Articles | Volume 26, issue 6
https://doi.org/10.5194/hess-26-1673-2022
https://doi.org/10.5194/hess-26-1673-2022
Research article
 | Highlight paper
 | 
31 Mar 2022
Research article | Highlight paper |  | 31 Mar 2022

Uncertainty estimation with deep learning for rainfall–runoff modeling

Daniel Klotz, Frederik Kratzert, Martin Gauch, Alden Keefe Sampson, Johannes Brandstetter, Günter Klambauer, Sepp Hochreiter, and Grey Nearing

Viewed

Total article views: 35,008 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
19,821 15,040 147 35,008 142 128
  • HTML: 19,821
  • PDF: 15,040
  • XML: 147
  • Total: 35,008
  • BibTeX: 142
  • EndNote: 128
Views and downloads (calculated since 14 Apr 2021)
Cumulative views and downloads (calculated since 14 Apr 2021)

Viewed (geographical distribution)

Total article views: 35,008 (including HTML, PDF, and XML) Thereof 31,852 with geography defined and 3,156 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 13 Dec 2024
Download
Short summary
This contribution evaluates distributional runoff predictions from deep-learning-based approaches. We propose a benchmarking setup and establish four strong baselines. The results show that accurate, precise, and reliable uncertainty estimation can be achieved with deep learning.