Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-867-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-867-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intensive landscape-scale remediation improves water quality of an alluvial gully located in a Great Barrier Reef catchment
Nicholas J. C. Doriean
Coastal and Marine Research Centre, Griffith University, Southport 4215, Queensland, Australia
William W. Bennett
Coastal and Marine Research Centre, Griffith University, Southport 4215, Queensland, Australia
John R. Spencer
Coastal and Marine Research Centre, Griffith University, Southport 4215, Queensland, Australia
Alexandra Garzon-Garcia
Department of Environment and Science, Queensland Government, Brisbane 4102, Queensland, Australia
Joanne M. Burton
Department of Environment and Science, Queensland Government, Brisbane 4102, Queensland, Australia
Peter R. Teasdale
UniSA STEM, Scarce Resources and Circular Economy (ScaRCE), University of South Australia, Adelaide 5000, South Australia, Australia
Future Industries Institute, University of South Australia, Adelaide 5000, South Australia, Australia
David T. Welsh
School of Environment and Science, Griffith University, Southport 4215, Queensland, Australia
Andrew P. Brooks
CORRESPONDING AUTHOR
Coastal and Marine Research Centre, Griffith University, Southport 4215, Queensland, Australia
Related authors
No articles found.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Cited articles
Ayele, G. K., Addisie, M. B., Langendoen, E. J., Tegegne, N. H., Tilahun, S. A., Moges, M. A., Nicholson, C. F., and Steenhuis, T. S.: Evaluating erosion control practices in an actively gullying watershed in the highlands of Ethiopia, Earth Surf. Proc. Land., 43, 2835–2843, https://doi.org/10.1002/esp.4436,
2018.
Bartley, R., Bainbridge, Z. T., Lewis, S. E., Kroon, F. J., Wilkinson, S. N., Brodie, J. E., and Silburn, D. M.:. Relating sediment impacts on coral reefs to watershed sources, processes and management: a review, Sci. Total Environ., 468, 1138–1153, 2014.
Bartley, R., Hawdon, A., Henderson, A., Wilkinson, S., Goodwin, N., Abbott, B., and Telfer, D.: Quantifying the effectiveness of gully remediation on
off-site water quality: preliminary results from demonstration sites in the
Burdekin catchment, NESP Project 2, no. 4, Report to the National Environmental Science Programme, Reef and Rainforest Research Centre Limited, Cairns, 76 pp., 2017.
Bartley, R., Thompson, C., Croke, J., Pietsch, T., Baker, B., Hughes, K., and Kinsey-Henderson, A.: Insights into the history and timing of post-European land use disturbance on sedimentation rates in catchments draining to the Great Barrier Reef, Mar. Pol. Bult., 131, 530–546, 2018.
Bartley, R., Poesen, J., Wilkinson, S., and Vanmaercke, M.: A review of the
magnitude and response times for sediment yield reductions following the
rehabilitation of gullied landscapes. Earth Surf. Proc. Land., 45,
3250–3279, 2020.
BOM: Climate data online, Australian Bureau of Meteorology, available at:
http://www.bom.gov.au/climate/data/ (last access: 22 February 2021), 2020.
Brodie, J., Kroon, F., Schaffelke, B., Wolanski, E., Lewis, S., Devlin, M.,
and Davis, A.: Terrestrial pollutant runoff to the Great Barrier Reef: an update of issues, priorities and management responses, Mar. Pol. Bult., 65,
81–100, 2012.
Brooks, A., Shellberg, J., Knight, J., and Spencer, J.. Alluvial gully erosion: an example from the Mitchell fluvial megafan, Queensland, Australia, Earth Surf. Proc. Land., 34, 1951–1969, 2009.
Brooks, A., Spencer, J., Olley, J., Pietsch, T., Borombovits, D., Curwen, G., and Simon, A.: An empirically-based sediment budget for the Normanby Basin:
sediment sources, sinks, and drivers on the Cape York Savannah, Griffith
University, 506 pp., available at:
https://www.researchgate.net/publication/258337838_An_Empirically-Based_Sediment_Budget_for_the_Normanby_Basin_Sediment_Sources_Sinks_and_Drivers_on_the_Cape_York_Savannah
(last access: 22 February 2021), 2013.
Brooks, A., Borombovits, D., Spencer, J., Pietsch, T., and Olley, J.: Measured hillslope erosion rates in the wet-dry tropics of Cape York, northern Australia Part 1: A low cost sediment trap for measuring hillslope
erosion in remote areas – Trap design and evaluation, Catena, 122, 42–53, 2014a.
Brooks, A., Spencer, J., Borombovits, D., Pietsch, T., and Olley, J.: Measured hillslope erosion rates in the wet-dry tropics of Cape York, northern Australia: Part 2, RUSLE-based modeling significantly over-predicts
hillslope sediment production, Catena, 122, 1–17, 2014b.
Brooks, A., Curwen, G., and Spencer, J.: A framework for prioritising gully
management in the Normanby Basin Cape York, Cape York Water Quality, available at: https://capeyorknrm.com.au/node/478 (last access: 22 February 2021), 2015.
Brooks, A., Spencer, J., Curwen, G, Shellberg, J., Garzon-Garcia, A, Burton,
J., and Iwashita, F.: Reducing sediment sources to the Reef: Managing alluvial gully erosion. Report to the National Environmental Science Programme, Reef and Rainforest Research Centre Limited, Cairns, 375 pp., 2016a.
Brooks, A., Spencer, J., and Thwaites, R.: Progress Report as part of Cape
York NRM Reef Trust 2 Gully Rehabilitation Project, Griffith University,
Centre for Coastal Management, available at: https://www.researchgate.net/publication/335988826_Progress_Report_as_part_of_Cape_York_NRM_Reef_Trust_2_Gully_Rehabilitation_Project_Crocodile_Gap_Gully_Rehabilitation_Site_Treatment_Design_Report
(last access: 22 February 2021), 2016b.
Brooks, A. P., Doriean, N. J. C., Goddard, M., Hingham, W., Spencer, J.,
Thwaites, R., and Zund, P.: Gully mitigation field guide, Cape York Natural Resource Management, available at: http://www.capeyorknrm.com.au/node/365 (last access: 22 February 2021), 2018.
Brooks, A. P., Stout, J. C., Daley, J. S., Curwen, G., Spencer, J., Hasan, S., Thwaites, R., Smart, J. C. R., Pietsch, T., Dale, G., and Lucas, R.:
Gully Rehabilitation Prioritisation in the Bowen and Bogie Catchments;
Summary Report, Precision Erosion & Sediment Management Research Group,
Griffith University, Griffith, 2020a.
Brooks, A. P., Spencer, J., Doriean, N. J. C., Thwaites, R., Garzon-Garcia, A., Hasan, S., Daley, J., Burton, J., and Zund, P.: NESP Project 3.1.7 Final Report: Effectiveness of Alluvial Gully Remediation in Great Barrier Reef Catchments. Report to the National Environmental Science Program, Reef and Rainforest Research Centre Limited, Cairns, 205 pp., 2020b.
Carey, B., Stone, B., Shilton, P., and Norman, P.: Chapter 13 Gully erosion
and its control, Soil Conservation Guidelines for Queensland, 3rd Edn.,
Queensland Department of Science, Information Technology and Innovation,
available at: https://publications.qld.gov.au/dataset (last access: 22 February 2021), 2015.
Casalí, J., Giménez, R., and Bennett, S.: Gully erosion processes:
monitoring and modelling, Earth Surf. Proc. Land., 34, 1839–1840, 2009.
Castillo, C. and Gómez, J.: A century of gully erosion research: Urgency, complexity and study approaches, Earth-Sci. Rev., 160, 300–319, 2016.
CYNRM.: Crocodile Gully Monitoring Site 2.3, Cape York Natrual Resources
Management, Atherton, Queensland, Australia, available at:
https://www.youtube.com/watch?v=dCbV1BggnKI (last access: 22 February 2021), 2017.
Dagnew, D. C., Guzman, C. D., Zegeye, A. D., Tibebu, T. Y., Getaneh, M., Abate, S., Zemale, F. A., Ayana, E. K., Tilahun, S. A., and Steenhuis, T. S.: Impact of conservation practices on runoff and soil loss in the sub-humid Ethiopian Highlands: the Debre Mawi watershed, J. Hydrol. Hydromech., 63, 210–219, https://doi.org/10.1515/johh-2015-0021, 2015.
DNRME: Queensland Department of Natural Resources, Mines and Energy Water
monitoring information Portal, Queensland Government, Australia, available at: https://water-monitoring.information.qld.gov.au/ (last access: 22 February 2021), 2019.
Doriean, N. J., Teasdale, P. R., Welsh, D. T., Brooks, A. P., and Bennett, W. W.: Evaluation of a simple, inexpensive, in situ sampler for measuring time-weighted average concentrations of suspended sediment in rivers and
streams, Hydrol. Process., 33, 678–686, 2019.
Doriean, N. J., Teasdale, P. R., Welsh, D. T., Brooks, A. P., and Bennett, W. W.: Suspended sediment monitoring in alluvial gullies: a laboratory and field evaluation of available measurement techniques, Hydrol. Process., https://doi.org/10.1002/hyp.13824, in press, 2020.
Dunkerley, D. and Brown, K.: Flow behaviour, suspended sediment transport
and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream, Hydrol. Process., 13, 1577–1588, 1999.
Edwards, T. K., Glysson, G. D., Guy, H. P., and Norman, V. W.: Field methods
for measurement of fluvial sediment, US Geological Survey, Denver, CO, 1999.
Fabricius, K., De'ath, G., McCook, L., Turak, E., and Williams, D. M.: Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef, Mar. Pollut. Bull., 51, 384–398, https://doi.org/10.1016/j.marpolbul.2004.10.0, 2005.
GA: The Innovative Gully Remediation Project: Communique Three, Greening
Australia, Queensland, Australia, available at:
https://www.greeningaustralia.org.au/projects/rebuilding-eroding-land-2/ (last access: 22 February 2021), 2019.
Garzon-Garcia, A., Olley, J. M., and Bunn, S. E.: Controls on carbon and
nitrogen export in an eroding catchment of south-eastern Queensland, Australia, Hydrol. Process., 29, 739–751, 2015.
Garzon-Garcia, A., Laceby, J. P., Olley, J. M., and Bunn, S. E.: Differentiating the sources of fine sediment, organic matter and nitrogen in
a subtropical Australian catchment, Sci. Total Environ., 575, 1384–1394, https://doi.org/10.1016/j.scitotenv.2016.09.219, 2016a.
Garzon-Garcia, A., Burton, J., Brooks, A. P.: Bioavailable nutrients and organics in alluvial gully sediment, Queensland Department of Science, Information Technology and Innovation, Queensland, Australia, 2016b.
Garzon-Garcia, A., Burton, J., Ellis, R., Askildsen, M., Finn, L., Moody, P., and DeHayr, R.: Sediment particle size and contribution of eroded soils to dissolved inorganic nitrogen export in Great Barrier Reef catchments, Department of Environment and Science, Queensland Government, Australia, Brisbane, 2018a.
Garzon-Garcia, A., Burton, J., Franklin, H., Moody, P., De Hayr, R. W., and Burford, M.: Indicators of phytoplankton response to particulate nutrient
bioavailability in fresh and marine waters of the Great Barrier Reef, Sci.
Total Environ., 636, 1416–1427, 2018b.
Garzon-Garcia, A., Bunn, S. E., Olley, J. M., and Oudyn, F.: Labile carbon
limits in-stream mineralization in a subtropical headwater catchment affected by gully and channel erosion. J. Soils Sediments, 18, 648–659, 2018c.
Geoscience Australia: Australian Federal Government, available at:
http://maps.ga.gov.au/interactive-maps/#/theme/minerals/map/geology (last access: 22 February 2021), 2019.
Gray, J. R., Glysson, G. D., Turcios, L. M., and Schwarz, G. E.: Comparability of suspended-sediment concentration and total suspended solids data, Water-Resources Investigations Report 00-4191, US Geological Survey, Reston, Virginia, USA, 1–14, 2000.
Hevia, J. N., de Araujo, J. C., Manso, J. M.: Assessment of 80 years of
ancient-badlands restoration in Saldana, Spain, Earth Surf. Proc. Land., 39, 1563–1575, https://doi.org/10.1002/esp.3541, 2014.
Horowitz, A. J.: Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes, Sci. Total Envrion., 400, 315–343, 2008.
Howley, C., Devlin, M., and Burford, M.: Assessment of water quality from the Normanby River catchment to coastal flood plumes on the northern Great Barrier Reef, Australia, Mar. Freshwater Res., 69, 859–873, 2018.
Kroon, F. J., Thorburn, P., Schaffelke, B., and Whitten, S.: Towards protecting the Great Barrier Reef from land-based pollution, Global Change
Biol., 22, 1985–2002, 2016.
Liu, D. and She, D.: Sodicity effects on hydrological processes of sodic soil slopes under simulated rainfall, Hydrol. Process., 31, 981–994, 2017.
Lloyd, C., Johnes, P., Freer, J., Carswell, A., Jones, J., Stirling, M., and
Collins, A.: Determining the sources of nutrient flux to water in headwater
catchments: Examining the speciation balance to inform the targeting of
mitigation measures, Sci. Total Environ., 648, 1179–1200, 2019.
Malmon, D. V., Dunne, T., and Reneau, S. L.: Stochastic theory of particle trajectories through alluvial valley floors, J. Geol., 111, 525–542, 2002.
Malmon, D. V., Reneau, S. L., Katzman, D., Lavine, A., and Lyman, J.: Suspended sediment transport in an ephemeral stream following wildfire, J. Geophys. Res.-Earth, 112, F02006, https://doi.org/10.1029/2005JF000459, 2007.
Mathys, N., Brochot, S., Meunier, M., and Richard, D.: Erosion quantification in the small marly experimental catchments of Draix (Alpes de Haute Provence,
France), Calibration of the ETC rainfall–runoff–erosion model, Catena, 50, 527–548, https://doi.org/10.1016/S0341-8162(02)00122-4, 2003.
McCloskey, G. and Waters, D.: Modelling Pollutant Load Changes Due to Improved Management Practices in the Great Barrier Reef Catchments: Updated
Methodology and Results, Technical Report for Reef Report Card 2015, Department of Natural Resources and Mines, Queensland, Australia, 2017.
Nichols, M. H., Polyakov, V. O., Nearing, M. A., Hernandez, M.: Semiarid watershed response to low-tech porous rock check dams, Soil Sci., 181, 275–282, https://doi.org/10.1097/ss.0000000000000160, 2016.
Nistor, C. J. and Church, M.: Suspended sediment transport regime in a debris-flow gully on Vancouver Island, British Columbia, Hydrol. Process., 19, 861–885, 2005.
Nyssen, J., Veyret-Picot, M., Poesen, J., Moeyersons, J., Haile, M., Deckers, J., and Govers, G.: The effectiveness of loose rock check dams for gully control in Tigray, northern Ethiopia, Soil Use Manage., 20, 55–64, https://doi.org/10.1111/j.1475-2743.2004.tb00337.x, 2004.
Olley, J., Brooks, A., Spencer, J., Pietsch, T., Borombovits, D.: Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia, J. Environ. Radioact. 124, 121–129, 2013.
Poesen, J.: Challenges in gully erosion research, Landform Anal., 17, 5–9, 2011.
Polyakov, V. O., Nichols, M. H., McClaran, M. P., and Nearing, M. A.: Effect of check dams on runoff, sediment yield, and retention on small semiarid watersheds, J. Soil Water Conserv., 69, 414–421, https://doi.org/10.2489/jswc.69.5.414, 2014.
Prosser, I. P. and Slade, C. J.: Gully formation and the role of valley-floor vegetation, southeastern Australia, Geology, 22, 1127–1130, 1994.
Rasmussen, P. P., Gray, J. R., Glysson, G. D., Ziegler, A. C.: Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data, US geological survey techniques and methods, US geological survey, 2009.
Rustomji, P., Zhang, X. P., Hairsine, P. B., Zhang, L., and Zhao, J.: River sediment load and concentration responses to changes in hydrology and catchment management in the Loess Plateau region of China, Water Resour. Res., 44, W00A04, https://doi.org/10.1029/2007WR006656, 2008.
Shellberg, J., Spencer, J., Brooks, A., and Pietsch, T.: Degradation of the
Mitchell River fluvial megafan by alluvial gully erosion increased by post-European land use change, Queensland, Australia, Geomorphology, 266,
105–120, 2016.
Shellberg, J. G., Brooks, A. P., and Rose, C. W.: Sediment production and yield from an alluvial gully in northern Queensland, Australia, Earth Surf.
Proc. Land., 38, 1765–1778, 2013.
Sottolichio, A., Hurther, D., Gratiot, N., and Bretel, P.: Acoustic turbulence measurements of near-bed suspended sediment dynamics in highly
turbid waters of a macrotidal estuary, Cont. Shelf Res., 31, S36–S49, 2011.
Vercruysse, K., Grabowski, R. C., and Rickson, R.: Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation,
Earth-Sci. Rev., 166, 38–52, https://doi.org/10.1016/j.earscirev.2016.12.016, 2017.
Walling, D. E. and Collins, A. L.: Fine sediment transport and management,
in: River Science: Research and Management for the 21st Century, Wiley, London, 37–60, 2016.
Wang, Y., Fu, B., Chen, L., Lü, Y., and Gao, Y.: Check dam in the Loess Plateau of China: engineering for environmental services and food security,
Environ. Sci. Technol., 45, 10298–10299, https://doi.org/10.1021/es2038992, 2011.
Waterhouse, J., Burton, J., Garzon-Garcia, A., Lewis, S., Brodie, J., Bainbridge, Z., Robson, B., Burford, M., Gruber, R., and Dougall, C.: Synthesis of knowledge and concepts – Bioavailable Nutrients: Sources, delivery and impacts in the Great Barrier Reef, July 2018, Supporting Concept Paper for the Bioavailable Nutrients Workshop, 15 March 2018, Supported by the Office of the Great Barrier Reef's Queensland Reef Water Quality Program, and the Australian Government National Environmental Science Program Tropical Water Quality Hub, Reef and Rainforest Research Centre on behalf of the Australian Government's National Environmental Science Program (NESP) Tropical Water Quality (TWQ) Hub and the State of Queensland, 84 pp., 2018.
Wei, Y., He, Z., Li, Y., Jiao, J., Zhao, G., and Mu, X.: Sediment yield deduction from check–dams deposition in the weathered sandstone watershed on the North Loess Plateau, China, Land Degrad. Dev., 28, 217–231, https://doi.org/10.1002/ldr.2628, 2017.
Wilkinson, S., Olley, J., Furuichi, T., Burton, J., and Kinsey-Henderson, A.: Sediment source tracing with stratified sampling and weightings based on
spatial gradients in soil erosion, J. Soils Sediments, 15, 2038–2051, 2015a.
Wilkinson, S., Bartley, R., Hairsine, P., Bui, E., Gregory, L., and Henderson, A.: Managing gully erosion as an efficient approach to improving
water quality in the Great Barrier Reef lagoon. Report to the Department of
the Environment (Reef Program), Australian Federal Government, CSIRO Publishing, Collingwood, Victoria, Australia, 2015b.
Wilkinson, S. N., Hancock, G. J., Bartley, R., Hawdon, A. A., and Keen, R. J.: Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia, Agr. Ecosyst. Environ., 180, 90–102, 2013.
Wilkinson, S. N., Kinsey-Henderson, A. E., Hawdon, A. A., Hairsine, P. B.,
Bartley, R., and Baker, B.: Grazing impacts on gully dynamics indicate approaches for gully erosion control in northeast Australia, Earth Surf. Proc. Land., 43, 1711–1725, 2018.
Short summary
Gully erosion is a major contributor to suspended sediment and associated nutrient pollution (e.g. gullies generate approximately 40 % of the sediment pollution impacting the Great Barrier Reef). This study used a new method of monitoring to demonstrate how large-scale earthworks used to remediated large gullies (i.e. eroding landforms > 1 ha) can drastically improve the water quality of connected waterways and, thus, protect vulnerable ecosystems in downstream-receiving waters.
Gully erosion is a major contributor to suspended sediment and associated nutrient pollution...