage of incorporating recursive feature elim-
ination is that it eliminates part of the expert bias associ-
ated with the choice of explanatory variables. In this case,
the fact that all variables are used by at least two of the
best-performing algorithms suggests that the initial choice
of explanatory variables was appropriate. However, feature
selection reveals clear differences among the classifiers. Un-
der standardized scaling, RFC only required three explana-
tory variables to predict groundwater potential (precipitation,
expected saturated thickness and elevation). ABC and GBC
used 8 each, whereas ETC and DTC used 11 and 14 respec-
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Table 3. Algorithm hyperparameters (description after Pedregosa
et al.,, 2011) and adjusted outcomes. The hyperparameters uti-
lized are as follows: max_depth — the maximum depth of the tree;
max_features — the number of features to consider when looking for
the best split; min_samples_leaf — the minimum number of samples
required to be at a leaf node; min_samples_split — the minimum
number of samples required to split an internal node; random_state
— controls both the randomness of the bootstrapping of the samples
used when building trees and the sampling of the features to be con-
sidered when looking for the best split at each node; n_estimators —
the number of trees in the ensemble methods; Algorithm — method
used by AdaBoost (discrete SAMME boosting algorithm or real
SAMME.R boosting algorithm); learning rate — shrinks the con-
tribution of each classifier.

Classifier Hyperparameter Optimized parameter value
Standardized MaxAbs

method method

max_depth 3 6

max_features 09 0.6

Decision tree min_samples_leaf 8 5
min_ samples_split 0.1 0.1

random_state 0 0

max_depth 6 5

max_features 1.0 1.0

Random forest  min_samples_leaf 8 8
n_ estimators 141 196

random_state 0 0

Algorithm SAMME SAMME.R

learning_rate 0.795 0.109

AdaBoost n_estimators 340 170
random_ state 0 0

max_depth 2 2

Gradient max_features 0.6 0.2
boosting min_samples_leaf 20 20
n_estimators 100 160

random_state 0 0

max_depth 9 8

Extra max_features 0.8 0.8
trees min_samples_leaf 1 5
n_ estimators 520 350

random_state 0 0

tively. Under MaxAbs scaling, RFC and ABC used three and
four variables, respectively. GBC algorithm worked with 6,
DTC used 16 and ETC used 17. The variables used by each
of the best-performing algorithms are presented in Fig. 9.
All algorithms agree on the importance of elevation and
precipitation. The combined importance of these two vari-
ables for the RFC, GBC, ABC, DTC and ETC algorithms
is 0.90, 0.71, 0.47, 0.90 and 0.42 respectively, under the
standardized scaling method. For the MaxAbs method, the
combined weights amount to 0.90, 0.51, 0.64, 0.87 and 0.47
respectively. Other commonly used features include the ex-
pected saturated thickness (8 out of 10 cases), drainage den-
sity (6), NDWI (6), geology (5), clay content (5) and NDVI
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(5). The relative weight of other variables varies depending
on the algorithm and scaling method, although most agree
on the importance of expected saturated thickness, slope, ge-
ology and drainage density. The least used variables are the
alteration layer, curvature, soil and SPIL.

3.4 Groundwater potential maps

Classifier outcomes were extrapolated to produce groundwa-
ter potential maps. Figure 10 shows the groundwater poten-
tial predictions rendered by each of the five best-performing
algorithms under the two most effective scaling methods.
Red areas are those in which the algorithms have found a
combination of explanatory variables leading to a negative
potential. In turn, green zones represent a positive ground-
water potential. All maps show a gradient characterized by
the predominance of positive areas in the south to a greater
proportion of negative areas in the north. This appears to be
related to rainfall patterns. Other major negative zones occur
around the mountain outcrops of the south-west. Low po-
tential areas also occur around the mountain outcrops of the
south-west. The large green zone around the southern region
corresponds to the weathering mantle of basement rocks.
Groundwater in basement aquifers is most often found in
weathered formations and piedmonts of the outcrops. Pied-
monts may exhibit high GPM because these are essentially
a mixture of weathered and transported materials (Martin-
Loeches et al., 2018). This area presents smooth orography,
which means that high GPM is mainly determined by the
weathered mantle. Previous research by Diaz-Alcaide et al.
(2017) reported a medium GPM for the southern part of the
Koulikoro region. Discrepancies between this and our results
likely stem from the fact that these authors used a commune-
based approach, rather than physical variables.

The central part of the agreement map shows a high po-
tential for both methods, except in the higher altitude areas.
This region, consisting of consolidated metasedimentary ma-
terials, has an average aquifer thickness of 30-50 m (Traore
et al., 2018). High yields are associated with the weathered
mantle developed in the upper part instead of with the pre-
dominant lithology. This becomes evident in the metased-
imentary outcrops located in the highlands. These present
a low groundwater potential because fracturing facilitates
rapid groundwater percolation into the plains, where it ac-
cumulates in the alteration zone. Areas near major rivers,
such as the Niger, Sankarani and Bani, also have a high po-
tential. This is attributed to the high permeability of alluvial
sediments. The northern part of the study area, formed by
consolidated and unconsolidated sedimentary materials, has
a low groundwater potential. Although geological conditions
are more favourable for groundwater due to the type of mate-
rials than in other areas of the region, groundwater potential
is limited by low rainfall. This is demonstrated by the feature
importance analysis, which shows that precipitation is one of
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Figure 9. Feature importance calculated for the best-performing tree-based algorithms using the standardized and MaxAbs scaling methods.
The sum of all variable weights equals one.
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the two most important explanatory variables for groundwa-
ter occurrence.

Overall, maps are remarkably similar, although the Max-
Abs scaling method renders a slightly greater proportion
of negative potential areas. The agreement map (Fig. 11)
allows for an analysis of discrepancies among the best-
performing algorithms. The MaxAbs scaling method predicts
a low groundwater potential (pixel value 0-0.2) for 41 %
of the study area, while about 40 % is identified as a high
groundwater potential (>0.8) and the remaining 19 % con-
sists of zones with moderate potential (0.2-0.8). The stan-
dardized scaling method renders a high groundwater poten-
tial for 42 %, low groundwater potential for 38 % and various
degrees of moderate potential for 20 % of the region.

Martinez-Santos et al. (2021a) show that standard machine
learning metrics do not necessarily provide an unambigu-
ous measure of classifier performance when predicting spa-
tially distributed outcomes. These authors argue that case-
specific indicators could provide additional insights into the
results. In this case, an independent dataset of groundwa-
ter data (borehole yield) was used to cross-check machine
learning predictions. Villages featuring more than five bore-
holes (n = 334) were relied upon for this purpose. These vil-
lages were classified into three groups based on the predicted
groundwater potential (“low” <0.2, “moderate” 0.2 to 0.8
and “high” >0.8). Table 3 shows the mean borehole success
rate, the mean borehole yield and the percentage of boreholes
with a flow rate in excess of 10m3/h in each category. The
average water table depth is also provided for reference.

A first conclusion that springs to mind is that about 60 %
of the villages with more than five boreholes fall within the
high-groundwater-potential description, while a further 20 %
present a moderate groundwater potential. To a certain ex-
tent, this was to be expected, as the larger populations de-
velop in areas where groundwater is available. Table 3 also
shows groundwater potential outcomes to match borehole
flow rates reasonably.

The mean borehole success rate in areas labelled as high
groundwater potential is 75.9 % for the MaxAbs scaling
method and 73.7 % for the standardized method. In contrast,
the mean success rate for villages in the low-groundwater-
potential category is 33.6 % and 32.1 % for the corresponding
methods respectively. These outcomes suggest that both scal-
ing methods and, in general, the machine learning approach
are adept at identifying areas where boreholes are more likely
to be successful.

Both the mean borehole yield and the percentage of
high-yield boreholes (>10m3/h) provide interesting bench-
marks for comparison. The mean borehole yield is consis-
tent with map outcomes. Under the MaxAbs scaling method,
the mean borehole yield is 1.39 m?/h in the villages located
within low-groundwater-potential areas and 3.92 m>/h in ar-
eas where groundwater potential is predicted to be high. Fur-
thermore, 76.1 % of the high-yield boreholes fall within high-
groundwater-potential areas, whereas just 6.6 % are located
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in low-groundwater-potential areas. Results are similar for
the standardized scaling method: the mean borehole yield
is 1.44m3/h and 3.63 m>/h for the low- and high-potential
categories respectively, whereas 74.6 % of the high-yield
boreholes are located in villages within high-groundwater-
potential zones.

On a final note, the literature features few examples of
groundwater potential studies in the study area. Perhaps
the only systematic precedent is that carried out by Diaz-
Alcaide et al. (2017). These authors performed a national-
scale assessment of groundwater potential for the Repub-
lic of Mali based on the same borehole database that has
been used in this research. However, they aggregated their
data at the commune scale, rather than the village scale,
and relied on different classification principles. Thus, their
outcomes are to be interpreted at a different spatial resolu-
tion. This notwithstanding, their groundwater potential as-
sessment for the Bamako and Koulikoro regions is similar
to that obtained by means of machine learning classifica-
tion. The lower-groundwater-potential areas were identified
in the north, and the higher-groundwater-potential ones were
found mostly in the south. This attests to the capacity of ma-
chine learning approaches to realistically depict field condi-
tions and, thus, to underpin groundwater development.

3.5 Limitations

Predictive groundwater mapping presents some uncertain-
ties. These are typically associated with deficiencies in data
quality (e.g. small sample sizes, missing covariates, and bi-
ased and missing data) as well as with errors in the structural
nature and specifications of the model (Rahmati et al., 2015).
In spatial modelling studies, the sample size has proven to
be a significant factor affecting the predictive abilities of the
models (Guisan et al., 2007). Moghaddam et al. (2020) anal-
ysed the influence of sample size on GPM, concluding that
there is a significant decrease in AUC values when the sam-
ple size is 25 % of the input dataset. In the present case, with
650 ground-truth points, the effect of sample size could be
ruled out as per this standard.

Input data were made available by government officers
after careful field evaluation. From this perspective, the
database is considered to be of high quality. However, it
is also true that key hydrogeological variables are missing.
Groundwater potential was evaluated in binary form (posi-
tive/negative) because the borehole database provides little
information in terms of borehole productivity. Spatially dis-
tributed estimates of aquifer transmissivity, storage coeffi-
cients and yield would allow for a multi-class assessment,
which, in turn, would provide a more realistic zoning of
groundwater potential. Moreover, the village-scale resolution
presents some shortcomings. As per the database, all bore-
holes within a given village have the same coordinates. This
makes it difficult to train the algorithms when, for instance,
the village overlies a non-homogeneous hydrogeological set-
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Figure 10. Mapping outcomes of the top five supervised classification algorithms for the two best-performing scaling methods. The top row
shows the MaxAbs scaling method for the (a) AdaBoost classifier, (b) gradient boosting classifier, (¢) random forest classifier, (d) decision
tree classifier and (e) extra trees classifier. The bottom row shows the standardized scaling method for the (f) AdaBoost classifier, (g) gradient
boosting classifier, (h) random forest classifier, (i) decision tree classifier and (j) extra trees classifier.

Table 4. Results of the analysis based on the agreement map categories for the MaxAbs and standardized scaling methods. The analysis was
performed for villages with more than five wells. The average success rate, average flow rate, average flow rate without negative boreholes,

percentage of wells with a yield higher than 10 m3/h and the average water table depth are shown.

Groundwater Number of  Borehole Mean Mean borehole yield  Percentage of high- Average
potential villages success borehole — only positive yield boreholes ~ water table
rate (%)  yield (m3/h) boreholes (m3/h) (>10m3/h)  depth (m)
MaxAbs scaling method
Low 70 33.6 1.39 3.58 6.6 % 18.6
Moderate 69 50.5 223 4.36 17.3% 15.1
High 195 75.9 3.92 5.10 76.1 % 12.1
Standardized scaling method
Low 65 32.1 1.44 3.96 6.6 % 19.3
Moderate 70 55.5 2.78 4.57 18.8% 16.1
High 199 73.7 3.63 4.87 74.6 % 11.8
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ting. More detailed knowledge on how the boreholes are dis-
tributed in space would be expected to enhance the outcomes.

Along the same lines, the resolution of certain explana-
tory variables is potentially problematic. Take, for instance,
soil and lithology, which are only available at the regional
scale and might constrain groundwater potential to an im-
portant extent. Gémez-Escalonilla et al. (2021) explain that
inroads can be made in the use of a dynamic explanatory vari-
able. Take, for instance, evapotranspiration or seasonal fluc-
tuations in VV (vertical transmit, vertical receive) and VH
(vertical transmit, horizontal receive) polarization intensity
(backscattering coefficient) and VV-polarization coherence
(interferometric correlation) from the Sentinel-1 time series,
from which temporal descriptors are derived. Furthermore,
Worthington (2015) shows that groundwater modelling in
bedrock aquifers is complex because there is often a sub-
stantial flow through fractures, and the inter-connectivity and
magnitude of these fractures are usually uncertain. In this
context, geophysical techniques can provide useful informa-
tion that improves the ability to predict GPM. However, the
absence of geophysical information also limits our knowl-
edge about subsurface structures.

The lack of interpretability is a major drawback of ma-
chine learning algorithms. Except for the simple decision
tree, whose internal logic is straightforward, all classifiers
work according to a complex internal architecture. There-
fore, it is nearly impossible to understand the reasoning that
leads most algorithms to a given conclusion beyond comput-
ing feature importance. This, in turn, results in extensive trial
and error before optimal outcomes are achieved.

Overfitting can lead to spurious results in machine learning
models. Overfitting occurs when the model does not gener-
alize well with the training data (i.e. it tries to fit the training
data perfectly at the risk of missing the underlying associa-
tions between the explanatory and target variables). To ad-
dress this, techniques such as splitting the initial dataset into
separate training and test subsets, cross-validation, regular-
ization and ensembles may be used (Dietterich, 1995; Yeom
et al., 2018). Case-specific indicators may also be used to ap-
praise the results beyond standard machine learning metrics,
thereby adding to the robustness of predictions (Martinez-
Santos et al., 2021a, b). In the case at hand, this is achieved
by comparing map outcomes with the limited available data
on borehole yield.

4 Conclusions

Machine learning applications are gaining recognition as
valuable tools to underpin groundwater management. The
ease with which machine learning algorithms find complex
associations within large datasets as well as their ability to
develop accurate predictions open up a whole new dimension
to the analysis of groundwater data. Artificial intelligence ap-
proaches may improve water access in areas such as the Sa-
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hel by providing additional guidance to borehole drilling ini-
tiatives. Within this context, our research combined state-of-
the-art machine learning tools, including collinearity checks,
recursive feature selection, feature importance computation
and cross-validation mechanisms to map groundwater poten-
tial in two regions of Mali. Tree-based algorithms consis-
tently outperformed other algorithm families such as support
vector machines and neural networks. As this cannot be ex-
pected to occur in every case, we advocate the use of a large
number of machine learning classifiers and the subsequent
selection of the best performers as a sensible course of ac-
tion. The same logic entails that a range of scaling methods
should be used to prevent expert-based bias associated with
the reclassification of explanatory variables.

A crucial finding of this research is that conventional ma-
chine learning metrics (the test score and the area under the
receiver operating characteristic curve) can be more repre-
sentative of algorithm performance than of the actual field
conditions. This is particularly relevant when attempting to
develop spatially distributed predictions. Double-checking
algorithm results with an independent groundwater dataset
(borehole flow rates in this case) is recommended to ensure
that map outcomes are accurate. Thus, machine learning ap-
proaches are seen as a means to underpin borehole siting
initiatives at a the regional scale, although it is recognized
that local-scale fieldwork is needed for optimal outcomes. In
the context of Sustainable Development Goal 6, predictive
groundwater maps such as those developed in the course of
this research may be of use to private investors willing to
participate in improving water access in remote regions as
well as to government officers, cooperation funds and inter-
national donors.

From a regional perspective, groundwater potential closely
resembles rainfall. Despite the predominance of low-
permeability basement rocks, medium to high groundwater
potential observed in southern areas seems to be associated
with high rainfall and well-developed weathering mantles. In
contrast, theoretically good conditions for groundwater stor-
age in the north present a low potential due to limited precipi-
tation. The central part is characterized by a medium ground-
water potential in the plains as well as by a high potential in
alluvial sediments of the major river systems and low poten-
tial in the highlands.

Code availability. The original MLMapper code is available in
the repository of the Environmental Hydrogeology research group
of the Universidad Complutense de Madrid (https://www.ucm.es/
hidrogeologia/programas-software, Martinez-Santos and Renard,
2019) and is currently undergoing improvements to its user inter-
face.
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