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S1: Causal Inference Methods (CIMs) 

S1.1 Cross-Correlation Function (CCF) 

For a driving variable 𝑋𝑡 and a response variable 𝑌𝑡 of 𝑁 samples, causality is framed through the computation of the cross-
correlation function (CCF) and the principle of priority of the cause. For a window of absolute delays [0, 𝑑𝑚𝑎𝑥] with 𝑑𝑚𝑎𝑥 >  0, the 
Pearson’s correlation coefficient 𝜌 is computed between the response and the delayed driver on their overlapping time-domain: 

𝐶𝐶𝐹(𝑑) = 𝜌(𝑋𝑡−𝑑, 𝑌𝑡), (1) 

with 𝑑 ∈ [0, 𝑑𝑚𝑎𝑥]. The Pearson’s 𝜌 between two time-series 𝑋𝑡 and 𝑌𝑡 is the ratio between their covariance and the product of their 
standard deviations: 

𝜌(𝑋𝑡 , 𝑌𝑡) =
cov(𝑋𝑡,𝑌𝑡)

𝜎𝑋𝜎𝑇
, (2) 

The 𝜌 coefficient is a standardized measure of linear dependencies that can be interpreted as the slope of a linear regression between 
the two standardized variables (i.e., zero mean and unit variance). Accordingly, 𝜌 ranges between -1 and 1, meaning respectively 
perfectly anti-correlated or correlated. A 𝜌 of zero indicates the absence of linear dependencies. The significance of the hypothesis 
that 𝜌 is different from zero is usually assessed analytically through a Student’s-t test reporting a p-value. The p-value estimates the 
probability that the correlation between the two time-series is the output of an uncorrelated process. The p-value is sensitive to the 
number of overlapping samples such that more samples are required to have a significant p-value if |𝜌| is low. For a significance 
level 𝛼, significant relationships are considered when the p-value is lower than 𝛼. In the main manuscript, significant correlations 
output by the CCF method are considered as a way to reveal potentially causal links between two time-series at a causal delay 𝑑, in 
virtue of the principle of priority. The case of 𝑑 = 0 refers to a contemporaneous dependency and does not allow to infer a direction 
for the causal relationship. Correlation and the significance test were performed using Python and the Scipy library (Virtanen et al., 
2020). 

S1.2 Convergent Cross-Mapping (CCM) 

CCM is a CIM rooted in the theory of nonlinear dynamical systems. It aims at detecting weak nonlinear associations between two 
time-series (Sugihara et al., 2012). CCM goes beyond linear correlation by checking if two variables behave consistently when the 
system revisits the same states. To approximate the states of a system, CCM relies on Takens’s embedding theorem (Takens, 1981). 
To address whether 𝑋𝑡 causes 𝑌𝑡, the response variable 𝑌𝑡 is first embedded using Takens’s state space reconstruction: 

𝑀𝑌 = {𝑌𝑡 , 𝑌𝑡−𝜏, … , 𝑌𝑡−(𝑚−1)𝜏}, (3) 

𝑀𝑌 is the reconstructed state space, i.e., a trajectory matrix defined by the embedding delay 𝜏 and the embedding dimension 𝑚.  

The state-space reconstruction of the potential response variable 𝑌𝑡 is the starting point of the CCM flowchart (Figure S1). CCM 
uses a nearest-neighbor algorithm to make forecasts of the states 𝑥𝑖+𝑑 ∈  𝑋𝑡, with 𝑋𝑡 the potential cause of 𝑌𝑡 and 𝑑 the time to 
prediction and potential causal delay (up to 𝑑𝑚𝑎𝑥). 𝑅𝐸𝐹 and 𝐿𝐼𝐵 are two user-defined sets of time-series indices. 𝑅𝐸𝐹 spots the 
time-indices of reference, such that the forecast being performed would be 𝑥𝑖+𝑑 for all 𝑖 ∈ 𝑅𝐸𝐹, with 𝑑 the forecast horizon and 
potential causal delay. The set 𝐿𝐼𝐵 lists the time-indices where nearest-neighbors can potentially be identified. By default, no 
restrictions apply on 𝐿𝐼𝐵 and 𝑅𝐸𝐹, and these sets cover the whole time domain, except for the indices truncated by the reconstruction 
or the prediction delay 𝑑. In practice, 𝐿 trajectory samples are randomly selected from the 𝐿𝐼𝐵 set. Working on subsamples allows 
repeating forecasts 𝑁𝑆𝐴𝑀 times to bootstrap statistics and make more reliable forecasts. To perform a single forecast, 𝑚 + 1 nearest-
neighbors of the state 𝑦�̇� = {𝑦𝑖 , 𝑦𝑖−𝜏, … , 𝑦𝑖−(𝑚−1)} in 𝑀𝑌 are identified using Euclidean distance. The 𝑚 + 1 is the default number 

of nearest-neighbors. We denote this set of nearest-neighbor states {�̇�𝑒1, �̇�𝑒2, … , �̇�𝑒(𝑚+1)} with a corresponding set of Euclidean 

distances to �̇� noted {𝑒1, 𝑒2, … , 𝑒𝑚+1}. Based on the time-indices of the nearest-neighbor set, corresponding points in 𝑋𝑡 are identified 
and shifted by 𝑑 time-steps as {𝑥𝑒1+𝑑 , 𝑥𝑒2+𝑑 , … , 𝑥𝑒(𝑚+1)+𝑑}. These 𝑚 + 1 states are averaged using exponential weights 𝑤𝑗  defined 

based on the vector of distances: 

𝑤𝑗 = exp − 
𝑒𝑗

min{𝑒1,𝑒2,…,𝑒𝑚+1}
, with 𝑗 ∈ {1, 2, … , 𝑚 + 1} (4) 

Each weight 𝑤𝑗  is then divided by the sum of all weight, so that they sum up to 1. The weighted average of the time-series values 

{𝑥𝑒1+𝑑 , 𝑥𝑒2+𝑑, … , 𝑥𝑒(𝑚+1)+𝑑} provides the estimate of 𝑥𝑖+𝑡𝑝. As the sampling of the 𝐿 random states (without replacement) in 𝑀𝑌 is 

repeated 𝑁𝑆𝐴𝑀 times, the output forecast matrix is of size 𝐿 × 𝑁𝑆𝐴𝑀. CCM forecasting skills are typically addressed with the mean 
Pearson correlation (Eq.  2) �̅� between the 𝑁𝑆𝐴𝑀 vectors of 𝐿 forecasts and the corresponding observed values.  



 

Figure S1. CCM Algorithm Flowchart. User-defined parameters are displayed in blue. 

In fine, the fact that 𝑥𝑖+𝑑 can be significantly predicted from other points in 𝑋𝑡 identified from time-series segments in 𝑌𝑡, that are 
nearest-neighbors to �̇�𝑖, is used as an indicator that 𝑋𝑡 causes 𝑌𝑡. The effective cross-state then cross-time mapping suggests that 𝑋𝑡 
dynamic is embedded in 𝑌𝑡, which suggests direct causality, or at least a common belonging to the same dynamical system. In the 
original paper (Sugihara et al., 2012), causality is inferred using a prediction horizon 𝑑 = 0 and from the principle of convergence, 
meaning that �̅� should progressively increase with larger sample sizes 𝐿. Our implementation does not consider convergence as a 
sufficient criterion for causality. We assume that if �̅� is significantly high, convergence is expected. Like the CCF method, we 
instead vary the prediction horizon 𝑑 to identify significant causal delays and discriminate the driver from the response based on 
the principle of priority of the cause. This CCM approach is suggested for variables exhibiting a correlated and synchronous behavior 
(Ye et al., 2015), such as hydrological variables. The significance of the average forecast skills �̅� is conducted through a Student’s-
t test, considering the sample length 𝐿. This means that �̅� would be significantly different from the expected correlation between 
two white noise signal of length 𝐿, i.e., zero.  

Concerning the main manuscript, we applied no restriction on 𝑅𝐸𝐹 and 𝐿𝐼𝐵. A fixed sample length of 𝐿 of 100 was used 100 times 
(𝑁𝑆𝐴𝑀). The optimal embedding parameters (Eq. 3, 𝑚 and 𝜏) for 𝑌𝑡 can be selected by optimizing the self-forecasting skills (Sugihara 
and May, 1990). These self-prediction skills are obtained by applying the CCM algorithm to a single variable (𝑌𝑡  =  𝑋𝑡 in Figure 
S1). The embedding delay 𝜏 was set at the time-series resolution of 1 day, while 𝑚 = 2 was found to provide the best forecasting 
skills in general. Besides, we also considered a time exclusion window of 10 days, known as the Theiler window (Theiler, 1986), 
such that nearest-neighbor states in 𝑀𝑌 are not neighbors in time but remote by at least 10 days and picked whenever 𝑌𝑡 revisits 
recurrent trajectories. The Theiler window ensures that predictive power arises from state dependencies, not from auto-correlation 
patterns.  

Finally, we chose to post-process the retrieved significant �̅� to remove an undesirable effect of the embedding parameter 𝑚. For a 
single causal delay 𝑑, the embedding has the effect of providing significant predictive skills over the embedding window, such that 
the delays between 𝑑 and 𝑑 + (𝑚 − 1) are usually significant (Ye et al., 2015). This effect is illustrated in Figure S2. To discard 
the undesirable sustain of predictive skills, we truncated all significant segments of consecutive delays by 1 day, since 𝑚 is 2, as a 
post-filtering of the significant CCM relationship. Consequently, isolated significant delays are also removed. Besides, negative �̅� 
are not considered since they are meaningless.  



 

Figure S2. Example of CCM on a linear stochastic model 𝑌𝑡 = 0.2𝑌𝑡−1 + 0.2𝑋𝑡−2 + 0.2𝜀 with 𝜀 a standard white noise. The model assumes a 
univariate causal relationship 𝑋𝑡−2 → 𝑌𝑡 that should be revealed by CCM forecast (xmap) from 𝑌𝑡 to 𝑋𝑡−2 (True delay 𝑑 = 2). The figure shows 
the results of CCM forecasts from 𝑌𝑡 to 𝑋𝑡 (black) and vice versa (gray) for delays ranging between -4 and 5. CCM skill �̅� is the mean Pearson 
correlation between the 𝑁𝑆𝐴𝑀 = 100 predicted vectors of length 𝐿 = 100 and the corresponding true values. The effect of the embedding 
dimension is clearly visible. Significant predictive skills are sustained at least over a window of size 𝑚 (when 𝜏 = 1). Hence, islands of significant 
dependencies should be tailed from the right to reveal the true delays associated with positive 𝑑. The truncation also prevents future dependencies 
(𝑑 < 0) from extending past dependencies (𝑑 > 0) and being misinterpreted as causal relationships. 

Regarding the CCM code, CCM is applied with a Python version developed in (Delforge et al., 2020). A computationally faster and 
official Python version of CCM, as well as R and C++ implementation, are currently available from the repository: 
https://github.com/SugiharaLab/pyEDM.   

  

https://github.com/SugiharaLab/pyEDM


S1.3. PCMCI Algorithm 

PCMCI is a 2-step procedure: PC, named after its authors Peter and Clark (Spirtes and Glymour, 1991), and MCI, standing for 
Momentary Conditional Independence (Runge et al., 2019). In general, considering a multivariate time-series process 𝑿𝒕 =
{𝑋𝑡

1, … , 𝑋𝑡
𝑝

} of 𝑝 time-series, PCMCI allows recovering a causal graph based on the principle of conditional independence. A 

delayed time-series 𝑋𝑡−𝑑
𝑖  with 𝑖 ∈ [0, 𝑝] causes itself or another series 𝑋𝑡

𝑗
 with 𝑗 ∈ [0, 𝑝], if conditional independence to the past of 

the process 𝑿𝒕
− excluding 𝑋𝑡−𝑑

𝑖  is rejected: 

𝑋𝑡−𝑑
𝑖 → 𝑋𝑡

𝑗
⟺ 𝑋𝑡−𝑑

𝑖  ¬⫫  𝑋𝑡
𝑗

∣ 𝑿𝒕
−\{𝑋𝑡−𝑑

𝑖 }, (5) 

where the symbols respectively mean: →: “causes”; ⟺:  “implies”; ¬⫫: “not independent”; ∣: “conditioned to”; and \: “excluding”. 

The Full Conditional Independence algorithm (FullCI) is entirely based on Eq. 5.  However, FullCI suffers from the curse of 
dimensionality if the conditioning involves too many variables in the conditioning set 𝑿𝒕

− (Runge et al., 2019). Hence, the purpose 

of the prior PC step is to estimate first the potential parents ℘̂(𝑋𝑡
𝑗
) for each variable 𝑋𝑡

𝑗
. Tigramite relies on the PC1 iterative 

procedure by default. Initially, all potential parents are considered as ℘̂(𝑋𝑡
𝑗
). In the first step, all the parents that are unconditionally 

independent to 𝑋𝑡
𝑗
 are removed, and the parent presenting the strongest dependency is identified. In the second one, the parents that 

are independent to 𝑋𝑡
𝑗
 conditionally to the strongest parent of step 1 are removed, and a second parent with the highest conditional 

dependence is identified as an additional condition for step 3. The operation is repeated considering a 1-by-1 increasing number of 

conditions up to a point there are no more conditions to test in ℘̂(𝑋𝑡
𝑗
). Then, the MCI second step starts and tests for conditional 

independence on the dimensionally reducedset of parents resulting from PC1, such that: 

𝑋𝑡−𝑑
𝑖 → 𝑋𝑡

𝑗
⟺ 𝑋𝑡−𝑑

𝑖  ¬⫫  𝑋𝑡
𝑗

∣ ℘̂(𝑋𝑡
𝑗
)\{𝑋𝑡−𝑑

𝑖 }, ℘̂(𝑋𝑡−𝑑
𝑖 ) (6) 

Resulting from the MCI step, links where conditional independence cannot be rejected are considered as true causal parents, i.e., 
causally inferred sufficient causes. These links are reported in the resulting DAG.  

PCMCI flexibly allows us to consider different conditional independence tests: a linear method by assessing Partial Correlations 
(ParCorr) and a nonlinear one relying on Conditional Mutual Information (CMI). Partial correlations are Pearson’s correlations (Eq. 

2) between 𝑋𝑡−𝑑
𝑖  and the residuals of the multivariate linear regression model of 𝑋𝑡

𝑗
  against its conditions, for instance, 

℘̂(𝑋𝑡
𝑗
)\{𝑋𝑡−𝑑

𝑖 }, ℘̂(𝑋𝑡−𝑑
𝑖 ) in the case of MCI. The linear model is fit using Ordinary Least Square regression, and the correlation 

significance is estimated with p-value resulting from a Student’s t-test. This framework is similar to the popular Granger causality, 
which is based on vector auto-regressive models (Granger, 1969). However, PCMCI-ParCorr differs from the usual Granger 
causality in three aspects: (1) Granger causality does not rely on the PCMCI procedure and, thus, suffers from the curse of 
dimensionality; (2) GC does not report contemporaneous dependencies (𝑑 = 0); and (3) Granger causality relies on a F-test, testing 

if including a potential driver 𝑋𝑡−𝑑
𝑖  in the multivariate model of 𝑋𝑡

𝑗
 significantly reduces the variance of residuals. 

In contrast, CMI can be seen as a multivariate extension of the transfer entropy method (Schreiber, 2000). In the information theory, 
CMI, or 𝐼𝑋,𝑌|𝑍, is the mutual information between two variables 𝑋𝑡 and 𝑌𝑡  conditioned to 𝑍𝑡: 

𝐼𝑋,𝑌|𝑍 = ∭ 𝑝(𝑥, 𝑦, 𝑧) log
𝑝(𝑥, 𝑦|𝑧)

𝑝(𝑥|𝑧)𝑝(𝑦|𝑧)
𝑑𝑥𝑑𝑦𝑑𝑧 (7) 

If 𝐼𝑋,𝑌|𝑍 = 0,  𝑋𝑡 and 𝑌𝑡 are conditionally independent to 𝑍𝑡 , and, therefore, not directly causally related, given that the probability 

densities are correctly estimated. For this purpose, PCMCI with the CMI conditional independence test offers three different 
methods: Gaussian Process and Distance Correlation (GPDC); a k nearest neighbor estimator (CMIknn); and an estimator based on 
kernel measures of CMI (RCOT). The author recommends using the most general conditional independence test, CMIknn, where 
multiplicative noise is expected, as in hydrology (Rodriguez‐Iturbe et al., 1991), and where the sample size is lower than 1000, 
which is the case in this study. CMIknn is, therefore, considered. The latter relies on a nearest-neighbor CMI estimator (Frenzel and 
Pompe, 2007; Vejmelka and Paluš, 2008) combined with a local permutation scheme as a nonparametric test for conditional 
independence (Runge, 2018). 

Besides the maximum lag 𝑑𝑚𝑎𝑥 , PCMCI requires other arguments. The PC stage retrieves parents according to a regularization 
parameter 𝛼𝑃𝐶  ranging between 0 and 1. The higher 𝛼𝑃𝐶 , the higher the number of parents, with 𝛼𝑃𝐶 = 1 corresponding to the 
FullCI algorithm (Eq. 5). If 𝛼𝑃𝐶  is too low, true parents might be missing. If 𝛼𝑃𝐶  is too high, the MCI step may retrieve spurious 
results due to the curse of dimensionality. When the ParCorr conditional independence test is selected, PCMCI allows optimizing 
𝛼𝑃𝐶  while minimizing the Akaike Information Criterion (Akaike, 1974). In the main manuscript, this feature is used to generate the 
ParCorr DAG. For CMI, we tested the method considering two values: the default 𝛼𝑃𝐶 = 0.2 and a more restrictive 𝛼𝑃𝐶 = 0.05.  

The CMIknn method further relies on two hyperparameters (Runge, 2018). The first, 𝑘𝐶𝑀𝐼 , defines the size of the neighborhood for 
the knn estimator of CMI. The 𝑘𝐶𝑀𝐼  mostly acts as a smoothing parameter regarding the CMI, and should not be too small. The 
second parameter, 𝑘𝑝𝑒𝑟𝑚, defines the size of the neighborhood for the local permutation scheme for the shuffling test. The 𝑘𝑝𝑒𝑟𝑚 

parameters has less importance than 𝑘𝐶𝑀𝐼  regarding the sensitivity of the outcomes. 

The PCMCI algorithm (Runge et al., 2019) is implemented in the Tigramite Python package for causal time-series analysis (version 
4.1 for the main manuscript). The GitHub repository contains further information and tutorials to run the causal discovery 
framework: https://github.com/jakobrunge/tigramite/.  

  

https://github.com/jakobrunge/tigramite/


S2: Supplementary Results  

S2.1. Cross-Correlation Function 

Figure S3 shows the CCF time-dependencies in the form of a correlogram. CCF was applied on the first-order differenced real 
dataset (see the main manuscript). 

 

Figure S3. CCF time-dependencies applied to the first order differenced data. Lagged dependencies significantly different from zero are reported 
with red stars (p-val < 0.001), orange squares (0,001<p-val<0.01), and green triangles (0.01<p-val<0.05). 

  



S2.2. Convergent Cross-Mapping 

Figure S4 shows the CCM time-dependencies on the first order differenced dataset. Note that the significant dependencies are 
expected to sustain over an additional delay since the embedding dimension 𝑚 (Eq. 3) is two days. This effect was removed in the 
main manuscript using post-filtering (see S1.2).  

 

Figure S4. CCM time-dependencies applied to the first order differenced data. Lagged dependencies significantly different from zero are reported 
with red stars (p-val < 0.001), orange squares (0,001<p-val<0.01), and green triangles (0.01<p-val<0.05). The results are not post-processed (see 
section S1.2).  

  



S2.3. Conditionnal Mutual Information (CMI) 

PCMCI with the CMIknn applied on the real dataset was unstable, potentially due to temporal gaps and, as a result, the small size 
of the overlapping time-domain of the conditioned variables. To illustrate this instability, Figure S5 and S6 reports the causal graph 
outputs for two runs obtained with the same parameter configuration (𝛼𝑃𝐶 , 𝑘𝐶𝑀𝐼 , 𝑘𝑝𝑒𝑟𝑚).  In particular, some strange causal loops 

sometimes appear between resistivity variables (Figure S5c R0-R3, or Figure S6a R0-R1). This observation led us to believe that 
the highly smoothed averaged resistivity time-series obtained from the inverted time-lapse Electrical Resistivity Tomography model 
contributes to the instability. 

 

Figure S5. Graph of CMI cross-dependencies (RUN 1): (a) considering all data,(b) excluding P2, P3, (c) excluding P1, P3, (d) 
excluding P1, P2. Contemporaneous dependencies are represented by an undirected straight arrow. Delayed dependencies are shown 
using directed curved arrows. All corresponding delays 𝑑 are displayed in the middle of its corresponding arrow. The color of arrows 
maps to the strength of dependencies. Solid and dash-dotted arrows represent respectively significant dependencies with p-value < 
0.001 and < 0.01. 

 

 

 

 

 



 

Figure S6. Graph of CMI cross-dependencies (RUN 2): (a) considering all data,(b) excluding P2, P3, (c) excluding P1, P3, (d) 
excluding P1, P2. Contemporaneous dependencies are represented by an undirected straight arrow. Delayed dependencies are shown 
using directed curved arrows. All corresponding delays 𝑑 are displayed in the middle of its corresponding arrow. The color of arrows 
maps to the strength of dependencies. Solid and dash-dotted arrows represent respectively significant dependencies with p-value < 
0.001 and < 0.01. For each graph, the size of the overlapping time-domain between the variables changes as follows: 48 days (a), 184 
days (b) 62 days (c), and 218 days (d). 

  



To better evaluate how dissimilar two causal graphs are and in which case, we performed a sensitivity analysis. This sensitivity 
analysis varies the datasets as well as the parameters of the algorithm, and runs 5 tests for each configuration to investigate 
convergence problems. The sensitivity factors are: 

- ‘FD’, ‘P1’, ‘P2’, ‘P3’: the four datasets considered previously with ‘FD’ being all data, ‘P1’ is FD excluding P2, P3, ‘P2’ 
is FD excluding P1, P3, and ‘P3’ is FD excluding P1, P2. 

- The 𝛼𝑃𝐶  parameter defined as either 0.2 or 0.05; 

- The 𝑘𝐶𝑀𝐼  parameter belonging to [5, 10, 15, 20, 30, 40]. We cannot go beyond the absolute value of 48 which is the size 
of the overlapping domain for FD conditioned variables. 

- The 𝑘𝑝𝑒𝑟𝑚 parameter as in [5, 10, 15, 20]. 

This parameter space covers 960 simulations executed with 𝑑𝑚𝑎𝑥  equal to 5 days. To give an account of the high computational 
cost of CMIknn, the sensitivity analysis took about two weeks on a single PC laptop machine, 12 threads, intel core i7 9th generation. 
Figure S7 and S8 show the mean Jaccard similarity between each combination of the 5 causal graphs retrieved for each parameter 
set. The Jaccard similarity (implemented in (Pedregosa et al., 2011)) reports the size of the intersection divided by the size of the 
union of two vectors of labels, i.e., labeled as causal or non-causal in this case. For Figure S7 and S8, the significance p-value 
threshold was set respectively to 0.01 and 0.05. However, the Jaccard similarity captures the similarity that is due to chance. Figure 
S9 and S10. reports the Adjusted Rand Index (ARI) (also implemented in Pedregosa et al., 2011), which is a similarity metric that 
accounts for chance (0 being the expected score of random similarity). Overall, a slightly lower similarity was obtained with 𝛼𝑃𝐶  = 
0.2, which allows more causal parents. The effect of the dataset is visible with ARI, especially with 𝛼𝑃𝐶 = 0.2) showing that the 
FD and P2 appears more random due to the small size of their overlapping time domain (Figure S9 and S10). P1 is the less random, 
which is also where we expect an hydrological connection to be part of the graph. Regarding the optimal choice of 𝑘𝐶𝑀𝐼  or 𝑘𝑝𝑒𝑟𝑚, 

no clear-cut pattern appears. In the main manuscript, we therefore chose to build the consensual (majority) causal graph using all 
the causal graphs obtained through this sensitivity analysis.  

 

Figure S7. Mean Jaccard Similarity between the combinations of 5 graphs obtained with the same parameter sets and significance 
threshold p-value of 0.01. 



 

Figure S8. Mean Jaccard Similarity between the combinations of 5 graphs obtained with the same parameter sets and significance 
threshold p-value of 0.05. 

 

Figure S9. Mean Adjusted Rand Index between the combinations of 5 graphs obtained with the same parameter sets and significance 
threshold p-value of 0.01. 



 

Figure S10. Mean Adjusted Rand Index between the combinations of 5 graphs obtained with the same parameter sets and significance 
threshold p-value of 0.05. 
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