Articles | Volume 26, issue 8
https://doi.org/10.5194/hess-26-2181-2022
https://doi.org/10.5194/hess-26-2181-2022
Research article
 | 
29 Apr 2022
Research article |  | 29 Apr 2022

Detecting hydrological connectivity using causal inference from time series: synthetic and real karstic case studies

Damien Delforge, Olivier de Viron, Marnik Vanclooster, Michel Van Camp, and Arnaud Watlet

Related authors

Assessing the long-term effectiveness of nitrogen management for groundwater protection in the agricultural crop production sector in Wallonia, Belgium
Elise Verstraeten, Alice Alonso, Louise Collier, and Marnik Vanclooster
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-173,https://doi.org/10.5194/hess-2024-173, 2024
Preprint under review for HESS
Short summary
Earth's core variability from magnetic and gravity field observations
Anita Thea Saraswati, Olivier de Viron, and Mioara Mandea
Solid Earth, 14, 1267–1287, https://doi.org/10.5194/se-14-1267-2023,https://doi.org/10.5194/se-14-1267-2023, 2023
Short summary
Brief communication: The role of geophysical imaging in local landslide early warning systems
Jim S. Whiteley, Arnaud Watlet, J. Michael Kendall, and Jonathan E. Chambers
Nat. Hazards Earth Syst. Sci., 21, 3863–3871, https://doi.org/10.5194/nhess-21-3863-2021,https://doi.org/10.5194/nhess-21-3863-2021, 2021
Short summary
Challenges of groundwater pollution and management in transboundary basins at the African scale
Issoufou Ouedraogo and Marnik Vanclooster
Proc. IAHS, 384, 69–74, https://doi.org/10.5194/piahs-384-69-2021,https://doi.org/10.5194/piahs-384-69-2021, 2021
Short summary
Comparing global seismic tomography models using varimax principal component analysis
Olivier de Viron, Michel Van Camp, Alexia Grabkowiak, and Ana M. G. Ferreira
Solid Earth, 12, 1601–1634, https://doi.org/10.5194/se-12-1601-2021,https://doi.org/10.5194/se-12-1601-2021, 2021
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Stochastic approaches
Covariance resampling for particle filter – state and parameter estimation for soil hydrology
Daniel Berg, Hannes H. Bauser, and Kurt Roth
Hydrol. Earth Syst. Sci., 23, 1163–1178, https://doi.org/10.5194/hess-23-1163-2019,https://doi.org/10.5194/hess-23-1163-2019, 2019
Short summary
Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo
Khan Zaib Jadoon, Muhammad Umer Altaf, Matthew Francis McCabe, Ibrahim Hoteit, Nisar Muhammad, Davood Moghadas, and Lutz Weihermüller
Hydrol. Earth Syst. Sci., 21, 5375–5383, https://doi.org/10.5194/hess-21-5375-2017,https://doi.org/10.5194/hess-21-5375-2017, 2017
Short summary
State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter
Hongjuan Zhang, Harrie-Jan Hendricks Franssen, Xujun Han, Jasper A. Vrugt, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 4927–4958, https://doi.org/10.5194/hess-21-4927-2017,https://doi.org/10.5194/hess-21-4927-2017, 2017
Short summary
Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction
Roland Baatz, Harrie-Jan Hendricks Franssen, Xujun Han, Tim Hoar, Heye Reemt Bogena, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 2509–2530, https://doi.org/10.5194/hess-21-2509-2017,https://doi.org/10.5194/hess-21-2509-2017, 2017
Short summary
Kalman filters for assimilating near-surface observations into the Richards equation – Part 1: Retrieving state profiles with linear and nonlinear numerical schemes
G. B. Chirico, H. Medina, and N. Romano
Hydrol. Earth Syst. Sci., 18, 2503–2520, https://doi.org/10.5194/hess-18-2503-2014,https://doi.org/10.5194/hess-18-2503-2014, 2014

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, no. 56, in: FAO irrigation and drainage paper, Food and Agriculture Organization of the United Nations, Rome, ISBN 92-5-104219-5, 1998. a
Angelini, P.: Correlation and spectral analysis of two hydrogeological systems in Central Italy, Hydrolog. Sci. J., 42, 425–438, https://doi.org/10.1080/02626669709492038, 1997. a
Bailly-Comte, V., Jourde, H., Roesch, A., Pistre, S., and Batiot-Guilhe, C.: Time series analyses for Karst/River interactions assessment: Case of the Coulazou river (southern France), J. Hydrol., 349, 98–114, https://doi.org/10.1016/j.jhydrol.2007.10.028, 2008. a
Bakalowicz, M.: Karst groundwater: a challenge for new resources, Hydrogeol. J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005. a, b, c, d, e
Download
Short summary
Causal inference methods (CIMs) aim at identifying causal links from temporal dependencies found in time-series data. Using both synthetic data and real-time series from a karst system, we study and discuss the potential of four CIMs to reveal hydrological connections between variables in hydrological systems. Despite the ever-present risk of spurious hydrological connections, our results highlight that the nonlinear and multivariate CIM has a substantially lower false-positive rate.