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Abstract. Deep learning is becoming an increasingly im-
portant way to produce accurate hydrological predictions
across a wide range of spatial and temporal scales. Un-
certainty estimations are critical for actionable hydrological
prediction, and while standardized community benchmarks
are becoming an increasingly important part of hydrological
model development and research, similar tools for bench-
marking uncertainty estimation are lacking. This contribu-
tion demonstrates that accurate uncertainty predictions can
be obtained with deep learning. We establish an uncertainty
estimation benchmarking procedure and present four deep
learning baselines. Three baselines are based on mixture den-
sity networks, and one is based on Monte Carlo dropout. The
results indicate that these approaches constitute strong base-
lines, especially the former ones. Additionally, we provide
a post hoc model analysis to put forward some qualitative
understanding of the resulting models. The analysis extends
the notion of performance and shows that the model learns
nuanced behaviors to account for different situations.

1 Introduction

A growing body of empirical results shows that data-
driven models perform well in a variety of environmen-
tal modeling tasks (e.g., Hsu et al., 1995; Govindaraju,
2000; Abramowitz, 2005; Best et al., 2015; Nearing et al.,
2016, 2018). Specifically for rainfall-runoff modeling, ap-
proaches based on long short-term memory (LSTM; Hochre-
iter, 1991; Hochreiter and Schmidhuber, 1997; Gers et al.,

1999) networks have been especially effective (e.g., Kratzert
etal., 2019a, b, 2021).

The majority of machine learning (ML) and deep learn-
ing (DL) rainfall-runoff studies do not provide uncertainty
estimates (e.g., Hsu et al., 1995; Kratzert et al., 2019b, 2021;
Liu et al., 2020; Feng et al., 2020). However, uncertainty is
inherent in all aspects of hydrological modeling, and it is
generally accepted that our predictions should account for
this (Beven, 2016). The hydrological sciences community
has put substantial effort into developing methods for provid-
ing uncertainty estimations around traditional models, and
similar effort is necessary for DL models like LSTMs.

Currently there exists no single, prevailing method for ob-
taining distributional rainfall-runoff predictions. Many, if not
most, methods take a basic approach where a deterministic
model is augmented with some uncertainty estimation strat-
egy. This includes, for example, ensemble-based methods,
where the idea is to define and sample probability distribu-
tions around different model inputs and/or structures (e.g.,
Li et al., 2017; Demargne et al., 2014; Clark et al., 2016),
but it also comprises Bayesian (e.g., Kavetski et al., 2006)
or pseudo-Bayesian (e.g., Beven and Binley, 2014) meth-
ods and post-processing methods (e.g., Shrestha and Solo-
matine, 2008; Montanari and Koutsoyiannis, 2012). In other
words, most classical rainfall-runoff models do not provide
direct estimates of their own predictive uncertainty; instead,
such models are used as a part of a larger framework. There
are some exceptions to this, for example, methods based on
stochastic partial differential equations, which actually use
stochastic models but generally require one to assign sam-
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pling distributions a priori (e.g., a Wiener process). These
are common, for example, in hydrologic data assimilation
(e.g., Reichle et al., 2002). The problem with these types of
approaches is that any distribution that we could possibly as-
sign is necessarily degenerate, resulting in well-known errors
and biases in estimating uncertainty (Beven et al., 2008).

It is possible to fit DL models such that their own represen-
tations intrinsically support estimating distributions while ac-
counting for strongly nonlinear interactions between model
inputs and outputs. In this case, there is no requirement to
fall back on deterministic predictions that would need to be
sampled, perturbed, or inverted. Several approaches to uncer-
tainty estimation for DL have been suggested (e.g., Bishop,
1994; Blundell et al., 2015; Gal and Ghahramani, 2016).
Some of them have been used in the hydrological context.
For example, Zhu et al. (2020) tested two strategies for us-
ing an LSTM in combination with Gaussian processes for
drought forecasting. In one strategy, the LSTM was used to
parameterize a Gaussian process, and in the second strategy,
the LSTM was used as a forecast model with a Gaussian pro-
cess post-processor. Gal and Ghahramani (2016) showed that
Monte Carlo dropout (MCD) can be used to intrinsically ap-
proximate Gaussian processes with LSTMs, so it is an open
question as to whether explicitly representing the Gaussian
process is strictly necessary. Althoff et al. (2021) examined
the use of MCD for an LSTM-based model of a single river
basin and compared its performance with the usage of an
ensemble approach. They report that MCD had uncertainty
bands that are more reliable and wider than the ensemble
counterparts. This finding contradicts the preliminary results
of Klotz et al. (2019) and observations from other domains
(e.g., Ovadia et al., 2019; Fort et al., 2019). It is therefore
not yet clear whether the results of Althoff et al. (2021) are
confined to their setup and data. Be that as it may, this still is
evidence of the potential capabilities of MCD. A further use
case was examined by Fang et al. (2019), who use MCD for
soil moisture modeling. They observed a tendency in MCD
to underestimate uncertainties. To compensate, they tested
an MCD extension, proposed by Kendall and Gal (2017), the
core idea of which is to add an estimation for the aleatoric
uncertainty by using a Gaussian noise term. They report that
this combination was more effective at representing uncer-
tainty.

Our primary goal is to benchmark several methods for un-
certainty estimation in rainfall-runoff modeling with DL. We
demonstrate that DL models can produce statistically reliable
uncertainty estimates using approaches that are straightfor-
ward to implement. We adapted the LSTM rainfall-runoff
models developed by Kratzert et al. (2019b, 2021) with
four different approaches to make distributional predictions.
Three of these approaches use neural networks to create
and mix probability distributions (Sect. 2.3.1). The fourth is
MCD, which is based on direct sampling from the LSTM
(Sect. 2.3.2).
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Our secondary objective is to help advance the state of
community model benchmarking to include uncertainty es-
timation. We want to do so by outlining a basic skeleton for
an uncertainty-centered benchmarking procedure. The rea-
son for this is that it was difficult to find suitable bench-
marks for the DL uncertainty estimation approaches we want
to explore. Ad hoc benchmarking and model intercompar-
ison studies are common (e.g., Andréassian et al., 2009;
Best et al., 2015; Kratzert et al., 2019b; Lane et al., 2019;
Berthet et al., 2020; Nearing et al., 2018), and, while the
community has large-sample datasets for benchmarking hy-
drological models (Newman et al., 2017; Kratzert et al.,
2019b), we lack standardized, open procedures for conduct-
ing comparative uncertainty estimation studies. For example,
from the given references only, Berthet et al. (2020) focused
on benchmarking uncertainty estimation strategies, and then
only for assessing post-processing approaches. Furthermore,
it has previously been argued that data-based models provide
a meaningful and general benchmark for testing hypothe-
ses and models (Nearing and Gupta, 2015; Nearing et al.,
2020b). Thus, here we examine a data-based uncertainty es-
timation benchmark built on a standard, publicly available,
large-sample dataset that could be used as a baseline for fu-
ture benchmarking studies.

2 Data and methods

To carve out a skeleton for a benchmarking procedure, we
followed the philosophy outlined by Nearing et al. (2018).
According to the principles therein, the requirements for a
suitable, standardized benchmark are (i) that the benchmark
uses a community-standard dataset that is publicly available,
(1) that the model or method is applied in a way that con-
forms to the standards of practice for that dataset (e.g., stan-
dard train/test splits), and (iii) that the results of the stan-
dardized benchmark runs are publicly available. To these,
we added a fourth point, a post hoc model examination step
which aims at exposing the intrinsic properties of the model.
Although examination is important — especially for ML ap-
proaches and imperfect approximations — we do not view it
as a requirement for benchmarking in general.

Nonetheless, we believe that good benchmarking is not
something that can be done in a responsible way by a sin-
gle contribution (unless it is the outcome of a larger effort in
itself, e.g., Best et al., 2015; Kratzert et al., 2019b). In gen-
eral, however, it will require a community-based effort. If
no benchmarking effort is established yet, one would ideally
start with a set of self-contained baselines and openly share
settings, data, models, and metrics. Then, over time, a com-
munity can establish itself and improve, replace, or add to
them. In the best case, everyone runs the model or approach
that they know best, and results are compared at a community
level.
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The current study can be seen as a starting point for this
process: we base the setup for a UE benchmark on a large,
publicly curated, open dataset that is already established
for other benchmarking efforts — namely the Catchment
Attributes and MEteorolgoical Large Sample (CAMELS)
dataset. Section 2.1 provides an overview of the CAMELS
dataset. The following sections describe the benchmarking
setup: Sect. 2.2 discusses a suite of performance metrics that
we used to evaluate the uncertainty estimation approaches.
Section 2.3 introduces the different uncertainty estimation
baselines that we developed. We used exclusively data-driven
models because they capture the empirically inferrable rela-
tionships between inputs and outputs (and assume minimal
a-priori process conceptualization; see, e.g., Nearing et al.,
2018, 2020b). The setup, the models, and the metrics should
be seen as a minimum viable implementation of a compar-
ative examination of uncertainty predictions, a template that
can be expanded and adapted to progress benchmarking in
a community-minded way. Lastly, Sect. 2.4 discusses the
different experiments of the post hoc model examination.
Our goal here is to make the behavior and performance of
the (best) model more tangible and compensate for potential
blind spots of the metrics.

2.1 Data: the CAMELS dataset

CAMELS (Newman et al., 2015; Addor et al., 2017) is an
openly available dataset that contains basin-averaged daily
meteorological forcings derived from three different gridded
data products for 671 basins across the contiguous United
States. The 671 CAMELS basins range in size between
4 and 25000km? and span a range of geological, ecologi-
cal, and climatic conditions. The original CAMELS dataset
includes daily meteorological forcings (precipitation, tem-
perature, short-wave radiation, humidity) from three differ-
ent data sources (NLDAS, Maurer, DayMet) for the time pe-
riod 1980 through 2010 as well as daily streamflow discharge
data from the US Geological Survey. CAMELS also includes
basin-averaged catchment attributes related to soil, geology,
vegetation, and climate.

We used the same 531 basins from the CAMELS dataset
(Fig. 1) that were originally chosen for model benchmarking
by Newman et al. (2017). This means that all basins from the
original 671 with areas greater than 2000 km? or with dis-
crepancies of more than 10 % between different methods for
calculating basin area were not considered. Since all of the
models that we tested here are DL models, we use the terms
training, validation, and testing, which are standard in the
machine learning community, instead of the terms calibra-
tion and validation, which are more common in the hydrol-
ogy community (sensu Klemes, 1986).
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Figure 1. Overview map of the CAMELS basins. The plot shows
the mean precipitation estimates for the 531 basins originally cho-
sen by Newman et al. (2017) and used in this study.

2.2 Metrics: benchmarking evaluation

Benchmarking requires metrics to evaluate. No global,
unique metric exists that is able to fully capture model behav-
ior. As a matter of fact, it is often the case that even multiple
metrics will miss important aspects. The choice of metrics
will also necessarily depend on the goal of the benchmark-
ing exercise. Post hoc model examination provides a partial
remedy to these inefficiencies by making the model behavior
more tangible. Still, as of now, no canonical set of metrics
exists. The ones we employed should be seen as a bare min-
imum, a starting point so to speak. The metrics will need to
be adapted and refined over time and from application to ap-
plication.

The minimal metrics for benchmarking uncertainty esti-
mations need to test whether the distributional predictions
are “reliable” and have “high resolution” (a terminology we
adopted from Renard et al., 2010). Reliability measures how
consistent the provided uncertainty estimates are with respect
to the available observations, and resolution measures the
“sharpness” of distributional predictions (i.e., how thin the
body of the distribution is). Generally, models with higher
resolution are preferable. However, this preference is con-
ditional on the models being reliable. A model should not
be overly precise relative to its accuracy (over-confident)
or overly disperse relative to its accuracy (under-confident).
Generally speaking, a single metric will not suffice to com-
pletely summarize these properties (see, e.g., Thomas and
Uminsky, 2020). We note however that the best form met-
rics for comparing distributional predictions would be to use
proper scoring rules, such as likelihoods (see, e.g., Gneiting
and Raftery, 2007). Likelihoods however do not exist on an
absolute scale (it is generally only possible to compare like-
lihoods between models), which makes these difficult to in-
terpret (although see Weijs et al., 2010). Additionally, these
can be difficult to compute with certain types of uncertainty
estimation approaches and so are not completely general for
future benchmarking studies. To have a minimal viable set of
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metrics, we therefore based the assessment of reliability on
probability plots and evaluated resolution with a set of sum-
mary statistics.

All metrics that we report throughout the paper are evalu-
ated on the test data only. With that we follow the thoughts
outlined by Klemes (1986) and the current established prac-
tice in machine learning.

2.2.1 Reliability

Probability plots (Laio and Tamea, 2007) are based on the
following observation: if we insert the observations into
the estimated cumulative distribution function, a consis-
tent model will provide a uniform distribution on the inter-
val [0, 1]. The probability plot uses this to provide a diagnos-
tic. The theoretical quantiles of this uniform distribution are
plotted on the x axis and the fraction of observations that fall
below the corresponding predictions on the y axis (Fig. 2).
Deficiencies appear as deviations from the 1 : 1 line: a perfect
model should capture 10 % of the observations below a 10 %
threshold, 20 % under the 20 % threshold, and so on. If the
relative counts of observations, in particular modeled quan-
tiles, are higher than the theoretical quantiles, this means that
a model is under-confident. Similarly, if the relative counts of
observations, in particular modeled quantiles, are lower than
the theoretical quantiles, then the model is over-confident.

Laio and Tamea (2007) proposed using the probability plot
in a continuous fashion to avoid arbitrary binning. We pre-
ferred to use discrete steps in our quantile estimates to avoid
falsely reporting overly precise results (e.g., Cole, 2015). As
such, we chose a 10 % step size for the binning thresholds
in our experiments. We used 10 thresholds in total, one for
each of the resulting steps and the additional 1.0 threshold
which used the highest sampled value as an upper bound, so
that an intuition regarding the upper limit can be obtained.
Subtracting the thresholds from the relative count yields a
deviation from the 1 : 1 line (the sum of which is sometimes
referred to as the expected calibration error; see, e.g., Naeini
et al., 2015). For the evaluation we depicted this counting
error alongside the probability plots to provide better read-
ability (see Fig. 2b).

A deficit of the probability plot is its coarseness, since
it represents an aggregate over time and basins. As such, it
provides a general overview but necessarily neglects many
aspects of hydrological importance. Many expansions of
the analytical range are possible. One that suggested itself
was to examine the deviations from the 1:1 line for dif-
ferent basins. Therefore, we evaluated the probability plot
for each basin specifically, computed the deviations from the
1:1 line, and examined their distributions. We did not in-
clude the 1.0 threshold for this analysis since it consisted of
large spikes only.
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Exemplary depiction of the benchmarking plots
(a) Probability plot
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Figure 2. (a) [llustration of the probability plot for the evaluation
of predictive distributions. The x axis shows the estimated cumu-
lative distribution over all time steps by a given model, and the y
axis shows the actual observed cumulative probability distribution.
A conditional probability distribution was produced by each model
for each time step in each basin. A hypothetically perfect model will
have a probability plot that falls on the 1 : 1 line. We used 10 % bin-
ning in our actual experiments. (b) Illustration of the corresponding
“error plot”. This plot complements the probability by explicitly de-
picting the distances of individual models from the 1 : 1 line.

2.2.2 Resolution

To motivate why further metrics are required on top of the re-
liability plot, it is useful to look at the following observation:
there are an infinity of models that produce perfect proba-
bility plots. One edge-case example is a model that simply
ignores the inputs and produces the unconditional empirical
data distribution at every time step. Another edge-case ex-
ample is a hypothetical “perfect” model that produces delta
distributions at exactly the observations every time. Both of
these models have precision that exactly matches accuracy,
and these two models could not be distinguished from each
other using a probability plot. Similarly, a model which is
consistently under-confident for low flows can compensate
for this by being over-confident for higher flows. Thus, to
better assess the uncertainty estimations, at least another di-
mension of the problem has to be checked: the resolution.
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Table 1. Overview of the benchmarking metrics for assessing model resolution. Each metric is applied to the distributional streamflow
predictions at each individual time step and then aggregated over all time steps and basins. All metrics are defined in the interval [0, 00), and
lower values are preferable (but not unconditional on the reliability).

Benchmarking metric Description

More robust than standard deviation and variance

We use Bessel’s correction to account for one degree of freedom.

We use Bessel’s correction to account for one degree of freedom.

We compute the width of each of the inner quantiles and take the mean.
Average interquartile range

Average interdecile range

Mean absolute deviation

Standard deviation

Variance

Average width of the 0.2 to 0.9 quantiles
Distance between the 0.25 and 0.75 quantiles
Distance between the 0.1 and 0.9 quantiles

To assess the resolution of the provided uncertainty esti-
mates, we used a group of metrics (Table 1). Each metric
was computed for all available data points and averaged over
all time steps and basins. The results are statistics that char-
acterize the overall sharpness of the provided uncertainty es-
timates (roughly speaking, they give us a notion about how
thin the body of the distributional predictions is). Further,
to provide an anchor for interpreting the magnitudes of the
statistics, we also computed them for the observed stream-
flow values (this yields an unconditional empirical distribu-
tion for each basin that can be aggregated). These are not
strictly the same, but we argue that they still provide some
form of guidance.

2.3 Baselines: uncertainty estimation with deep
learning

We tested four strategies for uncertainty estimation with
deep learning. These strategies fall into two broad cate-
gories: mixture density networks (MDNs) and MCD. We ar-
gue that these approaches represent a useful set of baselines
for benchmarking.

2.3.1 Mixture density networks

The first class of approaches uses a neural network to mix
different probability densities. This class is commonly re-
ferred to as MDNSs (Bishop, 1994), and we tested three differ-
ent forms of MDNs. A mixture density is a probability den-
sity function created by combining multiple densities, called
components. An MDN is defined by the parameters of each
component and the mixture weights. The mixture compo-
nents are usually simple distributions like the Gaussians in
Fig. 3. Mixing is done using weighted sums. Mixture weights
are larger than zero and collectively sum to one to guarantee
that the mixture is also a density function. These weights can
therefore be seen as the probability of a particular mixture
component. Usually, the number of mixture components is
discrete; however, this is not a strict requirement.

The output of an MDN is an estimation of a conditional
density, since the mixture directly depends on a given input
(Fig. 4). The mixture represents changes every time the net-
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Example for mixing distributions
(a) Three Gaussian distributions
1.00 -

1.00 -
w=0.3

1.00 -

w = 0.05

-10 -5 0 5 10
Figure 3. Illustration of the concept of a mixture density us-
ing Gaussian distributions. Plot (a) shows three Gaussian distri-
butions with different parameters (i.e., different means and stan-
dard deviations). Plot (b) shows the same distributions superim-
posed with the mixture that results from the depicted weighting w =
(0.1, 0.6, 0.3). Plot (c¢) shows the same juxtaposition, but the mix-
ture is derived from a different weighting w = (0.80, 0.15, 0.05).
The plots demonstrate that even in the simple example with fixed
parameters the skewness and form of the mixed distribution can
vary strongly.
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inputs
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Figure 4. Illustration of a mixture density network. The core idea is to use the outputs of a neural network to determine the mixture weights
and parameters of a mixture of densities (see Fig. 3). That is, for a given input, the network determines a conditional density function, which
it builds by mixing a set of predefined base densities (the so-called components).

work receives new inputs (i.e., in our case for every time
step). We thus obtain time-varying predictive distributions
that can approximate a large variety of distributions (they
can, for example, account for asymmetric and multimodal
properties). The resulting model is trained by maximizing the
log-likelihood function of the observations according to the
predicted mixture distributions. We view MDNs as intrinsi-
cally distributional in the sense that they provide probability
distributions instead of first making deterministic streamflow
estimates and then appending a sampling distribution.
In this study, we tested three different MDN approaches.

1. Gaussian mixture models (GMMs) are MDNs with
Gaussian mixture components. Appendix B1 provides a
more formal definition as well as details on the loss/ob-
jective function.

2. Countable mixtures of asymmetric Laplacians (CMAL)
are similar to GMMs, but instead of Gaussians, the
mixture components are asymmetric Laplacian distribu-
tions (ALDs). This allows for an intrinsic representation
of the asymmetric uncertainties that often occur with
hydrological variables like streamflow. Appendix B2
provides a more formal description as well as details
on the loss/objective function.

3. Uncountable  mixtures of asymmetric Lapla-
cians (UMAL) also use asymmetric Laplacians as
mixture components, but the mixture is not discretized.
Instead, UMAL approximates the conditional density
by using Monte Carlo integration over distributions
obtained from quantile regression (Brando et al., 2019).
Appendix B3 provides a more formal description as
well as details on the loss/objective function.
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One can read this enumeration as a transition from sim-
ple to complex: we start with Gaussian mixture components,
then replace them with ALD mixture components, and lastly
transition from a fixed number of mixture components to an
implicit approximation. There are two reasons why we ar-
gue that the more complex MDN methods might be more
promising than a simple GMM. First, error distributions in
hydrologic simulations often have heavy tails. A Laplacian
component lends itself to thicker-tailed uncertainty (Fig. 5).
Second, streamflow uncertainty is often asymmetrical, and
thus the ALD component could make more sense than a sym-
metric distribution in this application. For example, even a
single ALD component can be used to account for zero flows
(compare Fig. 5b). UMAL extends this to avoid having to
pre-specify the number of mixture components, which re-
moves one of the more subjective degrees of freedom from
the model design.

2.3.2 Monte Carlo dropout

MCD provides an approach to estimate a basic form of epis-
temic uncertainty. In the following we provide the intuition
behind its application.

Dropout is a regularization technique for neural networks
but can also be used for uncertainty estimation (Gal and
Ghahramani, 2016). Dropout randomly ignores specific net-
work units (see Fig. 6). Hence, each time the model is eval-
uated during training, the network structure is different. Re-
peating this procedure many times results in an ensemble of
many submodels within the network. Dropout regularization
is used during training, while during the model evaluation the
whole neural network is used. Gal and Ghahramani (2016)

https://doi.org/10.5194/hess-26-1673-2022



D. Klotz et al.: Uncertainty estimation with deep learning for rainfall-runoff simulation 1679

Examples for different components
(a) Laplace and Gaussian distributions with same variance

1.00 -

higher density

0.75 - \

0.50 -

thicker tails

025~

0.00 -
—5.0 25 0.0 2.5 5.0

(b) Different ALDs with same variance
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Figure 5. Characterization of distributions that are used as mixture
components in our networks. Plot (a) superimposes a Gaussian with
a Laplacian distribution. The latter is sharper around its center, but
this sharpness is traded with thicker tails. We can think about it in
the following way: the difference in area is moved to the center and
the tails of the distributions. Plot (b) illustrates how the asymmetric
Laplacian distribution (ALD) can accommodate for differences in
skewness (via an additional parameter).

showed that dropout can be used as a sampling technique for
Bayesian inference — hence the name Monte Carlo dropout.

2.3.3 Model setup

All models are based on the LSTMs from Kratzert et al.
(2021). We configured them so that they use meteorological
variables as input and predict the corresponding streamflow.
This implies that all presented results are from simulation
models sensu Beven and Young (2013); i.e., no previous dis-
charge observations were used as inputs. The LSTM in the
context of hydrology is inter alia described in Kratzert et al.
(2018) and is not repeated here. However, all models can be
adapted to a forecasting setting.

In short, our setting was the following. Each model takes
a set of meteorological inputs (namely, precipitation, so-
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components (O)

Figure 6. Schematic depiction of the dropout concept.

lar radiation, minimum and maximum daily temperature,
and vapor pressure) from a set of products (namely, NL-
DAS, Maurer, and DayMet). As in our previous studies,
a set of static attributes is concatenated to the inputs (see
Kratzert et al., 2019b). The training period is from 1 Oc-
tober 1980 to 30 September 1990. The validation period is
from 1 October 1990 to 30 September 1995. Finally, the test
period is from 1 October 1995 to 1 September 2005. This
means that we use around 365 x 10 = 3650 training points
from 531 catchments (equating to a total of 531 x 3650 =
1938 150 observations for training).

For all MDNs we introduced an additional hidden layer
to provide more flexibility and adapted the network as re-
quired (see Appendix B). We trained all MDNss with the log-
likelihood and the MCD as in Kratzert et al. (2021), except
that the loss was the mean squared error (as proposed by
Gal and Ghahramani, 2016). All hyperparameters were se-
lected on the basis of the training data, so that they provide
the smallest average deviation from the 1 : 1 line of the prob-
ability plot for each model. For GMMs this resulted in 10
components and for CMAL in 3 components (Appendix A).

To make the benchmarking procedure work at the most
general level, we employed the setup depicted in Fig. 7. This
allows for each approach, with the ability to generate sam-
ples, to be plugged into the framework (as evidenced by
the inclusion of MCD). For each basin and time step the
models either predict the streamflow directly (MCD) or pro-
vide a distribution over the streamflow (GMM, CMAL, and
UMAL). In the latter case, we then sampled from the distri-
bution to get 7500 sample points for each data point. Since
the distributions have infinite support, sampled values below
zero cubic meter per day are possible. In this case, we trun-
cated the distribution by setting the sample to 0. All in all,
this resulted in 531 x 3650 x 7500 simulation points for each
model and metric. Exaggerating a little bit, we could say that
we actually deal with “multi-point” predictions here.
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Figure 7. Schemata of the general setup. Vertically the procedure is illustrated for two arbitrary basins, m and n, and horizontally the
corresponding time steps are depicted. In total we have 531 basins with approximately 3650 data points in time each, and for each time
step we compute 7500 samples. In the case of MCD we achieve this by directly sampling from the model. In the case of the MDNs we first
estimate a conditional distribution and then sample from it. The “clipping” sign emphasizes our choice to set samples that would be below

zero back to the zero-runoff baseline.

2.4 Post hoc model examination: checking model
behavior

We performed a post hoc model examination as a comple-
ment to the benchmarking to avoid potential blind spots. The
analysis has three parts, each one associated with a specific
property.

1. Accuracy: how accurate are single-point predictions ob-
tained from the distributional predictions?

2. Internal consistency: how are the mixture components
used with regard to flow conditions?

3. Estimation quality: how can we examine the properties
of the distributional predictions with regard to second-
order uncertainties?

2.4.1 Accuracy: single-point predictions

To address accuracy, we used standard performance met-
rics applied to single-point predictions (such as the Nash—
Sutcliffe efficiency, NSE, and the Kling—Gupta efficiency,
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KGE; Table 2). The term single-point predictions is used
here in the statistical sense of a point estimator to distin-
guish it from distributional predictions. Single-point predic-
tions were derived as the mean of the distributional predic-
tions at each time step and evaluated for aggregating over
the different basins, using the mean and median as aggre-
gation operators (as in Kratzert et al., 2019b). Section 3.2.1
discusses the outcomes of this test as part of the post hoc
model examination.

2.4.2 Internal consistency: mixture component
behavior

To get an impression of the model consistency, we looked at
the behavioral properties of the mixture densities themselves.
The goal was to get some qualitative understanding about
how the mixture components are used in different situations.
As a prototypical example of this kind of examination, we
refer to the study of Ellefsen et al. (2019). It examined how
LSTMs use the mixture weights to predict the future within
a simple game setting. Similarly, Nearing et al. (2020a) re-
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Table 2. Overview of the different single-point prediction performance metrics. The table is adapted from Kratzert et al. (2021).

Single-point  Description Reference

metric

NSE Nash-Sutcliffe efficiency Eq. (3) in Nash and Sutcliffe (1970)
KGE Kling—Gupta efficiency Eq. (9) in Gupta et al. (2009)
Pearson’s r Pearson correlation between observed and simulated flow

«-NSE Ratio of standard deviations of observed and simulated flow From Eq. (4) in Gupta et al. (2009)
B-NSE Ratio of the means of observed and simulated flow From Eq. (10) in Gupta et al. (2009)
FHV Top 2 % peak flow bias Eq. (A3) in Yilmaz et al. (2008)
FLV Bottom 30 % low-flow bias Eq. (A4) in Yilmaz et al. (2008)
FMS Bias of the slope of the flow duration curve between the 20 % and 80 % percentiles  Eq. (A2) in Yilmaz et al. (2008)

Peak timing

Mean peak time lag (in days) between observed and simulated peaks

Appendix D in Kratzert et al. (2021)

ported that a GMM produced probabilities that change in re-
sponse to different flow regimes. We conducted the same ex-
ploratory experiment with the best-performing benchmarked
approach.

2.4.3 Estimation quality: second-order uncertainty

MDNss allow a quality check of the given distributional pre-
dictions. The basic idea here is that predicted distributions
are estimations themselves. MDNSs provide an estimation of
the aleatoric uncertainty in the data, and the MCD is a ba-
sic estimation of the epistemic uncertainty. Thus, the esti-
mations of the uncertainties are not the uncertainties them-
selves, but — as the name suggests — estimations thereof,
and they are thus subject to uncertainties themselves. This
does, of course, hold for all forms of uncertainty estimates,
not just for MDNs. However, MDNs provide us with single-
point predictions of the distribution parameters and mixture
weights. We can therefore assess the uncertainty of the es-
timated mixture components by checking how perturbations
(e.g., in the form of input noise) influence the distributional
predictions. This can be important in practice. For example,
if we mistrust a given input — let us say because the event was
rarely observed so far or because we suspect some form of er-
rors — we can use a second-order check to obtain qualitative
understanding of the goodness of the estimate.

Concretely, we examined how a second-order effect on
the estimated uncertainty can be checked with the MCD ap-
proach (which provides estimations for some form of epis-
temic uncertainties), as it can be layered on top of the MDN
approaches (which provide estimations of the aleatoric un-
certainties). This means that the Gaussian process interpre-
tation by Gal and Ghahramani (2016) cannot be strictly ap-
plied. We can nonetheless use the MCD as a perturbation
method, since it still forces the model to learn an internal en-
semble.
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3 Results
3.1 Benchmarking results

The probability plots for each model are shown in Fig. 8.
The approaches that used mixture densities performed better
than MCD, and among all of them, the ones that used asym-
metric components (CMAL and UMAL) performed better
than GMM. CMAL has the best performance overall. All
methods, except UMAL, tend to give estimates above the 1 :
1 line for thresholds lower than 0.5 (the median). This means
that the models were generally under-confident in low-flow
situations. GMM was the only approach that showed this
type of under-confidence throughout all flow regimes — in
other words, GMM was above the 1:1 line everywhere.
The largest under-confidence occurred for MCD in the mid-
flow range (between the 0.3 and 0.6 quantile thresholds). For
higher flow volumes, both UMAL and MCD underestimated
the uncertainty. Overall, CMAL was close to the 1 : 1 line.

Figure 9 shows how the deviations from the 1 : 1 line var-
ied for each basin within each threshold of the probabil-
ity plot. That is, each subplot shows a specific threshold,
and each density resulted from the distributions of devia-
tions from the 1 : 1 line that the different basins exhibit. The
distributions for 0.4 to 0.6 flow quantiles were roughly the
same across methods; however, the distributions from CMAL
and UMAL were better centered than GMM and MCD. At
the outer bounds, a bias was induced due to evaluating in
probability space: it is more difficult to be over-confident as
the thresholds get lower, and vice versa it is more difficult
to be under-confident as the thresholds become higher. At
higher thresholds, UMAL had a larger tendency to fall be-
low the center line, which is also visible in the probability
plot. Again, this is a consequence of the over-confident pre-
dictions from the UMAL approach for larger flow volumes
(MCD also exhibited the same pattern of over-confidence for
the highest threshold).

Lastly, Table 3 shows the results of the resolution bench-
mark. In general, UMAL and MCD provide the sharpest dis-
tributions. This goes along with over-confident narrow distri-
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Table 3. Benchmark statistics for model precision. These metrics were applied to the distributional predictions at individual time steps. The
lowest metric per row is marked in bold. Lower values are better for all statistics (conditional on the model having high reliability). This table
also provides statistics of the empirical distribution from the observations (“Obs”) aggregated over the basins as a reference, which are not
directly comparable with the model statistics since “Obs” represents an unconditional density, while the models provide a conditional one.
The “Obs” statistics should be used as a reference to contextualize the statistics from the modeled distributions.

Benchmarking metric GMM CMAL UMAL MCD ‘ Obs
Mean absolute deviation 0.52 0.48 042  0.39 0.77
Standard deviation 0.69 0.63 0.00*  0.38 2.85
Variance 2.73 2.64 0.00* 048 | 12.78
Average of the 0.2 to 0.9 quantiles 0.18 0.17 0.14  0.13 041
Distance between the 0.25 and 0.75 quantiles ~ 0.71 0.68 0.67 0.51 1.38
Distance between the 0.1 and 0.9 quantiles 2.00 1.90 1.72 1.26 5.32

* The displayed 0 is a rounding artifact. The actual variance here is higher than 0. The “collapse” is, by and large, a result of
a very narrow distribution combined with a heavy truncation for values below 0.

Reliability benchmark

(a) Probability plot (aggregation over time steps and basins)
10-

09-

. & o o ©°©
S T "
' ' ' ' '

relative count below threshold
o

(b) Deviation plot

deviaton from 1:1 line

'
0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1.0

threshold

method: -~ CMAL -~ GMM -~ MCD =-@- UMAL

Figure 8. Probability plot benchmark results for the 10-year test
period over 531 basins in the continental US. Subplot (a) shows the
probability plots for the four methods. The 1: 1 line is shown in
grey and indicates perfect probability estimates. Subplot (b) details
deviations from the 1 : 1 line to allow for easier interpretation.
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butions that both approaches exhibit for high flow volumes.
These, having the largest uncertainties, also influence the av-
erage resolution the most. The other two approaches, GMM
and CMAL, provide lower resolution (less sharp distribu-
tions). In the case of GMMs, the low resolution is reflected in
under-confidently wide distributions in the probability plot.
Notably, the predictions of CMAL are in between those of
the over-confident UMAL and the under-confident GMM.
This makes sense from a methodological viewpoint since we
designed CMAL as an “intermediate step” between the two
approaches. Moreover, these results reflect a trade-off in the
log-likelihood (which the models are trained for), where a
balance between reliability and resolution has to be obtained
in order to minimize the loss.

3.2 Post hoc model examination
3.2.1 Accuracy

Table 4 shows accuracy metrics of single-point predictions,
i.e., the means of the distributional predictions aggregated
over time steps and basins. It depicts the means and medians
of each metric across all 531 basins. The approach labeled
MCDp reports the statistics from the MCD model but with-
out sampling (i.e., from the full model). The model perfor-
mances are not entirely comparable with each other, since the
architecture and hyperparameters of the MCD model were
chosen with regard to the probability plot. We therefore also
compare against a model with the same hyper-parameters as
Kratzert et al. (2019b) — the latter model is labeled LSTMp in
Table 4.

Among the uncertainty estimation approaches, the models
with asymmetric mixture components (CMAL and UMAL)
perform best. UMAL provided the best point estimates. This
is in line with the high resolutions of the uncertainty esti-
mation benchmark: the sharpness makes the mean a better
predictor of the likelihood’s maximum and indicates again
that the approach trades reliability for accuracy. That said,
even with our naive approach for obtaining single-point es-
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Reliability benchmark: basin—wise deviation evaluation
Basin—wise deviations from the 1:1 line for the different probability plot thresholds
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Figure 9. Kernel densities of the basin-wise deviation from the 1:1 line in the probability plot for the different inner quantiles. These
distributions result from evaluating the performance at each basin individually (rather than aggregating over basins). Note how the bounded
domain of the probability plot induces a bias for the outer thresholds as the deviations cannot expand beyond the [0, 1] interval.

timations (i.e., simply taking the mean), both CMAL and
UMAL manage to outperform the model that is optimized
for single-point predictions with regard to some metrics. This
suggests that it could make sense to train a model to esti-
mate distributions and then recover the best estimates. One
possible reason why this might be the case is that single-
point loss functions (e.g., MSE) define an implicit probabil-
ity distribution (e.g., minimizing an MSE loss is equivalent
to maximizing a Gaussian likelihood with fixed variance).
Hence, using a more nuanced loss function (i.e., one that is
the likelihood of a multimodal, asymmetrical, heterogeneous
distribution) can improve performance even for the purpose
of making non-distributional estimates. In fact, it is reason-
able to expect that the results of the MDN approaches can be
improved even further by using a more sophisticated strat-
egy for obtaining single-point predictions (e.g., searching for
the maximum of the likelihood). The single-point prediction
LSTM (LSTMp) outperforms the ALD-based MDNs for tail
metrics of the streamflow — that is, for the low (FLV) and
high bias (FHV). These are regimes where we would expect
the most asymmetric distributions for hydrological reasons,
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and hence the means of the asymmetric distributions might
be a sub-optimal choice.

3.2.2 Internal consistency

Figure 10 summarizes the behavioral patterns of the CMAL
mixture components. It depicts an exemplary hydrograph su-
perimposed on the CMAL uncertainty prediction together
with the corresponding mixture component weights. The
mixture weights always sum to 1. This figure shows that
the model seemingly learns to use different mixture com-
ponents for different parts of the hydrograph. In particular,
distributional predictions in low-flow periods (perhaps dom-
inated by base flow) are largely controlled by the first mix-
ture component (as can be seen by the behavior of mixture o
in Fig. 10). Falling limbs of the hydrograph (corresponding
roughly to throughflow) are associated with the second mix-
ture component («p), which is low for both rising limbs and
low-flow periods. The third component («3) mainly controls
the rising limbs and the peak runoff but also has some influ-
ence throughout the rest of the hydrograph. In effect, CMAL
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Table 4. Evaluation of different single-point prediction metrics. Best performance is marked in bold. Information about the inter-basin
variability (dispersion) is provided in the form of the standard deviation whenever the mean is used for aggregation and in the form of the

distance to the 25 % and 75 % quantiles when the median is used for aggregation.

Aggregation GMM CMAL UMAL MCD ‘ MCDp LSTMp

: +0.062 +0.052 +0.056 +0.062 +0.061 +0.059

NSE'  Median 0.744 10052 0.7841 0052 079110050 0762005 076310006 07620 0o

NSE? Mean 0.690+0.198 0.7354+0.170 0.749 +£0.162 0.646 +0.557 0.675+0.384 0.683+0.216

b : +0.077 +0.083 +0.074 +0.092 +0.087 +0.063

KGE®  Median 072840978 074810004 0.785% ) 00s 07301 13 07371 5 07911053

KGEP Mean 0.685+0.172 0.714 +£0.169 0.745+0.159 0.5254+0.888 0.622 +0.426 0.710+0.210

: +0.033 +0.027 +0.026 +0.029 —+0.029 +0.029

COR®  Median 0880103 0.9011)04 090310039 08901047 08901000 089110047

COR® Mean 0.857+0.086 0.876 +0.082 0.880 +0.077 0.866 +0.098 0.865+0.100 0.871 +£0.088

d : +0.121 +0.116 +0.097 +0.109 +0.108 +0.098

@-NSEY  Median 0.8161 13, 08201 104 0.863 ) 0og 0.877F ) os 0.8801 ) 107 0952+ )07

-NSE4  Mean 0.822 +0.206 0.828 £0.189 0.858 £0.169 0.893 +£0.243 0.900 £ 0.245 0.976 = 0.200

: +0.038 +0.036 +0.031 +0.053 +0.039 +0.041

B-NSE®  Median 0.006 )33 —0.013703% —0.0277003) 0.061% 0% 0054103 0.0271)045

B-NSE®  Mean 0.004 +0.094 —0.011£0.077 —0.030£0.073 0.095+0.211 0.065+0.122 0.011+0.099
: +12.502 +11.653 +9.205 +10.940 +10.955 +9.484

FHVE  Median 1732277587 —17.16475% 122431528 —11.3461 000 | —11.343T 0050 —4.2777 8

FHVE Mean —16.324£21.376  —15.140£18.737 —12.705+15.491 —8.641+24.455 | —8.744+24.456 —1.084+19.692
: +27.672 +28.754 +27.816 +31.087 +76.145 +56.768

FLVeh Median 28.561 s 28.442_32%% 27.954_%‘} i 43.8301% 45 —65.762_43%8%9 —4.864_£?§‘8(1) :

FMS"  Median —7.34618;% —5.443;(7);%(22 1 —2.508182 3 —20.768_38:%3 4| - 17.039F 14263 —8.650" 12088

P-T"  Median 030810733 03331015 028670175 0.286701%) 02867075 0.286"0 106

P-T! Mean 0.464 +0.405 0.4554+0.392 0.412+0.356 0.427 +£0.395 0.425+0.388 0.405 +0.356

4 Nash-Sutcliffe efficiency (—oo, 1]; values closer to 1 are desirable. b Kling-Gupta efficiency (—oo, 1]; values closer to 1 are desirable. © Pearson correlation [—1, 1]; values closer to 1 are desirable.

d 4.NSE decomposition (0, 0o); values close to 1 are desirable. ¢ 8-NSE decomposition (—oo, 00); values close to 0 are desirable. f Top 2 % peak flow bias (—oo, 00); values close to 0 are desirable.
230 % low flow bias (—o0, 0o); values close to 0 are desirable. Since a strong bias is induced by a small subset of basins, we provide the median aggregation. ! Bias of the FDC mid-segment

slope: (—o00, 00); values close to 0 are desirable. Since a strong bias is induced by a small subset of basins, we provide the median aggregation. i peak timing, i.e., lag of peak timing (—o0, 00); values
close to 0 are desirable.

Predictions and weight behavior
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Figure 10. (a) Hydrograph of an exemplary event in the test period with both the 5 % to 95 % and 25 % to 75 % quantile ranges. (b) The
weights (¢;) of the CMAL mixture components for these predictions.

Hydrol. Earth Syst. Sci., 26, 1673-1693, 2022 https://doi.org/10.5194/hess-26-1673-2022



D. Klotz et al.:

Uncertainty estimation with deep learning for rainfall-runoff simulation

Illustration of second-order uncertainties for a chosen event
Hydrograph with first-order uncertainty from CMAL (basin no. 01022500)
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Figure 11. Illustration of second-order uncertainties estimated by using MCD to sample the parameters of the CMAL approach. The upper
subplot shows an observed hydrograph and predictive distributions as estimated by CMAL. The lower subplots show the CMAL distributions
and distributions from 25 MCD samples of the CMAL model at three selected time steps (indicated by black ovals shown on the hydrograph).
The abbreviation “main pred” marks the unperturbed distributional predictions from the CMAL model.

learns to separate the hydrograph into three parts — rising
limb, falling limb, and low flows — which correspond to the
standard hydrological conceptualization. No explicit knowl-
edge of this particular hydrological conceptualization is pro-
vided to the model — it is solely trained to maximize overall
likelihood.

3.2.3 Estimation quality

In this experiment we want to demonstrate an avenue for
studying higher-order uncertainties with CMAL. Intuitively,
the distributional predictions are estimations themselves and
are thus subject to uncertainty, and, since the distributional
predictions do already provide estimates for the prediction
uncertainty, we can think about the uncertainty regarding pa-

https://doi.org/10.5194/hess-26-1673-2022

rameters and weights of the components as a second-order
uncertainty. In theory even higher-order uncertainties can be
thought of. Here, as already described in the Methods sec-
tion, we use MCD on top of the CMAL approach to “stochas-
ticize” the weights and parameters and expose the uncer-
tainty of the estimations. Figure 11 illustrates the procedure:
the upper part shows a hydrograph with the 25 %—75 % quan-
tiles and 5 %—95 % quantiles from CMAL. This is the main
prediction. The lower plots show kernel density estimates for
particular points of the hydrograph (marked in the upper part
with black ovals labeled “a”, “b”, and “c” and shown in red
in the lower subplots). These three specific points represent
different portions of the hydrograph with different predicted
distributional shapes and are thus well suited to showcasing
the technique. These kernel densities (in red) are superim-
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posed with 25 sampled estimations derived after applying
MCD on top of the CMAL model (shown in lighter tones be-
hind the first-order estimate). These densities are the MCD-
perturbed estimations and thus a gauge for how second-order
uncertainties influence the distributional predictions.

3.3 Computational demand

This section gives an overview of the computational demand
required to compute the different uncertainty estimations.
All of the reported execution times were obtained by us-
ing NVIDIA P100 (16 GB RAM), using the Pytorch library
(Paszke et al., 2019). A single execution of the CMAL model
with a batch size of 256 takes 0.026‘_"8:8% s (here, and in the
following, the basis gives the median over 100 model runs;
the index and the exponent show the deviations of the 10 %
quantile and the 90 % quantile, respectively). An execution
of the MCD model takes 0.0Sngjggf s. The slower execution
time of the MCD approach here is explained by its larger hid-
den size. It used 500 hidden cells, in comparison with the 250
hidden cells of CMAL (see Appendix A).

Generating all the needed samples for the evaluation
with MCD and a batch size of 256 would take approxi-
mately 36.1d (since 7500 samples have to be generated for
531 basins and 10 years at a daily resolution). In practice, we
could shorten this time to under a week by using consider-
ably larger batch sizes and distributing the computations for
different basins over multiple GPUs. In comparison, comput-
ing the same number of samples by re-executing the CMAL
model would take around 17.4 d. In practice, however, only
a single run of the CMAL model is needed, since MDNs
provide us with a density estimate from which we can di-
rectly sample in a parallel fashion (and without needing to
re-execute the model run). Thus, the CMAL model, with a
batch size of 256, takes only ~ 14h to generate all needed
samples.

4 Conclusions and outlook

Our basic benchmarking scheme allowed us to systemati-
cally pursue our primary objective — to examine deep learn-
ing baselines for uncertainty predictions. In this regard, we
gathered further evidence that deep-learning-based uncer-
tainty estimation for rainfall-runoff modeling is a promising
research avenue. The explored approaches are able to provide
fully distributional predictions for each basin and time step.
All predictions are dynamic: the model adapts them accord-
ing to the properties of each basin and the current dynamic
inputs, e.g., temperature or rainfall. Since the predictions are
inherently distributional, the predictions can be further ex-
amined and/or reduced to a more basic form, e.g., sample,
interval, or point predictions.

The comparative assessment indicated that the MCD ap-
proach provided the worst uncertainty estimates. One reason
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for this is likely the Gaussian assumption of the uncertainty
estimates, which seems inadequate for many low- and high-
flow situations. There is, however, also a more nuanced as-
pect to consider: the MDN approaches estimate the aleatoric
uncertainty. MCD, on the other hand, estimates epistemic un-
certainty, or rather a particular form thereof. The method-
ological comparison is therefore only partially fair. In gen-
eral, these two uncertainty types can be seen as perpendicular
to each other. They do partially co-appear in our setup, since
both the epistemic and aleatoric uncertainties are largest for
high flow volumes.

Yet within the chosen setup it was observable that the
methods that use inherently asymmetric distributions as com-
ponents outperformed the other ones. That is, CMAL and
UMAL performed better than MCD and GMM in terms of
reliability, resolution, and the accuracy of the derived single-
point predictions. The CMAL approach in particular gave
distributional predictions that were very good in terms of
reliability and sharpness (and single-point estimates). There
was a direct link between the predicted probabilities and hy-
drologic behavior in that different distributions were acti-
vated (i.e., got larger mixture weights) for rising vs. falling
limbs. Nevertheless, likelihood-based approaches (for esti-
mating the aleatoric uncertainty) are prone to giving over-
confident predictions. We were not able to diagnose this em-
pirically. This might rather be a result of the limits of the
inquiry than the non-existence of the phenomenon.

These limits illustrate how challenging benchmarking is.
Rainfall-runoff modeling is a complex endeavor. Unifying
the diverse approaches into a streamlined framework is dif-
ficult. Realistically, a single research group cannot be able
to compare the best possible implementations of the many
existing uncertainty estimation schemes — which include ap-
proaches such as sampling distributions, ensembles, post-
processors, and so forth. We did therefore not only want to
examine some baseline models, but also to provide the skele-
ton for a community-minded benchmarking scheme (see
Nearing et al., 2018). We hope this will encourage good prac-
tice and provide a foundation for others to build on. As de-
tailed in the Methods section, the scheme consists of four
parts. Three of them are core benchmarking components and
one is an added model checking step. In the following we
provide our main observations regarding each point.

i. Data: we used the CAMELS dataset curated by the
US National Center for Atmospheric Research and split
the data into three consecutive periods (training, valida-
tion, and test). All reported metrics are for the test split,
which has only been used for the final model evalua-
tion. The dataset has already seen use for other compar-
ative studies and purposes (e.g., Kratzert et al., 2019b, b;
Newman et al., 2017). It is also part of a recent gen-
eration of open datasets, which we believe are the re-
sult of a growing enthusiasm for community efforts. As
such, we predict that new benchmarking possibilities
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will become available in the near future. A downside
with using existing open datasets is that the test data
are accessible to modelers. This means that a potential
defense mechanism against over-fitting on the test data
is missing (since the test data might be used during the
model selection/fitting process; for broader discussions
we refer to Donoho, 2017; Makridakis et al., 2020; De-
hghani et al., 2021). To enable rigorous benchmarking,
it might thus become relevant to withhold parts of the
data and only make them publicly available after some
given time (as for example done in Makridakis et al.,
2020).

ii. Metrics: we put forward a minimal set of diagnostic cri-
teria, that is, a discrete probability plot, obtained from
a probability integral transform, for checking predic-
tion reliability, and a set of dispersion metrics to check
the prediction resolution (see Renard et al., 2010). Us-
ing these, we could see the proposed baselines exhaust
the evaluation capacity of these diagnostic tools. On
the one hand, this is an encouraging sign for our abil-
ity to make reliable hydrologic predictions (the down-
side being that it might be hard for models to improve
on this metric going forward). On the other hand, it
is important to be aware that the probability plot and
the dispersion statistic miss several important aspects of
probabilistic prediction (for example, precision, consis-
tency, or event-specific properties). All reported metrics
are highly aggregated summaries (over multiple basins
and time steps) of highly nonlinear relationships (see
also Muller, 2018; Thomas and Uminsky, 2020). This is
compounded by the inherent noise of the data. We there-
fore expect that many nuanced aspects are missed by the
comparative assessment. In consequence, we hope that
future efforts will derive more powerful metrics, tests,
and probing procedures — akin to the continuous devel-
opment of diagnostics for single-point predictions (see
Nearing et al., 2018).

iii. Baselines: we examined four deep-learning-based ap-
proaches. One is based on Monte Carlo dropout and
three on mixture density networks. We used them to
demonstrate the benchmarking scheme and showed its
comparative power. This should however only be seen
as a starting point. We predict that stronger baselines
will emerge in tandem with stronger metrics. From
our perspective, there is plenty of room to build bet-
ter ones. A perhaps self-evident example of the po-
tential of improvements is ensembles: Kratzert et al.
(2019b) showed the benefit of LSTM ensembles for
single-point predictions, and we assume that similar ap-
proaches could be developed for uncertainty estimation.
We are therefore sure that future research will yield
improved approaches and move us closer to achieving
holistic diagnostic tools for the evaluation of uncertainty
estimations (sensu Nearing and Gupta, 2015).
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iv. Model checking: in the post hoc examination step we
tested the model performance with regard to point pre-
dictions. Remarkably, the results indicate that the dis-
tributional predictions are not only reliable and precise,
but also yield strong single-point estimates. Addition-
ally, we checked for internal organization principles of
the CMAL model. In doing so we showed (a) how the
component weighting of a given basin changes in de-
pendence on the flow regime and (b) how higher-order
uncertainties in the form of perturbations of the compo-
nent weights and parameters change the distributional
prediction. The showcased behavior is in accordance
with basic hydrological intuition. Specific components
are used for low and high streamflow. The uncertainty
is lowest near 0 and increases with a rise in streamflow.
This relationship is nonlinear and not a simple 1 : 1 de-
piction. Similarly, additional uncertainties are expected
to change the characteristics of the distributional pre-
diction more for high flows than for low flows. By and
large, however, this just a start. We argue that post hoc
examination will play a central role in future bench-
marking efforts.

To summarize, the presented results are promising.
Viewed through the lens of community-based benchmark-
ing, we expect progress on multiple fronts: better data, better
models, better baselines, better metrics, and better analyses.
To road to get there still has many challenges awaiting. Let
us overcome them together.

Appendix A: Hyperparameter search and training
Al General setup

Table A provides the general setup for the hyperparameter
search and model training.

A2 Noise regularization

Adding noise to the data during training can be viewed as
a form of data augmentation and regularization that biases
towards smooth functions. These are large topics in them-
selves, and at this stage we refer to Rothfuss et al. (2019)
for an investigation on the theoretical properties of noise
regularization and some empirical demonstrations. In short,
plain maximum likelihood estimation can lead to strong
over-fitting (resulting in a spiky distribution that generalizes
poorly beyond the training data). Training with noise regular-
ization results in smoother density estimates that are closer to
the true conditional density.

Following these findings, we also add noise as a smooth-
ness regularization for our experiments. Concretely, we de-
cided to use a relative additive noise as a first-order approx-
imation to the sort of noise contamination we expect in hy-
drological time series. The operation for regularization is
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Table A1. Overview of the general benchmarking setup.

GMM

CMAL

UMAL

MCD

Training period
Validation period
Test period

Training loss
CAMELS attributes
Input products
Regularization: noise

1 Oct 1980-30 Sep 1990
1 Oct 1990-30 Sep 1995
1 Oct 1995-30 Sep 2005
Negative log-likelihood
Yes

DayMet, Maurer, NLDAS
Yes

1 Oct 1980-30 Sep 1990
1 Oct 1990-30 Sep 1995
1 Oct 1995-30 Sep 2005
Negative log-likelihood
Yes

DayMet, Maurer, NLDAS
Yes

1 Oct 1980-30 Sep 1990
1 Oct 1990-30 Sep 1995
1 Oct 1995-30 Sep 2005
Negative log-likelihood
Yes

DayMet, Maurer, NLDAS
Yes

1 Oct 1980-30 Sep 1990
1 Oct 1990-30 Sep 1995
1 Oct 1995-30 Sep 2005
MSE

Yes

DayMet, Maurer, NLDAS
Yes

Regularization: dropout  Yes Yes Yes Yes
Sampling space for t NA NA NA (0.01, 0.99)
Gradient clipping Yes Yes No Yes
NA stands for not available.
A4 Results

Z*=Z+ZN(070—)’

where z is a placeholder variable for either the dynamic or
static input variables or the observed runoff (and, as be-
fore, the time index is omitted for the sake of simplicity),
N(0,0) denotes a Gaussian noise term with mean zero
and a standard deviation o, and z, is the obtained noise-
contaminated variable.

A3 Search

To provide a meaningful comparison, we conducted a hyper-
parameter search for each of the four conditional density esti-
mators. A hyperparameter search is an extended search (usu-
ally computationally intensive) for the best pre-configuration
of a machine learning model.

In our case we searched over the combination of six dif-
ferent hyperparameters (see Table A2). To balance between
computational resources and search depth, we took the fol-
lowing course of action:

— First, we informally searched for sensible general pre-
sets.

— Second, we trained the models for each combination
of the four hyperparameters “hidden size” (the num-
ber of cells in the LSTM; see Kratzert et al., 2019b),
“noise” (added relative noise of the output; see Ap-
pendix A2), “number of densities” (the number of den-
sity heads in the mixture (only needed of MDN and
CMAL), and “dropout rate” (the rate of dropout em-
ployed during training — and inference in the case of
MCD). We marked these in Table A2 with a white back-
ground.

— Third, we choose the best resulting model and refine the
found models by searching for the best settings for the
hyperparameters “batch size” (the number of samples
shown per back-propagation step) and “learning rate”
(the parameter for the update per batch).
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The results of the hyperparameter search are summarized in
Table A3.

Appendix B: Baselines
B1 Gaussian mixture model

Gaussian mixture models (GMMs; Bishop, 1994) are well
established for producing distributional predictions from a
single input. The principle of GMMs is to have a neural net-
work that predicts the parameters of a mixture of Gaussians
(i.e., the means, standard deviations, and weights) and to use
these mixtures as distributional output. GMM:s are a powerful
concept. They have seen usage for diverse applications such
as acoustics (Richmond et al., 2003), handwriting generation
(Graves, 2013), sketch generation (Ha and Eck, 2017), and
predictive control (Ha and Schmidhuber, 2018).

Given the rainfall-runoff modeling context, a GMM mod-
els the runoff ¢ € R at a given time step (subscript omitted
for the sake of simplicity) as a probability distribution p(-)
of the input x € R¥*T (where M indicates the number of de-
fined inputs, such as precipitation and temperature and 7' the
number of used time steps which are provided to the neural
network) as a mixture of K Gaussians:

K
P@x) = ax(®) - N (qlur(x). 0 (x)), (B1)
k=1

where oy are mixture weights with the property ok (x) > 0
and Y Kp—jap(x) =1 (convex sum), and N (ur(x), ox (X))
denotes a Gaussian with mean u; and standard deviation oy.
All three defining variables — i.e., the mixture weights, the
mixture means, and the mixture standard deviations — are set
by a neural network and are thus a function of the inputs x.

The negative logarithm of the likelihood between the train-
ing data and the estimated conditional distribution is used as
loss:
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Table A2. Search space of the hyperparameter search. The search is conducted in two steps: the variables used in the first step are shown in
the top part of the table, and the variables used in the second step are shown in the bottom part and are written in bold.

GMM CMAL UMAL MCD
Hidden size LSTM 250, 500, 750, 1000 250, 500, 750, 1000 250, 500, 750, 1000 250, 500, 750, 1000
Number of components 1,3,5,10 1,3,5,10 NA NA
Regularization: noise 0.05,0.1,0.2 0.05,0.1,0.2 0.05,0.1,0.2 0.05,0.1,0.2
Regularization: dropout 0.4,0.5 04,0.5 04,05 0.1,0.25,0.4,0.5,0.75
Batch size 128 256 128256 128256 128 256
Learning rate 0.0001, 0.0005, 0.001  0.0001, 0.0005, 0.001  0.0001, 0.0005, 0.001  0.0001, 0.0005, 0.001
NA stands for not available.
Table A3. Resulting parameterization from the hyperparameter
(1 —
search. Aip(glu.s. 1) =" (b .
GMM CMAL UMAL MCD . { expl—(g — ) - (t — 1)/s], 1£q <u, (B3)
(g — . >
Hidden size LSTM 250 250 250 500 expl=(g — ) 7/sl, na =
Number of components 10 3 NA NA . .

o . where 7 is the asymmetry parameter, 4 the location parame-
Regularization: noise 0.2 0.2 0.2 0.1 ds th ) wvelv. Usine the ALD
Regularization: dropout 0.4 0.5 05 0.75 ter, and s the scale parameter, respect.lve y. Using the as
Batch size 256 256 256 256 a component CMAL can be defined in analogy to the GMM:
Learning rate 0.001  0.0005 0.0005 0.001 K

NA stands for not available. P@x) =) ax(®) - A (qlux(¥), sk (x), (%)), (B4)
k=1
and the parameters and weights are estimated by a neural
network. Training is done by maximizing the negative log-
X likelihood of the training data from an estimated distribution:
L(gh) =—log| Y e (®)-N (qlux(¥),06(x)) | . (B2) & -
k=1

For the actual implementation, we used a softmax activation
function to obtain the mixture weights («) and an exponential
function as activation for variance (o) to guarantee that the
estimate is always above O (see Bishop, 1994)

B2 Countable mixture of asymmetric Laplacians

Countable mixtures of asymmetric Laplacian distributions,
for short CMAL, are another form of MDN where ALDs
are used as a kernel function. The abbreviation is a refer-
ence to UMAL since it serves as a natural intermediate stage
between GMM and UMAL - as will become clear in the re-
spective section. As far as we are aware, the use of ALDs for
quantile regression was proposed by Yu and Moyeed (2001),
and their application for MDNs was first proposed by Brando
et al. (2019). The components of CMAL already intrinsically
provide a measure for asymmetric distributions and are there-
fore inherently more expressive than GMMs. However, since
they also necessitate the estimation of more parameters, one
can expect that they are also more difficult to handle than
GMMs. The density for the ALD is

https://doi.org/10.5194/hess-26-1673-2022

K
L(g|x) = —log (Zak(X) - ALD (g1 1k (%), sk (X), Tk (X))> - (BS)
k=1

For the implementation of the network, we used a softmax
activation function to obtain the mixture weights («), a sig-
moid function to bind the asymmetry parameters (), and a
softplus activation function to guarantee that the scale (b) is
always above 0.

B3 Uncountable mixture of asymmetric Laplacians

Uncountable mixture of asymmetric Laplacians (UMAL;
Brando et al., 2019) expands upon the CMAL concept by let-
ting the model implicitly approximate the mixture of ALDs.
This is achieved (a) by sampling the asymmetry parameter t
and providing it as input to the model and the loss and (b) by
fixing the weights with oy = 1/K and (c) stochastically ap-
proximating the underlying distributions by summing up dif-
ferent realizations. Since the network only has to account for
the scale and the location parameter, considerably fewer pa-
rameters have to be estimated than for the GMM or CMAL.

In analogy to the CMAL model equations, these exten-
sions lead to the following equation for the conditional den-
sity:
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K

ALp (qlpr (X, Te) s sk (X, T0) L T) (B6)

1
pglx) = —
K k=1

where the asymmetry parameter t; is randomly sampled
k times to provide a Monte Carlo approximation to an im-
plicitly approximated distribution. After the training model-
ers can choose from how many discrete samples the learned
distribution is approximated. As with the other mixture den-
sity networks, the training is done by minimizing the neg-
ative log-likelihood of the training data from the estimated
distribution:

K
L(g[x) = —log (Z ALD (gl ke (X, Tk) Sk (X, Th) » Tk))

k=1
+ log(K). B7)

Implementation-wise we obtained the best results from
UMAL by binding the scale parameter (s;). We therefore
used a weighted sigmoid function as activation.

B4 Monte Carlo dropout

Monte Carlo dropout (MCD; Gal and Ghahramani, 2016) has
found widespread use and has already been used in a large
variety of applications (e.g., Zhu and Laptev, 2017; Kendall
and Gal, 2017; Smith and Gal, 2018). The MCD mechanism
can be expressed as

pglx) =N (ql*(x), 01), (BS)

where ©*(x) is the expectation over the sub-networks given
the dropout rate r, such that

1 M
W) =Eap) [ d. O]~ 2 ) f(X.dm,0),  (BY)
m=1

where d is a dropout mask sampled from a Bernoulli distribu-
tion B with rate r, dpy, is a particular realization of a dropout
mask, 6 are the network weights, and f(-) is the neural net-
work. Note that f(x,dn,, 6) is equivalent to a particular sub-
network of f.

MCD is trained by maximizing the expectancy, that is, by
minimizing the mean squared error. As such it is quite dif-
ferent from the MDN approaches. It provides an estimation
of the epistemic uncertainty and as such does not supply a
heterogeneous, multimodal estimate (it assumes a Gaussian
form). For evaluation studies of MCD in hydrological fields,
we refer to Fang et al. (2019), who investigated its usage in
the context of soil-moisture prediction. We also note that it
has been observed that MCD can underestimate the epistemic
uncertainty (e.g., Fort et al., 2019).

Code and data availability. We will make the code for
the experiments and data of all produced results avail-
able online. We trained all our machine learning mod-
els with the neuralhydrology Python library (https:
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//github.com/neuralhydrology/neuralhydrology; Kratzert, 2022).
The CAMELS dataset with static basin attributes is accessible at
https://ral.ucar.edu/solutions/products/camels (NCAR, 2022).
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