Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6223-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6223-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulating sediment discharge at water treatment plants under different land use scenarios using cascade modelling with an expert-based erosion-runoff model and a deep neural network
Normandie UNIV, UNIROUEN, UNICAEN, CNRS, M2C, FED-SCALE, Rouen, France
Valentin Landemaine
BRGM, 3 avenue Claude Guillemin, BP6009, 45060 Orléans CEDEX 2,
France
Jérôme Ledun
AREAS, 2 avenue Foch, 76460 Saint-Valéry-en-Caux, France
Arnaud Soulignac
BRGM, 1039 rue de Pinville, 34000 Montpellier, France
Matthieu Fournier
CORRESPONDING AUTHOR
Normandie UNIV, UNIROUEN, UNICAEN, CNRS, M2C, FED-SCALE, Rouen, France
Jean-François Ouvry
AREAS, 2 avenue Foch, 76460 Saint-Valéry-en-Caux, France
Olivier Cerdan
BRGM, 3 avenue Claude Guillemin, BP6009, 45060 Orléans CEDEX 2,
France
Benoit Laignel
Normandie UNIV, UNIROUEN, UNICAEN, CNRS, M2C, FED-SCALE, Rouen, France
Related authors
No articles found.
Sivarama Krishna Reddy Chidepudi, Nicolas Massei, Abderrahim Jardani, Bastien Dieppois, Abel Henriot, and Matthieu Fournier
Hydrol. Earth Syst. Sci., 29, 841–861, https://doi.org/10.5194/hess-29-841-2025, https://doi.org/10.5194/hess-29-841-2025, 2025
Short summary
Short summary
This study explores how deep learning can improve our understanding of groundwater levels, using an approach that combines climate data and physical characteristics of aquifers. By focusing on different types of groundwater levels and employing techniques like clustering and wavelet transform, the study highlights the importance of targeting relevant information. This research not only advances groundwater simulation but also emphasizes the benefits of different modelling approaches.
Marc Auriol Amalaman, Gil Mahé, Béh Ibrahim Diomande, Armand Zamblé Tra Bi, Nathalie Rouché, Zeineddine Nouaceur, and Benoit Laignel
Proc. IAHS, 385, 365–370, https://doi.org/10.5194/piahs-385-365-2024, https://doi.org/10.5194/piahs-385-365-2024, 2024
Short summary
Short summary
L’objectif de ce travail est d’analyser les liens entre les indices climatiques et la variabilité des séries de précipitations et de débits. La méthode a consisté à rechercher les changements survenus dans ces données à travers la variabilité du signal. Ainsi, au niveau de l’analyse interannuelle et saisonnière, le signal indique une forte oscillation marquée par une prédominance de la couleur rouge. L’utilisation de l’indice ENSO montre que le phénomène El-Niño impacte le débit et la pluie.
Lisa Baulon, Nicolas Massei, Delphine Allier, Matthieu Fournier, and Hélène Bessiere
Hydrol. Earth Syst. Sci., 26, 2829–2854, https://doi.org/10.5194/hess-26-2829-2022, https://doi.org/10.5194/hess-26-2829-2022, 2022
Short summary
Short summary
Aquifers often act as low-pass filters, dampening high-frequency (intra-annual) and amplifying low-frequency (LFV, multi-annual to multidecadal) variabilities originating from climate variability. By processing groundwater level signals, we show the key role of LFV in the occurrence of groundwater extremes (GWEs). Results highlight how changes in LFV may impact future GWEs as well as the importance of correct representation of LFV in general circulation model outputs for GWE projection.
Manuel Fossa, Bastien Dieppois, Nicolas Massei, Matthieu Fournier, Benoit Laignel, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 25, 5683–5702, https://doi.org/10.5194/hess-25-5683-2021, https://doi.org/10.5194/hess-25-5683-2021, 2021
Short summary
Short summary
Hydro-climate observations (such as precipitation, temperature, and river discharge time series) reveal very complex behavior inherited from complex interactions among the physical processes that drive hydro-climate viability. This study shows how even small perturbations of a physical process can have large consequences on some others. Those interactions vary spatially, thus showing the importance of both temporal and spatial dimensions in better understanding hydro-climate variability.
Olivier Evrard, Caroline Chartin, J. Patrick Laceby, Yuichi Onda, Yoshifumi Wakiyama, Atsushi Nakao, Olivier Cerdan, Hugo Lepage, Hugo Jaegler, Rosalie Vandromme, Irène Lefèvre, and Philippe Bonté
Earth Syst. Sci. Data, 13, 2555–2560, https://doi.org/10.5194/essd-13-2555-2021, https://doi.org/10.5194/essd-13-2555-2021, 2021
Short summary
Short summary
This dataset provides an original compilation of radioactive dose rates and artificial radionuclide activities in sediment deposited after floods in the rivers draining the main radioactive pollution plume in Fukushuma, Japan, between November
2011 and November 2020. In total, 782 sediment samples collected from 27 to 71 locations during 16 fieldwork campaigns were analysed. This provides a unique post-accidental dataset to better understand the environmental fate of radionuclides.
Imen Turki, Lisa Baulon, Nicolas Massei, Benoit Laignel, Stéphane Costa, Matthieu Fournier, and Olivier Maquaire
Nat. Hazards Earth Syst. Sci., 20, 3225–3243, https://doi.org/10.5194/nhess-20-3225-2020, https://doi.org/10.5194/nhess-20-3225-2020, 2020
Short summary
Short summary
We examine the variability of storm surges along the English Channel coasts and their connection with the global atmospheric circulation at the interannual and interdecadal timescales using hybrid approaches combining wavelet techniques and probabilistic
generalized extreme value models. Our hypothesis is that the physical mechanisms of the atmospheric circulation change according to the timescales and their connection with the local variability improve the prediction of the extreme surges.
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Manuel Fossa, Marie Nicolle, Nicolas Massei, Matthieu Fournier, and Benoit Laignel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-395, https://doi.org/10.5194/hess-2016-395, 2016
Manuscript not accepted for further review
Short summary
Short summary
Links between river's discharge and large scale atmospheric and ocean physical processes has long been established by numerous studies. It is critical to identify those links for each river and map the rivers that share the same links. This study introduces a new method that allows classification of France rivers discharge variability according to 4 atmospheric processes that influence them and at 3 different time scales.
J. Patrick Laceby, Caroline Chartin, Olivier Evrard, Yuichi Onda, Laurent Garcia-Sanchez, and Olivier Cerdan
Hydrol. Earth Syst. Sci., 20, 2467–2482, https://doi.org/10.5194/hess-20-2467-2016, https://doi.org/10.5194/hess-20-2467-2016, 2016
Short summary
Short summary
Characterizing rainfall erosivity in the Fukushima fallout-impacted region is important for predicting radiocesium behavior. The majority of rainfall (60 %) and rainfall erosivity (86 %) occurs between June and October. Tropical cyclones contribute 22 % of the precipitation though 44 % of the rainfall erosivity. Understanding the rainfall regime and the influence of tropical cyclones is important managing radiocesium transfers in contaminated catchments in the Fukushima prefecture.
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Estimating response times, flow velocities, and roughness coefficients of Canadian Prairie basins
Learning landscape features from streamflow with autoencoders
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Projections of streamflow intermittence under climate change in European drying river networks
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Extended range forecasting of stream water temperature with deep learning models
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Analyzing the generalization capabilities of hybrid hydrological models for extrapolation to extreme events
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: An analysis based on 63 catchments in southeast China
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric-hydrological model
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Scale-dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025, https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Short summary
Improving the accuracy of flood forecasts is paramount to minimising flood damage. Machine learning (ML) models are increasingly being applied for flood forecasting. Such models are typically trained on large historic hydrometeorological datasets. In this work, we evaluate methods for selecting training datasets that maximise the spatio-temporal diversity of the represented hydrological processes. Empirical results showcase the importance of hydrological diversity in training ML models.
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025, https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms claims raised by historians that the eastward diversion project of the Tone River in Japan was conducted 4 centuries ago to increase low flows and subsequent travelling possibilities surrounding the capital, Edo (Tokyo), using inland navigation. We showed that great steps forward can be made for improving quality of life with small human engineering waterworks and small interventions in the regime of natural flows.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025, https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Short summary
Water budget non-closure is a widespread phenomenon among multisource datasets which undermines the robustness of hydrological inferences. This study proposes a Multisource Dataset Correction Framework grounded in Physical Hydrological Process Modelling to enhance water budget closure, termed PHPM-MDCF. We examined the efficiency and robustness of the framework using the CAMELS dataset and achieved an average reduction of 49 % in total water budget residuals across 475 CONUS basins.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025, https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small catchments compared to large catchments, and spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show effects. The results can improve estimations of probabilities of extreme floods.
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025, https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary
Short summary
Our study introduces a new method to improve flood forecasting by combining soil moisture and streamflow data using an advanced data assimilation technique. By integrating field and reanalysis soil moisture data and assimilating this with streamflow measurements, we aim to enhance the accuracy of flood predictions. This approach reduces the accumulation of past errors in the initial conditions at the start of the forecast, helping to better prepare for and respond to floods.
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025, https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Short summary
To increase the predictive power of hydrological models, it is necessary to improve their consistency, i.e. their physical realism, which is measured by the ability of the model to reproduce observed system dynamics. Using a model to represent the dynamics of water and nitrate and dissolved organic carbon concentrations in an agricultural catchment, we showed that using solute-concentration data for calibration is useful to improve the hydrological consistency of the model.
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025, https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
Short summary
The influence of watershed disturbances has proved challenging to disentangle from natural streamflow variability. This study evaluates the influence of time-varying hydrologic controls on rainfall–runoff in undisturbed and wildfire-disturbed watersheds using a novel time-series event separation method. Across watersheds, water year type and season influenced rainfall–runoff patterns. Accounting for these controls enabled clearer isolation of wildfire effects.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024, https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological model, integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024, https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. We investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analyses indicate that adding two vegetation parameters is enough to improve the representation of evaporation and that the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-3355, https://doi.org/10.5194/egusphere-2024-3355, 2024
Short summary
Short summary
Long Short-Term Memory (LSTM) networks have demonstrated state-of-the-art performance for rainfall-runoff hydrological modeling. However, most studies focus on daily-scale predictions, limiting the benefits of sub-daily (e.g. hourly) predictions in applications like flood forecasting. In this study, we introduce a new architecture, multi-frequency LSTM (MF-LSTM), designed to use input of various temporal frequencies to produce sub-daily (e.g. hourly) predictions at a moderate computational cost.
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-272, https://doi.org/10.5194/hess-2024-272, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study projects how climate change will affect drying of river segments and stream networks in Europe, using advanced modeling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent, intense and start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists in evaluating the ecological health of river ecosystem.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-221, https://doi.org/10.5194/hess-2024-221, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Hydrological droughts affect ecosystems and socioeconomic activities worldwide. Despite they are commonly described with the Standardized Streamflow Index (SSI), there is limited understanding of what it truly reflects in terms of water cycle processes. Here, we used state-of-the-art hydrological models in Andean basins to examine drivers of SSI fluctuations. The results highlight the importance of careful selection of indices and time scales for accurate drought characterization and monitoring.
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2591, https://doi.org/10.5194/egusphere-2024-2591, 2024
Short summary
Short summary
We generate operational forecasts of daily maximum stream water temperature for the next month at 54 stations in Switzerland with our best performing data-driven model. The average forecast error is 0.38 °C for 1 day ahead and increases to 0.90 °C for 1 month ahead given the uncertainty in the meteorological variables influencing water temperature. Here we compare the skill of several models, how well they can forecast at new and ungauged stations, and the importance of different model inputs.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Eduardo Acuna Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2024-2147, https://doi.org/10.5194/egusphere-2024-2147, 2024
Short summary
Short summary
Data-driven techniques have shown the potential to outperform process-based models in rainfall-runoff simulations. Hybrid models, combining both approaches, aim to enhance accuracy and maintain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions we test their generalization capabilities for extreme hydrological events.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1438, https://doi.org/10.5194/egusphere-2024-1438, 2024
Short summary
Short summary
Common intuition holds that higher input data resolution leads to better results. To assess the benefits of high-resolution data, we conducted simulation experiments using data with various temporal resolutions across multiple catchments, and found that higher resolution data does not always improve model performance, challenging the necessity of pursuing such data. In catchments with small areas or significant flow variability, high-resolution data is more valuable.
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-1464, https://doi.org/10.5194/egusphere-2024-1464, 2024
Short summary
Short summary
Our study conducted a detailed analysis of runoff component and future trend in the Yarlung Tsangpo River basin owing to the existed differences in the published results, and find that the contributions of snowmelt and glacier melt runoff to streamflow were limited, both for ~5 % which were much lower than previous results. The streamflow there will continuously increase in the future, but the overestimated contribution from glacier melt would lead to an underestimation on such increasing trend.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart Lane, and Francesco Comiti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1687, https://doi.org/10.5194/egusphere-2024-1687, 2024
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until an overparametrization limit is reached.
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-136, https://doi.org/10.5194/hess-2024-136, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
In mountainous areas, the relationship between slope and annual hydrological processes is pronounced. However, at lower elevations, this relationship is weak in steeper watersheds. In addition, urbanization leads to an increase in annual surface runoff in all watersheds, especially in steep-slope watersheds. Flatter watersheds exhibit a buffering capacity against urbanization. However, this buffering capacity is diminishing as annual rainfall intensity increases.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, available at: https://www.tensorflow.org/ (last access: 1 September 2020), 2016.
Appels, W. M., Bogaart, P. W., and van der Zee, S. E. A. T. M.: Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity, Adv. Water Resour., 34, 303–313, https://doi.org/10.1016/j.advwatres.2010.12.003, 2011.
AREAS: Fascines & Haies pour réduire les effets du ruissellement
érosif, Caractérisation de l'efficacité et conditions d'utilisation, p. 68, available at: https://www.areas-asso.fr/images/expe autres/efficacite_haies_fascines_AREAS_68p.pdf (last access: 1 September 2020), 2012.
ARS: Bilan 2013 de la qualité des eaux destinées à la consommation humaine et la protection des captages en Seine-Maritime, available at:
https://www.normandie.ars.sante.fr/sites/default/files/2017-03/bilan_76_qualite_eau_2013.pdf
(last access: 1 September 2020), 2013.
Baartman, J. E. M., Nunes, J. P., Masselink, R., Darboux, F., Bielders, C.,
Degre, A., Cantreul, V., Cerdan, O., Grangeon, T., Fiener, P., Wilken, F.,
Schindewolf, M., and Wainwright, J.: What do models tell us about water and
sediment connectivity?, Geomorphology, 367, 107300, https://doi.org/10.1016/j.geomorph.2020.107300, 2020.
Bai, Y., Chen, Z., Xie, J., and Li, C.: Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models, J. Hydrol., 532, 193–206, 2016.
Carreau, J., Neppel, L., Arnaud, P., and Cantet, P.: Extreme rainfall analysis at ungauged sites in the south of France: Comparison of three approaches, Journal de la Société Française de Statistique, 154, 119–138, 2013.
Cerdan, O., Souchère, V., Lecomte, V., Couturier, A., and Le Bissonnais, Y.: Incorporating soil surface crusting processes in an expert-based runoff
model: Sealing and transfer by runoff and erosion related to agricultural
management, Catena, 46, 189–205, https://doi.org/10.1016/S0341-8162(01)00166-7, 2001.
Cerdan, O., Le Bissonnais, Y., Souchère, V., Martin, P., and Lecomte, V.:
Sediment concentration in interrill flow : interactions between soil surface
conditions, vegetation and rainfall, Earth Surf. Proc. Land., 27, 193–205, https://doi.org/10.1002/esp.314, 2002a.
Cerdan, O., Le Bissonnais, Y., Couturier, A., and Saby, N.: Modelling interrill erosion in small cultivated catchments, Hydrol. Process., 3226, 3215–3226, https://doi.org/10.1002/hyp.1098, 2002b.
Chédeville, S.: Etude de la variabilité du fonctionnement hydro-sédimentaire des karsts de l'Ouest du Bassin de Paris à partir
de la comparaison des remplissages sédimentaires karstiques anciens,
actuels et du signal turbide des eaux souterraines, Thèse de doctorat,
Université de Rouen-Normandie, France, p. 458, 2015.
Chollet, F.: Keras, available at: https://github.com/fchollet/keras (last access: 1 September 2020), 2015.
Cochrane, C.: Time Series Nested Cross-Validation, available at: https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9,
last access: 10 November 2021.
Delmas, M., Pak, L. T., Cerdan, O., Souchère, V., Le Bissonnais, Y.,
Couturier, A., and Sorel, L.: Erosion and sediment budget across scale: a case study in a catchment of the European loess belt, J. Hydrol., 420, 255–263, https://doi.org/10.1016/j.jhydrol.2011.12.008, 2012.
De Michele, C. and Avanzi, F.: Superstatistical distribution of daily
precipitation extremes: A worldwide assessment, Scient. Rep., 8, 14204,
https://doi.org/10.1038/s41598-018-31838-z, 2018.
De Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., and Boix-Fayos, C.: Predicting soil erosion and sediment yield at regional scales: Where do we stand?, Earth-Sci. Rev., 127, 16–29, https://doi.org/10.1016/j.earscirev.2013.08.014, 2013.
Evrard, O., Bielders, L. C., Vandaele, K., and van Wesemael, B.: Spatial and
temporal variation of muddy floods in central Belgium, off-site impacts and
potential control measures, Catena, 70, 443–454, https://doi.org/10.1016/j.catena.2006.11.011, 2007.
Evrard, O., Nord, G., Cerdan, O., Souchère, V., Le Bissonnais, Y., and
Bonté, P.: Modelling the impact of land use change and rainfall seasonality on sediment export from an agricultural catchment of the
northwestern European loess belt, Agr. Ecosyst. Environ., 138, 83–94, https://doi.org/10.1016/j.agee.2010.04.003, 2010.
Fournier, M., Mouhri, A., Ratajczak, M., Rossi, A., Slimani, S., and Mesquita, J.: Fonctionnement hydrogéologique de l'aquifère de Caumont et incidence des aménagements de bassin versant sur la qualité des eaux du forage des Varras, available at:
https://www.unicaen.fr/m2c/IMG/pdf/rapportsersaep.pdf?262/447a7b605f6dbc8a8df025b439812a0bc73d39bf
(last access: 1 September 2020), 2008.
Frankl, A., Prêtre, V., Nyssen, J., and Salvador, P.-G.: The success of recent land management efforts to reduce soil erosion in northern France, Geomorphology, 303, 84–93, https://doi.org/10.1016/j.geomorph.2017.11.018, 2018.
Geman, S., Bienenstock, E., and Doursat, R.: Neural networks and the
bias/variance dilemma, Neural Comput., 4, 1–58, 1992.
Gilleland, E. and Katz, R. W.: extRemes 2.0: An extreme Value Analysis Package in R, J. Stat. Softw., 72, 1–39, https://doi.org/10.18637/jss.v072.i08, 2016.
Gilley, J. E., Kottwitz, E. R., and Wieman, G. A.: Roughness coefficients for
selected residue materials, J. Irrig. Drain. Eng., 117, 503–514, 1991.
Hafeez, S., Sing Wong, M., Chak Ho, H., Nazeer, M., Nichol, J., Abbas, S.,
Tang, D., Ho Lee, K., and Pun, L.: Comparison of machine learning algorithms for retrieval of water quality indicators in case-II waters: a case study of
Hong-Kong, Remote Sens., 11, 617, https://doi.org/10.3390/rs11060617, 2019.
Hanin, G.: Contrôles structural et hydrogéologique sur la dynamique
d'un champ captant en contexte crayeux karstique et sa sensibilité aux
variations du signal climatique: Implications en matière de vulnérabilité de la ressource, PhD thesis, University of
Rouen-Normandy, France, p. 320, 2011.
Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M.: Karst
water resources in a changing world: Review of hydrological modeling
approaches, Rev. Geophys., 52, 218–242, https://doi.org/10.1002/2013RG000443, 2014.
Hu, C., Wu, Q., Jian, S., Li, N., and Lou, Z.: Deep learning with a long
short-term memory networks approach for rainfall-runoff simulation, Water, 10, 1543, https://doi.org/10.3390/w10111543, 2018.
Jourde, H., Masséi, N., Mazzilli, N., Binet, S., Batiot-Guilhe, C., Labat, D., Steinmann, M., Bailly-Comte, V., Seidel, J.-L., Arfib, B., Charlier, J.-B., Guinot, V., Jardani, A., Fournier, M., Aliouache, M., Babic,
M., Bertrand, C., Brunet, P., Boyer, J.-F., Bricquet, J.-P., Camboulive, T.,
Carrière, S.-D., Celle-Jeanton, H., Chalikakis, K., Chen, N., Cholet, C.,
Clauzon, V., Dal Soglio, L., Danquigny, C., Défargue, C., Denimal, S.,
Emblanch, C., Hernandez, F., Gillon, M., Gutierrez, A., Hidalgo Sanchez, L.,
Hery, M., Houillon, N., Johannet, A., Jouves, J., Jozja, N., Ladouche, B.,
Leonardi, V., Lorette, G., Loup, C., Marchand, P., de Montety, V., Muller,
R., Ollivier, C., Sivelle, V., Lastennet, R., Lecoq, N., Maréchal, J-C.,
Perotin, L., Perrin, J., Petre, M.-A., Peyraube, N., Pistre, S., Plagnes, V.,
Probst, J.-L., Simler, R., Stefani, V., Valdes-Lao, D., Viseur, S., and Wang, X.: SNO KARST: A French network of observatories for the multidisciplinary study of critical zone processes in karst watersheds and aquifers, Vadose Zone J., 17, 180094, https://doi.org/10.2136/vzj2018.04.0094, 2018.
Kourgialas, N. N., Dokou, Z., and Karatzas, G. P.: Statistical analysis and ANN modeling for predicting hydrological extremes under climate change
scenarios: The example of a small Mediterranean agro-watershed, J. Environ. Manage., 154, 86–101, 2015.
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, 2018.
Kratzert, F., Klotz, D., Herrneger, M., Sampson, A. K., Hochreiter, S., and
Nearing, G. S.: Toward Improved Predictions in Ungauged Basins: Exploiting
the Power of Machine Learning, Water Resour. Res., 55, 11344–11354, https://doi.org/10.1029/2019WR026065, 2019.
Laflen, J. M., Lane, L. J., and Foster, G. R.: WEPP: a new generation of erosion prediction technology, J. Soil Water Conserv., 46, 34–38, 1991.
Laignel, B.: Caractérisation et dynamique érosive de systèmes
géomorphologiques continentaux sur substrat crayeux, Exemple de l'Ouest
du Bassin de Paris dans le contexte Nord-Ouest Européen, mémoire HDR, University of Rouen-Normandy, Rouen, France, p. 138, 2003.
Lal, R.: Soil conservation and ecosystem services, Int. Soil Water Conserv. Res., 2, 36–47, https://doi.org/10.1016/S2095-6339(15)30021-6, 2014.
Landemaine, V.: Erosion des sols et transferts sédimentaires sur les
bassins versants de l'Ouest du bassin de Paris: analyse, quantification et
modélisation à l'échelle pluriannuelle, PhD thesis, University
of Rouen-Normandy, France, p. 236, 2016.
Landemaine, V., Soulignac, A., and Cerdan, O.: Analyse coût-bénéfice des actions de lutte contre le ruissellement et l'érosion des sols sur le bassin de la Lézarde, Rapport final BRGM/RP-69650-FR, p. 142, available at: http://infoterre.brgm.fr/rapports/RP-69650-FR.pdf (last access: 1 September 2020), 2020a.
Landemaine, V., Cerdan, O., Grangeon, T., Vandromme, R., Laignel, B., Evrard, O., Salvador-Blanes, S., and Laceby, P.: Saturation-excess overland flow in the European loess belt: An underestimated process?, in preparation, 2020b.
Lautridou, J.-P.: Le cycle périglaciaire pléistocène en Europe du
Nord-Ouest et plus particulièrement en Normandie, PhD thesis, University
of Caen, Caen, France, p. 908, 1985.
Le, X.-H., Ho, H. V., Lee, G., and Jung, S.: Application of Long Short-Term
Memory (LSTM) Neural Network for Flood Forecasting, Water, 11, 1387,
https://doi.org/10.3390/w11071387, 2019.
Le Bissonnais, Y., Thorette, J., Bardet, C., and Daroussin, J.: L'érosion
hydrique des sols en France, Rapport INRA-IFEN, p. 106, available at:
http://eduterre.ens-lyon.fr/thematiques/sol/degradation-du-sol/erosion-hydrique-2002-br.pdf
(last access: 1 September 2020), 2002.
Maetens, W., Poesen, J., and Vanmaercke, M.: How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean?, Earth-Sci. Rev., 115, 21–36, https://doi.org/10.1016/j.earscirev.2012.08.003, 2012.
Mangin, A.: Pour une meilleure connaissance des systèmes hydrologiques
à partir des analyses corrélatoire et spectrale, J. Hydrol., 67, 25–43, 1984.
Masséi, N., Wang, H. Q., Dupont, J. P., Rodet, J., and Laignel, B.: Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring, J. Hydrol., 275, 109–121, 2003.
Masséi, N., Dupont, J. P., Mahler, B. J., Laignel, B., Fournier, M.,
Valdes, D., and Ogier, S.: Investigating transport properties and turbidity
dynamics of a karst aquifer using correlation, spectral, and wavelet
analyses, J. Hydrol., 329, 244–255, 2006.
Merritt, W. S., Letcher, R. A., and Jakeman, A. J.: A review of erosion and
sediment transport models, Environ. Model. Softw., 18, 761–799, 2003.
Meyers, G., Kapelan, Z., Keedwell, E., and Randall-Smith, M.: Short-term
forecasting of turbidity in a UK water distribution system, Proced. Eng., 154, 1140–1147, 2016.
Meyers, G., Kapelan, Z., and Keedwell, E.: Short-term forecasting of turbidity in trunk main networks, Water Res., 124, 67–76, 2017.
Morgan, R. P. C.: Soil Erosion and Conservation, National Soil Resources Institute, Cranfield University, Jown Wiley & Sons, ISBN 13:9781405117814, 2005.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – a Discussion of Principles, J. Hydrol., 10, 282–290, 1970.
Ortiz-Rodriguez, J. M., Martinez-Blanco, M. R., Cervantes-Viramontes, J. M.,
and Vega-Carrillo, H. R.: Robust Design of Artificial Neural Networks Methodology in Neutron Spectrometry, Artificial Neural Networks – Architectures and Applications, Kenji Suzuki, IntechOpen, https://doi.org/10.5772/51274, 2013.
Ouvry, J.-F., Coufourier, N., Richet, J.-B., Lhériteau, M., and Pivain, S.: Maîtrise du ruissellement et de l'érosion des sols: expérimentations sur les pratiques culturales: synthèse des
résultats du ruissellement et d'érosion, Expérimentations sur
les pratiques culturales, 2001–2010, 2021, Hal-02811122, available at: https://www.areas-asso.fr/images/resultats essais simul/brochure_10ans_essais_PC_ruissellement.pdf (last access: 1 September 2020), 2012.
Ouvry, J.-F., Richet, J.-B., and Saunier, M.: “Le rebocagement”: une
réponse pertinente face aux enjeux érosifs? Retour d'expérience du Pays de Caux, Revue Science Eaux & Territoires, Ressources en eau, ressources bocagères, 30, 54–59, https://doi.org/10.14758/SET-REVUE.2019.4.11, 2019.
Patault, E., Ledun, J., Landemaine, V., Soulignac, A., Richet, J.-B.,
Fournier, M., Ouvry, J.-F., Cerdan, O., and Laignel, B.: Analysis of off-site
economic costs induced by runoff and soil erosion: Example of two areas in
the northwestern European loess belt for the last two decades (Normandy,
France), Land Use Policy, 108, 105541, https://doi.org/10.1016/j.landusepol.2021.105541, 2021a.
Patault, E., Soulignac, A., Landemaine, V., Ledun, J., Allard, E., Fournier,
M., Ouvry, J.-F., Cerdan, O., and Laignel, B.: Analyse coût-bénéfice du programme d'actions visant à réduire les impacts du ruissellement et de l'érosion en Haute-Normandie: évaluation des actions passées et projections futures sur le bassin versant de la Lézarde, LHB Hydrosci. J., 107, 1–10, https://doi.org/10.1080/00186368.2021.1912963, 2021b.
Posthumus, H., Deeks, L. K., Rickson, R. J., and Quinton, J. N.: Costs and benefits of erosion control measures in the UK, Soil Use Manage., 31, 16–33,
https://doi.org/10.1111/sum.12057, 2015.
Quintana-Segui, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., Canellas, C., Franchistéguy, L., and Morel, S.: Analysis of
near surface atmospheric variables: validation of the SAFRAN analysis over
France, J. Appl. Meteorol. Clim., 47, 92–107, https://doi.org/10.1175/2007JAMC1636.1, 2008.
R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, available at: http://www.R-project.org (last access: 1 September 2020), 2008.
Renard, K. G. and Freidmund, J. R.: Using monthly precipitation data to
estimate the R factor in the revised USLE, J. Hydrol., 157, 287–306, 1994.
Savary, M., Johannet, A., Masséi, N., Dupont, J.-P., and Hauchard, E.:
Operational turbidity forecast using both recurrent and feed-forward based
multilayer perceptrons, in: Advances in time series analysis and forecasting, ITISE 2016, Contributions to Statistics, edited by: Rojas, I., Pomares, H., and Valenzuela, O., Springer, Cham, 2017.
Shen, C.: A transdisciplinary review of deep learning research and its relevance for water resources scientists, Water Resour. Res., 54, 8558–8593, https://doi.org/10.1029/2018WR022643, 2018.
Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F.-J., Ganguly, S., Hsu, K.-L., Kifer, D., Fang, Z., Fang, K., Li, D., Li, X., and Tsai, W.-P.: HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community, Hydrol. Earth Syst. Sci., 22, 5639–5656, https://doi.org/10.5194/hess-22-5639-2018, 2018.
Siou, L. K. A., Johannet, A., Borrell, V., and Pistre, S.: Complexity selection of a neural network model for karst flood forecasting: The case of the Lez Basin (southern France), J. Hydrol., 403, 367–380, 2011.
Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., and Demir, I.: A comprehensive review of deep learning applications in hydrology and water
resources, Water Sci. Technol., 82, 2635–2670, https://doi.org/10.2166/wst.2020.369, 2020.
Sjörberg, J. and Ljung, L.: Overtraining, regularization, and searching
for minimum in neural networks, in: IFAC Adaptative Systems in Control and
Signal Processing, Grenoble, France, 1992.
Souchère, V., King, D., Daroussin, J., Papy, F., and Capillon, A.: Effects of tillage on runoff directions: Consequences on runoff contributing area within agricultural catchments, J. Hydrol., 206, 256–267, https://doi.org/10.1016/S0022-1694(98)00103-6, 1998.
Souchère, V., Cerdan, O., Ludwig, B., Le Bissonnais, Y., Couturier, A.,
and Papy, F.: Modelling ephemeral gully erosion in small cultivated catchments, Catena, 50, 489–505, https://doi.org/10.1016/S0341-8162(02)00124-8, 2003.
Souchère, V., Cerdan, O., Dubreuil, N., Le Bissonnais, Y., and King, C.:
Modelling the impact of agri-environmental scenarios on runoff in a cultivated catchment (Normandy, France), Catena, 61, 229–240, 2005.
Stevenson, M. and Bravo, C.: Advanced turbidity prediction for operational
water supply planning, Decis. Support Syst., 119, 72–84, 2019.
Takken, I., Beuselinck, L., Nachtergaele, J., Govers, G., Poesen, J., and
Degraer, G.: Spatial Evaluation of physically-based distributed erosion model (LISEM), Catena, 37, 431–447, 1999.
Varma, S. and Simon, R.: Bias in error estimation when using cross-validation for model selection, BMC Bioinform., 7, 91, https://doi.org/10.1186/1471-2105-7-91, 2006.
Verstraeten, G., Prosser, I. P., and Fogarty, P.: Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee
catchment, Australia, J. Hydrol., 334, 440–454, https://doi.org/10.1016/j.jhydrol.2006.10.025, 2007.
Vidal, J. P., Martin, E., Franchisteguy, L., Baillon, M., and Soubeyroux, J. M.: A 50-year high-resolution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, 2010.
Wang, L. and Liu, H.: An efficient method for identifying and filling surface depressions in digital elevation model for hydrologic analysis and modelling, Int. J. Geogr. Inf. Sci., 20, 193–213, https://doi.org/10.1080/13658810500433453, 2006.
Yaseen, Z. M., El-shafie, A., Jaafar, O., Afan, H. A., and Sayl, N. K.: Artificial intelligence based models for stream-flow forecasting: 2000–2015, J. Hydrol., 530, 829–844, https://doi.org/10.1016/j.jhydrol.2015.10.038, 2015.
Zhang, M. D. D., Yan, M. X. P., and He, X.: Modeling extreme events on time series prediction, in: KDD'19, 4–8 August 2019, Anchorage, AK, USA, https://doi.org/10.1145/3292500.3330896, 2019.
Short summary
The goal of this study was to assess the sediment discharge variability at a water treatment plant (Normandy, France) according to multiple realistic land use scenarios. We developed a new cascade modelling approach and simulations suggested that coupling eco-engineering and best farming practices can significantly reduce the sediment discharge (up to 80 %).
The goal of this study was to assess the sediment discharge variability at a water treatment...