Articles | Volume 26, issue 8
https://doi.org/10.5194/hess-26-2181-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-2181-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detecting hydrological connectivity using causal inference from time series: synthetic and real karstic case studies
Damien Delforge
CORRESPONDING AUTHOR
Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Royal Observatory of Belgium, Brussels, Belgium
Olivier de Viron
Littoral, Environnement et Sociétés, Université de La Rochelle and CNRS (UMR7266), La Rochelle, France
Marnik Vanclooster
Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Michel Van Camp
Royal Observatory of Belgium, Brussels, Belgium
Arnaud Watlet
British Geological Survey, Nottingham, UK
Related authors
No articles found.
François Toussaint, Alice Alonso, and Marnik Vanclooster
EGUsphere, https://doi.org/10.5194/egusphere-2025-1326, https://doi.org/10.5194/egusphere-2025-1326, 2025
Short summary
Short summary
We analysed 20 years of satellite data to study changes in surface phytoplankton concentration in Lake Tanganyika. Results reveal strong seasonal patterns linked to known hydrodynamics, with decreasing levels in deep areas and increases in shallow regions. These changes could alter the lake’s ecosystem and threaten the resources that millions of people rely on.
Elise Verstraeten, Alice Alonso, Louise Collier, and Marnik Vanclooster
Hydrol. Earth Syst. Sci., 29, 1829–1845, https://doi.org/10.5194/hess-29-1829-2025, https://doi.org/10.5194/hess-29-1829-2025, 2025
Short summary
Short summary
This study takes a data-driven approach to evaluate long-term groundwater nitrate concentration trends in Wallonia, Belgium, over ~20 years following the implementation of regional nitrogen management policies. Results highlight a persistently negative impact of agricultural land use, the importance of sustained policies and long-term monitoring to mitigate nitrogen legacy effects, and the need for improved datasets to better capture controlling factors.
Anita Thea Saraswati, Olivier de Viron, and Mioara Mandea
Solid Earth, 14, 1267–1287, https://doi.org/10.5194/se-14-1267-2023, https://doi.org/10.5194/se-14-1267-2023, 2023
Short summary
Short summary
To understand core dynamics, insight from several possible observables is needed. By applying several separation methods, we show spatiotemporal variabilities in the magnetic and gravity fields related to the core dynamics. A 7-year oscillation is found in all conducted analyses. The results in the magnetic field reflect the core processes and the variabilities in the gravity field exhibit new findings that might be an interesting input to build an enhanced model of the Earth’s core.
Jim S. Whiteley, Arnaud Watlet, J. Michael Kendall, and Jonathan E. Chambers
Nat. Hazards Earth Syst. Sci., 21, 3863–3871, https://doi.org/10.5194/nhess-21-3863-2021, https://doi.org/10.5194/nhess-21-3863-2021, 2021
Short summary
Short summary
This work summarises the contribution of geophysical imaging methods to establishing and operating local landslide early warning systems, demonstrated through a conceptual framework. We identify developments in geophysical monitoring equipment, the spatiotemporal resolutions of these approaches and methods to translate geophysical to geotechnical information as the primary benefits that geophysics brings to slope-scale early warning.
Issoufou Ouedraogo and Marnik Vanclooster
Proc. IAHS, 384, 69–74, https://doi.org/10.5194/piahs-384-69-2021, https://doi.org/10.5194/piahs-384-69-2021, 2021
Short summary
Short summary
The results of the study have shed light on the pollution problem of groundwater at the pan-African scale. We demonstrated the unambiguous link between population density (urban areas, agricultural activity) and pollution of groundwater. We showed that the machine learning techniques are promising for modelling groundwater degradation at the African scale because of its ability to provide meaningful analysis of nonlinear and complex relationships such as those found in hydrogeological studies.
Olivier de Viron, Michel Van Camp, Alexia Grabkowiak, and Ana M. G. Ferreira
Solid Earth, 12, 1601–1634, https://doi.org/10.5194/se-12-1601-2021, https://doi.org/10.5194/se-12-1601-2021, 2021
Short summary
Short summary
As the travel time of seismic waves depends on the Earth's interior properties, seismic tomography uses it to infer the distribution of velocity anomalies, similarly to what is done in medical tomography. We propose analysing the outputs of those models using varimax principal component analysis, which results in a compressed objective representation of the model, helping analysis and comparison.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, no. 56, in: FAO irrigation and drainage paper, Food and Agriculture Organization of the United Nations, Rome, ISBN 92-5-104219-5, 1998. a
Angelini, P.: Correlation and spectral analysis of two hydrogeological systems in Central Italy, Hydrolog. Sci. J., 42, 425–438, https://doi.org/10.1080/02626669709492038, 1997. a
Bailly-Comte, V., Jourde, H., Roesch, A., Pistre, S., and Batiot-Guilhe, C.: Time series analyses for Karst/River interactions assessment: Case of the Coulazou river (southern France), J. Hydrol., 349, 98–114, https://doi.org/10.1016/j.jhydrol.2007.10.028, 2008. a
Barnett, L., Barrett, A. B., and Seth, A. K.: Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables, Phys. Rev. Lett., 103, 238701, https://doi.org/10.1103/PhysRevLett.103.238701, 2009. a
Blöschl, G. and Zehe, E.: On hydrological predictability, Hydrol. Process., 19, 3923–3929, https://doi.org/10.1002/hyp.6075, 2005. a, b
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., and Roy, A. G.: Concepts of hydrological connectivity: Research approaches, pathways and future agendas, Earth-Sci. Rev., 119, 17–34, https://doi.org/10.1016/j.earscirev.2013.02.001, 2013. a, b, c
CRA-W: Agrometeorological data for the Jemelle station, Wallonia, https://agromet.be/, last access: 22 April 2022. a
Delforge, D., Watlet, A., Kaufmann, O., Van Camp, M., and Vanclooster, M.: “Data for: Time-series clustering approaches for subsurface zonation and hydrofacies detection using a real time-lapse electrical resistivity dataset”, V2, Mendeley Data [data set], https://doi.org/10.17632/zh5b88vn78.2, 2020b. a
Delforge, D., Watlet, A., Kaufmann, O., Van Camp, M., and Vanclooster, M.: Time-series clustering approaches for subsurface zonation and hydrofacies detection using a real time-lapse electrical resistivity dataset, J. Appl. Geophys., 184, 104203, https://doi.org/10.1016/j.jappgeo.2020.104203, 2020c. a, b, c, d, e, f
Ebisuzaki, W.: A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated, J. Climate, 10, 2147–2153, https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2, 1997. a
Frenzel, S. and Pompe, B.: Partial mutual information for coupling analysis of multivariate time series, Phys. Rev. Lett., 99, 204101, https://doi.org/10.1103/PhysRevLett.99.204101, 2007. a
Friston, K. J.: Functional and Effective Connectivity: A Review, Brain Connectivity, 1, 13–36, https://doi.org/10.1089/brain.2011.0008, 2011. a
Goodwell, A. E., Jiang, P., Ruddell, B. L., and Kumar, P.: Debates—Does Information Theory Provide a New Paradigm for Earth Science? Causality, Interaction, and Feedback, Water Resour. Res., 56, e2019WR024940, https://doi.org/10.1029/2019WR024940, 2020. a, b, c
Granger, C. W. J.: Investigating Causal Relations by Econometric Models and Cross-spectral Methods, Econometrica, 37, 424–438, https://doi.org/10.2307/1912791, 1969. a, b, c
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.: Karst water resources in a changing world: Review of hydrological modeling approaches, Rev. Geophys., 52, 218–242, https://doi.org/10.1002/2013RG000443, 2014. a, b
Jiang, P. and Kumar, P.: Using Information Flow for Whole System Understanding From Component Dynamics, Water Resour. Res., 55, 8305–8329, https://doi.org/10.1029/2019WR025820, 2019. a
Jourde, H., Mazzilli, N., Lecoq, N., Arfib, B., and Bertin, D.: KARSTMOD: A Generic Modular Reservoir Model Dedicated to Spring Discharge Modeling and Hydrodynamic Analysis in Karst, in: Hydrogeological and Environmental Investigations in Karst Systems, edited by: Andreo, B., Carrasco, F., Durán, J. J., Jiménez, P., and LaMoreaux, J. W., Springer Berlin Heidelberg, Environmental Earth Sciences, 1, 339–344, https://doi.org/10.1007/978-3-642-17435-3_38, 2015. a
Kadić, A., Denić-Jukić, V., and Jukić, D.: Revealing hydrological relations of adjacent karst springs by partial correlation analysis, Hydrol. Res., 49, 616–633, https://doi.org/10.2166/nh.2017.064, 2018. a
Kantz, H. and Schreiber, T.: Nonlinear Time Series Analysis, Cambridge University Press, 2 edn., https://doi.org/10.1017/CBO9780511755798, 2003. a, b, c
Klemeš, V.: Empirical and causal models in hydrology, in: Scientific Basis of Water-Resource Management, Washinton D.C., http://www.itia.ntua.gr/en/docinfo/1075/ (last access: 14 April 2022), 1982. a
Koutsoyiannis, D.: On the quest for chaotic attractors in hydrological processes, Hydrolog. Sci. J., 51, 1065–1091, https://doi.org/10.1623/hysj.51.6.1065, 2006. a
Labat, D., Ababou, R., and Mangin, A.: Rainfall–runoff relations for karstic springs. Part I: convolution and spectral analyses, J. Hydrol., 238, 123–148, https://doi.org/10.1016/S0022-1694(00)00321-8, 2000. a
Larocque, M., Mangin, A., Razack, M., and Banton, O.: Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France), J. Hydrol., 205, 217–231, https://doi.org/10.1016/S0022-1694(97)00155-8, 1998. a
Mathevet, T., Lepiller, M. I., and Mangin, A.: Application of time-series analyses to the hydrological functioning of an Alpine karstic system: the case of Bange-L'Eau-Morte, Hydrol. Earth Syst. Sci., 8, 1051–1064, https://doi.org/10.5194/hess-8-1051-2004, 2004. a
Medina, M., Huffaker, R., Jawitz, J. W., and Muñoz-Carpena, R.: Nonlinear Dynamics in Treatment Wetlands: Identifying Systematic Drivers of Nonequilibrium Outlet Concentrations in Everglades STAs, Water Resour. Res., 55, 11101–11120, https://doi.org/10.1029/2018WR024427, 2019. a, b, c
Meyfroidt, P.: Approaches and terminology for causal analysis in land systems science, Journal of Land Use Science, 11, 501–522, https://doi.org/10.1080/1747423X.2015.1117530, 2016. a
Molini, A., Katul, G. G., and Porporato, A.: Causality across rainfall time scales revealed by continuous wavelet transforms, J. Geophys. Res., 115, D14123, https://doi.org/10.1029/2009JD013016, 2010. a, b
Nes, E. H. v., Scheffer, M., Brovkin, V., Lenton, T. M., Ye, H., Deyle, E., and Sugihara, G.: Causal feedbacks in climate change, Nat. Clim. Change, 5, 445–448, https://doi.org/10.1038/nclimate2568, 2015. a
Park, J., Smith, C., Sugihara, G., Deyle, E., Saberski, E., Ye, H., and The Regents of the University of California: rEDM: Empirical Dynamic Modeling ('EDM'), https://CRAN.R-project.org/package=rEDM, last access: 22 April 2022. a
Pearl, J.: Causality: Models, Reasoning, and Inference, Cambridge University Press, Cambridge, 2 edn., https://doi.org/10.1017/CBO9780511803161, 2009. a, b
Poulain, A., Watlet, A., Kaufmann, O., Van Camp, M., Jourde, H., Mazzilli, N., Rochez, G., Deleu, R., Quinif, Y., and Hallet, V.: Assessment of groundwater recharge processes through karst vadose zone by cave percolation monitoring, Hydrol. Process., 32, 2069–2083, https://doi.org/10.1002/hyp.13138, 2018. a, b, c, d, e, f, g, h, i
Rinderer, M., Ali, G., and Larsen, L. G.: Assessing structural, functional and effective hydrologic connectivity with brain neuroscience methods: State-of-the-art and research directions, Earth-Sci. Rev., 178, 29–47, https://doi.org/10.1016/j.earscirev.2018.01.009, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Rodriguez‐Iturbe, I., Entekhabi, D., and Bras, R. L.: Nonlinear Dynamics of Soil Moisture at Climate Scales: 1. Stochastic Analysis, Water Resour. Res., 27, 1899–1906, https://doi.org/10.1029/91WR01035, 1991. a
Rousseeuw, P. J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53–65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987. a
Ruddell, B. L. and Kumar, P.: Ecohydrologic process networks: 1. Identification, Water Resour. Res., 45, W03419, https://doi.org/10.1029/2008WR007279, 2009. a, b, c
Runge, J.: Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information, in: International Conference on Artificial Intelligence and Statistics, Playa Blanca, Lanzarote, Canary Islands, 9–11 April 2018, edited by: Storkey, A. and Perez-Cruz, F., Proceedings of Machine Learning Research, 84, 938–947, http://proceedings.mlr.press/v84/runge18a.html (last access: 14 April 2022), 2018b. a, b, c, d, e, f
Runge, J.: Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets, in: Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), edited by: Peters, J. and Sontag, D., Proceedings of Machine Learning Research (PMLR), 124, 1388–1397, https://proceedings.mlr.press/v124/runge20a.html (last access: 14 April 2022), 2020. a, b
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M. D., Muñoz-Marí, J., van Nes, E. H., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., and Zscheischler, J.: Inferring causation from time series in Earth system sciences, Nat. Commun., 10, 2553, https://doi.org/10.1038/s41467-019-10105-3, 2019a. a, b, c, d, e, f, g, h, i, j, k
Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D.: Detecting and quantifying causal associations in large nonlinear time series datasets, Science Advances, 5, eaau4996, https://doi.org/10.1126/sciadv.aau4996, 2019b (data available at: https://jakobrunge.github.io/tigramite/, last access: 22 April 2022). a, b, c, d, e, f, g, h
Salvucci, G. D., Saleem, J. A., and Kaufmann, R.: Investigating soil moisture feedbacks on precipitation with tests of Granger causality, Adv. Water Resour., 25, 1305–1312, https://doi.org/10.1016/S0309-1708(02)00057-X, 2002. a, b
Schreiber, T.: Measuring Information Transfer, Phys. Rev. Lett., 85, 461–464, https://doi.org/10.1103/PhysRevLett.85.461, 2000. a, b
Schreiber, T. and Schmitz, A.: Surrogate time series, Physica D, 142, 346–382, https://doi.org/10.1016/S0167-2789(00)00043-9, 2000. a, b
Schrödinger, E.: Nature and the Greeks, Shearman lectures, 1948, University Press, https://books.google.be/books?id=H7sAAAAAMAAJ (last access: 14 April 2022), 1954. a
Sendrowski, A. and Passalacqua, P.: Process connectivity in a naturally prograding river delta, Water Resour. Res., 53, 1841–1863, https://doi.org/10.1002/2016WR019768, 2017. a, b
Sivakumar, B.: Chaos in Hydrology, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-90-481-2552-4, 2017. a, b, c, d
Slater, L. and Binley, A.: Advancing hydrological process understanding from long-term resistivity monitoring systems, WIREs Water, 8, e1513, https://doi.org/10.1002/wat2.1513, 2021. a
Spirtes, P. and Glymour, C.: An Algorithm for Fast Recovery of Sparse Causal Graphs, Soc. Sci. Comput. Rev., 9, 62–72, https://doi.org/10.1177/089443939100900106, 1991. a, b, c, d
Sugihara, G. and May, R. M.: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature, 344, 734–741, https://doi.org/10.1038/344734a0, 1990. a, b
Sugihara, G., Grenfell, B. T., May, R. M., and Tong, H.: Nonlinear forecasting for the classification of natural time series, Philos. T. Roy. Soc. A, 348, 477–495, https://doi.org/10.1098/rsta.1994.0106, 1994. a
Sugihara, G., Deyle, E. R., and Ye, H.: Reply to Baskerville and Cobey: Misconceptions about causation with synchrony and seasonal drivers, P. Natl. Acad. Sci. USA, 114, E2272–E2274, https://doi.org/10.1073/pnas.1700998114, 2017. a, b
Takens, F.: Detecting strange attractors in turbulence, Lecture Notes in Mathematics, Berlin Springer Verlag, 898, 366–381, https://doi.org/10.1007/BFb0091924, 1981. a
Triantafyllou, A., Watlet, A., Le Mouélic, S., Camelbeeck, T., Civet, F., Kaufmann, O., Quinif, Y., and Vandycke, S.: 3-D digital outcrop model for analysis of brittle deformation and lithological mapping (Lorette cave, Belgium), J. Struct. Geol., 120, 55–66, https://doi.org/10.1016/j.jsg.2019.01.001, 2019.
a
Tuttle, S. E. and Salvucci, G. D.: Confounding factors in determining causal soil moisture-precipitation feedback, Water Resour. Res., 53, 5531–5544, https://doi.org/10.1002/2016WR019869, 2017. a, b
Vejmelka, M. and Paluš, M.: Inferring the directionality of coupling with conditional mutual information, Phys. Rev. E, 77, 026214, https://doi.org/10.1103/PhysRevE.77.026214, 2008. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wang, Y., Yang, J., Chen, Y., De Maeyer, P., Li, Z., and Duan, W.: Detecting the Causal Effect of Soil Moisture on Precipitation Using Convergent Cross Mapping, Scientific Reports, 8, 12171, https://doi.org/10.1038/s41598-018-30669-2, 2018. a, b, c, d
Watlet, A., Kaufmann, O., Triantafyllou, A., Poulain, A., Chambers, J. E., Meldrum, P. I., Wilkinson, P. B., Hallet, V., Quinif, Y., Van Ruymbeke, M., and Van Camp, M.: Data and results for manuscript “Imaging groundwater infiltration dynamics in karst vadose zone with long-term ERT monitoring”, Version 1, Zenodo [data set], https://doi.org/10.5281/zenodo.1158631, 2018a. a
Watlet, A., Kaufmann, O., Triantafyllou, A., Poulain, A., Chambers, J. E., Meldrum, P. I., Wilkinson, P. B., Hallet, V., Quinif, Y., Van Ruymbeke, M., and Van Camp, M.: Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring, Hydrol. Earth Syst. Sci., 22, 1563–1592, https://doi.org/10.5194/hess-22-1563-2018, 2018b. a, b, c, d, e, f, g, h, i, j
Wiener, N.: The theory of prediction, in: Modern Mathematics for the Engineer, edited by: Beckenbach, E. F., McGraw-Hill, New York, https://books.google.be/books?id=OGe4AAAAIAAJ (last access: 14 April 2022), 1956. a
Short summary
Causal inference methods (CIMs) aim at identifying causal links from temporal dependencies found in time-series data. Using both synthetic data and real-time series from a karst system, we study and discuss the potential of four CIMs to reveal hydrological connections between variables in hydrological systems. Despite the ever-present risk of spurious hydrological connections, our results highlight that the nonlinear and multivariate CIM has a substantially lower false-positive rate.
Causal inference methods (CIMs) aim at identifying causal links from temporal dependencies found...